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Importance Sampling Simulation for Evaluating
Lower-Bound Symbol Error Rate of the Bayesian
DFE With Multilevel Signaling Schemes
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Abstract—For the class of equalizers that employs a symbol-de- SER performance better than—¢ is very difficult, if not im-
cision finite-memory structure with decision feedback, the optimal possible, using a conventional Monte Carlo simulation.
solution is known to pe the BayeS|aq decision feedback.equallzer Within the context of communication systems, IS refers to a
(DFE). The complexity of the Bayesian DFE, however, increases . lation techni that aims to red th . fth
exponentially with the length of the channel impulse response simula '_On echnique a. ams Orel ucethevariance o _eerror
(CIR) and the size of the symbol constellation. Conventional rate estimator. By redUCIng the variance of error rate estimator,
Monte Carlo simulation for evaluating the symbol error rate IS can achieve a given precision from shorter simulation runs,
(SER) of the Bayesian DFE becomes impossible for high channel compared with a conventional Monte Carlo simulation. For an
signal-to-noise ratio (SNR) conditions. It has been noted that excellent review of IS techniques, see [9]. The basic idea be-

the optimal Bayesian decision boundary separating any two , . - . . . .
neighboring signal classes is asymptotically piecewise linear ang Nind IS is that certain values of the input random variables in

consists of several hyperplanes when the SNR tends to infinity. & Simulation have more impact on the error probability being
This asymptotic property can be exploited for efficient simulation estimated than others. If these “important” values are empha-
of the Bayesian DFE. An importance sampling (IS) simulation sized by sampling more frequently, the estimator variance can
technique is presented based on this asymptotic property for pq requced. The fundamental issue in IS simulation is then the

evaluating the lower bound SER of the Bayesian DFE with a . . s . .

multilevel pulse amplitude modulation (M -PAM) scheme under choice c_)f the blasgd dlstr|bgt|on, which encourages the |mpor-
the assumption of correct decisions being fed back. A design tant reg|0ns Of the Input Va.”ables. One Of the most effeCUVe IS
procedure is developed, which chooses appropriate bias vectorstechniques is the mean translation approach [10]-[14], where
for the simulation density to ensure asymptotic efficiency (AE) of - the distribution is moved toward the error region. This is usually
the IS simulation. corresponding to shifting the density to a decision boundary. It
Index Terms—Asymptotic decision boundary, Bayesian decision is highly desired that a chosen IS technique is asymptotically

feedback equalizer, importance sampling, Monte Carlo simula- efficient. For a precise definition of AE, see, for example, [11].
tion, symbol error rate. Loosely speaking, an AE estimator requires a number of simu-
lation trials that grows less than exponentially fast as the error
|. INTRODUCTION rate tends to zero. Thus, when AE estimators are available, it is

. . . realistic to attempt extremely low error probability simulation.

.QUALIZAT.ION _techmque ple_lys an ever-increasing rgle Application of a mean-translation based IS technique to prac-
b [N combating d|§tort|on apd interference in communic ical simulation systems is by no means a straightforward and
tion links [1], [2] and h|gh—denS|ty data storage systems (3], [4 asy task. For the binary phase shift keying (BPSK) modulation
F_or the_ class .Of equalizers based on a symbol-by_-symbol descéheme, lltis [15] developed a randomized bias technique for
sion with de_<:|5|on_feedba_1c_k, the maX|mLﬂTposter|pr|prob-_ . the IS simulation of Bayesian equalizers without decision feed-
ability equalizer with decision feedback or Bayesian dec'S'cf:f}jlck. The simulation density in lltis’ scheme consists of a sum

feedback equalizer (DFE) [.5]_[8] i_s knqwn to prOV?de . b_e%tf Gaussian distributions with the bias vector being chosen from
performance. The complexity of this optimal Bayesian SOIUt'OQ'fixed setin a random manner. Although it can only guarantee

however, increases exponentially with the CIR length and t gymptotic efficiency for certain channels, this IS simulation

size of symbol constellation. Further_more, due to |t_s comp echnique provides a valuable method in assessing the perfor-
cated structure, performa_nce analysis of the _Bayes_|an DF_ ance of the Bayesian equalizer. This IS simulation technique
gsually bas?‘d on conventional Monte Carlo S|mu|at|9n, whi as extended to evaluate the lower bound (assuming correct de-
is computationally costly even for modest SNR conditions. Asion feedback) bit error rate of the Bayesian DFE with the
obtain a reliable SER estimate, at least 100 errors should oc WK scheme [16], [17]. This paper considers an IS simulation

. ) i 6 s
during a simulation. Thus, for an SER leveligi™, at least.0 for evaluating the lower bound SER of the Bayesian DFE with

data samples are needed. Investigating the Bayesian DFE u 2bAM symbols. Based on a geometric translation property

for the M subsets of noise-free channel states, the asymptotic
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Bayesian DFE evaluated on any two neighboring signal subsétkere areV, = M“+! possible values or sequences@fk),
These two properties enable an extension of the IS simulatiich are denoted as; ;, 1 < j < Ny. The set of the noiseless
technique for the binary Bayesian DFE [16], [17] to the generahannel states in the translated signal space is then defined by
M-PAM case.
RE {r; =H;s;; 1<) <N} )
Il. BAYESIAN DECISION FEEDBACK EQUALIZER
Q&: channel state sét can be partitioned intd/ subsets con-

Consider the real-valued channel that generates the receiv,
g ditioned on the value of(k — d)

signal samples of

= "’i_:l his(k — i) 4+ n(k) 1) ROE{r;eR: s(k—dy=s}, 1<i<M. (10)
=0 The optimal Bayesian DFE [8] can how be summarized. Whe
whereh; are the CIR tapsy,, is the CIR length, the Gaussiandecision variables are given by
white noisen(k) has zero mean and varianeé, and the 9
M-PAM symbols(k) takes the value from the symbol set pi(r(k)) = Z exp <_W> . 1<i<M
A r;€R®) "
S={s;,=2—M-1,1<i:< M}. 2 (11)

The channel SNR is defined as and the minimum-error-probability decision is defined by

AR <n,z:1 h?> ” . 3(k—d)=s;» withi* =arg 12%31(\4{%(1‘(]{))} (12)
=0

whereo? is the symbol variance. The generic DFE uses the Symmetric Structure of Subset States and Asymptotic
information present in the noisy observation vecygk) = Bayesian Decision Boundary

[y(k)y(k—1)...y(k—m+1)]" and the past detected symbol |n[18], a geometric translation property has been established,
vectors, (k) = [§(k —d—1)...3(k — d—n,)]" to produce an relating any two “neighboring” subsets of channel states. This
estimates(k — d) of s(k — d), whered, m, andn,, are the de- property is reiterated here in Lemma 1.
cision delay, the feedforward and feedback orders, respectivelyl emma 1: For1 < i < M — 1, the subseR(é*D) s a trans-
The choice ofd = nj, — 1, m = np, andn, = n;, — 1 Will  Jation of R by the amoungh,c.:
be used as this choice is sufficient to guarantee a desired linear
separability for different signal classes [19]. With this choice, RO = R® 4 oh (13)
the observation vector(k) can be expressed as [8], [19]
whereh,ey = [fn, —1 . .. h1ho]T . FurthermoreR™ andR¢+1)
y(k) = Hisy(k) + Hasy (k) + n(k) (4)  are linearly separable.
T B It is obvious thatR(") has one neighboR®,, R‘M) has
wheres;;( )d [s(k)... (k__ d/)f] ’ Sb(lz) - [S(f T d _d one neighborR® -1 andR®, 2 < ¢ < M — 1 has two
1.8 )l ( ) =[Uk)..n(k —m+ DY, an neighborsR¢—1) and RtV This shifting property implies

Tho hi - hn,—1 that asymptotically, the decision boundd$y,, for separating
. : RO+ and R+ is a shift of B; for separatingz(”) and R(+1)
H, = 0 ho ' ' (5) by an amoungh,.,. Thus, the construction of the asymptotic
c ' hi Bayesian decision boundary for the binary Bayesian DFE [20]
L0 --- 0 ho can readily be applied for the construction of the asymptotic
-0 0 0 decision boundary for separating any two neighboring signal
h 0 classes [18]. For the completeness, the relevant results given in
et [18] are summarized. Without the loss of generality, consider the
Hy=|h, 2 hp_1 0 (6) two neighboring subse®*/2 and RUM/2+1) 'which corre-
. . _ 0 sponds tp the two classesg,,2) = -1 _ands((M/Q)H) = 1.
' First, define the concept of Gabriel neighbor states.
hy T N

Definition 1: A pair of opposite-class channel states™ ¢

are them x (d+ 1) andm x n, CIR matrices, respectively. ~R{M/2HD r(=) ¢ R(M/2)) is said to be a Gabriel neighbor
Assuming correct past decisions, we hayg:) = s, (k) and  pair if Vr; € RO/ (JRM/DFD ¢, o£ v andr; £ v

y(k) = His;(k) + Ha8, (k) + n(k). (7) ;= rol|? > It — rolf? (14)

Thus, the decision feedback translates the original observatwﬁereu denotes the union operator, and

spacey(k) into a new space(k)

r(+) _|_ r(f)

r(k) = y(k) — Hasy (k). (8) ro=——f (15)
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The following lemma describes the optimal decision
boundaryB;,;,») that separate®*/2 and R(3/2)+1) in the
asymptotic case of2 — 0.

Lemma 2: Asymptotically, the optimal decision boundary
B2y separating?(*/2) and R((A/2+1) is piecewise linear
and made up of a set df hyperplanes. Each of these hyper-
planes is defined by a pair of Gabriel neighbor states, and the
hyperplane is orthogonal to the line connecting the Gabriel
neighbor pair and passes through the midpoint of the line.

Consequently, a necessary condition for a pp B(yy/2)
is

O : state m : mass center of subset

L
rt + r(=) [r('i') - r(_)} (16) Fig. 1. lllustration of symmetric and shifting properties of subset states.
rp =

2 2

B. SER of the Bayesian DFE Willi-PAM Symbols

wherex denotes an arbitrary vector in the subspace orthogonal . :
tox, v andr(-) are a pair of Gabriel neighbor states, and the Although there exists no closed-form expression for the SER

sufficient conditions fot € B are of the Bayesian DFE witid/-PAM symbols, the calculation of
B = =M/2) the theoretic lower-bound SER for the Bayesian DFE

lep — |2 < flep — v, Ve ROEFD e Py = Prob{3(k — d) # s(k — d)} (20)
(17)  can be simplified by utilizing the above-mentioned properties.
les =P < |jrp — ;)% Vr, € R(%), r; #rl”) Consider the conditional error probability givetk — d) = s;
(18) with 1 < ¢ < M. Denote this conditional error probability as
2 o2 Pg),,. The decision regio®; for $(k—d) = s; is defined by the
[r5 =" = flrp —r 7% (19)  two decision boundaries;_, ands;. Error occurs when(k) ¢

. . . D;, thatis, when the noise makes the observation either crossing
Based on these necessary and sufficient conditions, a simpl 5rB;_, or overs3;. Because of the symmetric distribution of

gorithm can be used to select the set of allti@abriel neighbor R, probability for r(k) crossing ovem;_, is equal to that

pairs {r{ ", r; 7}, as in the binary case [15], [20]. For theyt gyer ;. Denote this “one-side” error probability )1
completeness, the algorithm is summarized as follows. Then, Py, = 2Pgj.1, 1 < i < M. The cases of = 1
andM are special as the decision regidds andD,,; are half
spaces, where each is defined by a single decision boundary.
Thus, Pgs, = Pgjs 1, andPg|,,, = Pg|s, 1. Since all these
one-sided conditional error probabiliti¢;,,;;, 1 <7 < M

are equal, the error probability or SER of the Bayesian DFE is

L=o
FORr(") € R(Z+D
FORr(™ ¢ R(Y)

L) ()
x = L —d—in = |Ir{" —x|*; simply
F (el = x)2 > n,velP e ROF T 1 £ 4) AND
) g2 o= e (3D ; 2(M -1
(”Ll+:1;” >n,Vr 0 € B2V 1S ) PE:—( i )PE|57-|1- (21)
Rgabricl < (r(L+>,r17>) & (r(+>,r(-7>); . . . .
END In ¢ Now, consider a “binary” Bayesian DFE defined &4"//2)
and R((M/2)+1) with the decision function given by
NEXT r{™
NEXT () lr(k) — r;])?
pey= 3 e EEZEE)
%+1 n
The number of Gabriel neighbor paitsdepends on the CIR rjER( ) ,
and the size of the symbol constellation and is automatically B Z exp <_ llr (k) — x| ) (22)
determined in the above algorithm. . 202
A useful property regarding the distribution of a subB&? rzeR(_)

should be emphasized. Due to the symmetric dist‘ribution of tgﬁd the decision rule defined b

symbol constellatios defined in (2), the states ¢t age) dis- y

tributed symmetricallyaround the mass centat; of B'*. In >

particular, if a pointr; € R® has a distance to the deci- sk —d)= { _11 zggﬁggzggg < 8 (23)
sion boundary3;_1, then there is another point € R® with ’

the same distance to the other decision boun#faryrhis sym- butthe error probability of this “binary” Bayesian DFE, which is
metric distribution property together with the shifting propertgenoted ag’., is equal taPg;, 1 . Thus, the SER of the Bayesian
are illustrated in Fig. 1. DFE for M -PAM symbols is the scaled error probability of the
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equivalent binary Bayesian DFE, which is defined in (22) argtructing the simulation density*(rj(k) |r;) to meet these
(23), byafacto((2(M - 1)_)/M)- conditions. LetRcabricl {r(+), 5_)}5:1 be the set of
Remark 1: Strictly speakingPr equals((2(M —1))/M)P.  Gabriel neighbor pairs selected froR{M/2) and R(M/2)+1),
only at the asymptotic case. If the SNR is not sufficiently larggach Gabrlel neighbor pair! et §—>) defines a hyperplane
the decision boundary defined Hy : f,(r) = 0} may no Hy(r) = wlr 4+ i; = 0 thatis part of the asymptotic decision
longer coincide with3,,,2y. More fundamentally, the realiza- boundary B, /). The weight vectorw; and biasb; of the
tion of the optimal decision bounda#} by the multiple-hyper- hyperplane are given by
plane decision boundary as described in Lemma 2 is accurate

only for sufficiently large SNR. 9 (r§+) _ r;—))

Il. IS SIMULATION FOR THE BAYESIAN DFE
WITH M-PAM SYmMBOLS

+ - + -
To evaluate the SERHz) of the Bayesian DFE witti/-PAM b= _ (r§ ' )) (r§ ') ))
symbols, we only need to evaluate the error probahititpf the o © (9 '
equivalent binary Bayesian DFE defined on the two neighboring Hrl —h H
subsetsR(M/2) and R((M/2)+1)  The IS simulation technique
[16], [17] can readily be used to evaludte as follows:

2
|

(29)

Notice that the theory of support vector machines [21], [22] has
been applied to determink; with (r§+), r§—>) as its two sup-

Ny N r; (k) |r;) port vectors, and{; is acanonicalhyperplane having the prop-
Fe N A ZZIE rj(k W (24) erty Hl(r§+)) = 1 and Hl(rg_)) = —1. The following two
j=1k=1 ’ definitions are useful in the construction of the simulation den-

where the error indicator functiahz(r(k)) = 1 if r(k) causes sity. o o) L2 i en o
an error, and (r(k)) = 0 otherwise;p(r; (k) |rj) is the true  Definition 2: Astater; € R is said to besufficiently
conditional density givem; € R(M/2+1) which is Gaussian separabley the hyperplané{l if wir ( ) +-b; < —1. Similarly,
with meanr; and covariance’I,,,, I, is them x m identity g stater’™ € R(M/2+1) js said to besufﬁuently separabley
matrix, andN, = M? = N;/M is the number of states in it wl (+) Fb > L
RM/2+1). N is the number of samples used for each signg . Lr he h | hablef
patternr;, and the sample; (k) is generated using the simula- D€ |n|t|on 3: The hyperp ane([il) is reachablefrom r;™" €
tion densityp™(r; (k) | r;) chosen to be RUM/D+1) if the projection ofr™ onto H, is on the asymp-
totic decision boundanga;,2)-
B Z < e (k) — vlj||2> For eachr™ e R(M/2) its separability index fotH; is
r; w € - . _ . -y . . .
P ) pl’J 7ro—72l )T 202 aij) = 1if rg ) is sufficiently separable byi;; otherwise,
(25) o) = 0. Similarly, af? = 1if r{*) € RIM/2HD s suffi-
In the simulation density (25),; is the number of the bias vec- ciently separable bﬁz, anda§+) — 0 otherwise. The reacha-

torsc,; = —r; + vy, forr; € RM/DHD o > 0 for ) e
s B 2J +1
1<1< Lj, andy> pi; = 1. An estimate of the IS gain bility of H; fromr}" € R(M/2+Y can be tested by computing

for P, which is defined as the ratio of the numbers of trials re- T4 @) ()
quired for the same estimate variance using the Monte Carlo and ¢y =—05 (Wz r;+ bl) (rz -1 ) - (30)
IS methods, is given as [11], [15]

I ~ If Vi = I‘J(»+) +c; € B(]w/g) (i.e., fb(Vlyj) = 0), H;is

+

FP.(1-F, . .
= (72) (26) reachable from§+) (ci; is then a bias vector), and the reacha-
re bility index is+; ; = 1, otherwise;y; ; = 0. The whole process

where produces the separability and reachability table, shown at the
N. N, ) bottom of the next page.
on Z 2 1eles ) <M> . (@n Inordertoconstructaconvex regi(zif) covering a~§.+) €

=~ . n
Ns Ni =1 p*(r;(k)|r;) RM/2+D) first select those hyperplanes that can sufficiently
] o separatergﬂ and that are reachable fronE\J’) with the aid of
The IS simulated’g is simply the separability and reachability table. This yields the integer set
L oM -1) .
Pgp= TPE' (28) G](»Jr) = {q : ocf;:) =landy,, = 1}. (31)

The estimated IS gain faP. will be used as the estimated IS

gain for Pg. Then R(+) is the intersection of all the half- spadqé*) ={r:

H,(r) > 0} withq € G](J’). In fact, it is not necessary to use
A. Construction of the IS Simulation Density every hyperplane defined @§+) to construcﬂZEJ’). A subset

To achieve AE, the bias vectofs:; ;} must meet certain of these hyperplanes will be sufficient, provided that every op-
conditions [11]. A design procedure is presented for coposite-class state iR("/? can sufficiently be separated by at
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least one hyperplane in the subset. If this can be done, the error
region& satisfies

., .
ccrRM = | HD (32)

(+)
qEGj

with the half-spacest{” 2 {r : H,(r) < 0}. Obviously, all error region

the hyperplanes defined &'t are reachable from'*, and
at least O_ne O{Vq,j} is the mm_'mum rate .p.omt _(as dgflned II']Fig. 2. Simulation density construction for the case of bingky = 2)
[11]). Notice that these are sufficient conditions in which a set 6fmbols with a two-tap channel. In this example, there are three Gabriel

bias vectors (related tmgﬁ)) must be metto achieve AE [11]. If neighbor pair{r{™. r{™). (r{*),r{™). and(r;.r;™’). The asymptotic
+) . +) M/ . ] decision boundary is formed from the three corresponding hyperplEhes
such an exists for eactrj e R(M/2)+1) 'the simulation H,, andH,. The separability and reachability table for this example is given

density constructed with the bias vectdrs, ;}, ¢ € GS7 for " TePle !
all 5 will guarantee AE.
) : , _ o TABLE |
deg:’]ctglduﬁ:a::l:/ge gxal.?a:]?swelz(haj\fnplé(]‘% and ?h(,)_ (g)][s SEPARABILITY AND REACHABILITY TABLE FOR THE EXAMPLE GIVEN IN FIG. 2
.2 = {r; ',r ,
and R? = {r§+),r§+)}. It is obvious tha’[(rg+ ,rg_%) is hyperplane | r{™ {7 [ £{?) £V
a Gabriel neighbor pair, as all the other states satisfy (14), H, 1 0 1(1) 1(0)
gvenr, = ({7 + r{7)/2. Similarly, (r{™,r{7) and H, 0 1 [1(1) O
(x$P,r$7)) are Gabriel neighbor pairs. Thus, the asymptotic , 1 1 ]0 1(1)

decision boundary is formed from the corresponding three

hyperplanest,, Hz, and Hy. Obviously,r{~ is sufficiently arelatively small IS gain when SNR is smalll, as can be observed
separable byf;, whereass ™ is not, as; (r{ ') = —~1and iy the simulation results.
Hy(r5”) > 0. Bothr{™) andr$t are sufficiently separable Remark 3: Since it is assumed that correct decisions are fed
by H; asHl(r§+)) = 1and Hl(r§+)) > 1, but H; is not back, the IS simulation procedure considered here provides a
reachable fromé” as the projection ofé” onto H; is not at lower boundSER for the Bayesian DFE. In practice, it is more
the asymptotic decision boundary. Continuing this process f@seful to provide somepper boundSER and to take into ac-
the other two hyperplanes leads to the separability and reachunt error propagation caused by incorrect decisions being fed
ability table given in Table 1. As{™ is sufficiently separated back. However, due to its highly complicated structure, deriva-
from the opposite-class states by the two reachable hyperplafies of an upper bound SER for the Bayesian DFE will be ex-
H, and H,, there are two bias vectors ; andc,; for r§+), tremely difficult, if not impossible. In the lack of any upper
where v, ; is the minimum rate point, and the error regiofPound, the lower bound SER is the only means that can be used
is covered by the half space formed fral and H,. Since to evaluate potential performance of the Bayesian DFE.
r§+) is sufficiently separable by a single reachable hyperplane )
Hs, there is one bias vectar; » for r$™, wherev, , is the B. Numerical Examples
minimum rate point, and the error region is covered by the half Example 1: The IS technique was simulated for the Bayesian
space formed fronH;. For this example, the constructed IDFE with four-PAM symbols using the three-tap CIR defined by
simulation density achieves AE. h = [0.4 1.0 0.6]*. The DFE structure was specified by = 3,
Remark 2: The construction procedure for the IS simulad = 2, andn;, = 2. The channel state s&thad/V; = 64 states.
tion density discussed previously, if it can be done, will guafive pairs of Gabriel neighbor states were found from the sub-
antee the AE of IS simulation. Strictly speaking, however, ABetsR(? and R®, giving rise to five separating hyperplanes.
can only be guaranteed at the asymptotic case. As pointed dhe separability and reachability table for this example is listed
in Remark 1, if the SNR is too small, the multiple-hyperplani Table II, from which the required bias vectors were gener-
decision boundary may deviate from the true optimal decisi@ted. For this example, it is straightforward to verify that the
boundaryB3 ;2. Shifting the density to the asymptotic deciconstructed simulation density achieves AE. An inspection of
sion boundary is then not “optimal.” This is the main source fdrable Il shows that the statei(sﬂ to rf.)” in R® are sufficiently

I S r{t e (+)

r; . ry.
H | o) - ag,}\) ) 04§+13 (71,n,)
Hy, Oé(ﬂ) e 04(51 a(rfl)(%,l) e a(r+1)\ (vr,n,)
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TABLE I 0
SEPARABILITY AND REACHABILITY TABLE FOR THE CHANNEL i\\
h =[0.4 1.0 0.6]7 WITH FOUR-PAM SymBOLS T 5
[asd
H, H, H; Hy H; E
1 0 1 0 1 ?2: 10
1 0 1 0 1 g | B
1 0 1 0 1 B 15
1 1 1 0 1
1 0 1 0 1 -20
1 0 1 0 1 15 Sigznoal to Nozisse Ratioa(OdB) %
1 1 1 0 1 @
R |1 1 1 1 1 8 7
0 1 1 0 1 s
0 1 1 0 1 =
0 1 1 1 1 S 12
0 1 1 1 1 5 o
0 1 0 1 1 g
0 1 0 1 1 5 °
0 1 0 1 1 s
0 1 0 1 1 N Py
1(1) 1(1) 0 1(1) 0 %15 N
1 (1) 1 (1) 0 1 (1) 0 ignal to Noise Ratio (dB)
1(1) 1(1) o 1(1) 0 (®)
1 (i) 1 (1) 0 1 (0) 0 Fig. 3. (a) Lower bound SERs and (b) the estimated IS gain of the Bayesian
() 1() 1(1) 1(1) 0 DFE for the CIRh = [0.4 1.0 0.6]7 with four-PAM symbols using
1(0) 1(1) 1(1) 1(1) 0 conventional sampling (CS) and importance sampling (IS) simulation.
1(0) 0 1(1) 1(1) o
(3) L . . .
R i ((1)) (1) ) 1(1) 1(1) o tion is really needed at very low SER or high SNR situations.
; (1) ‘0 (1) 1 ((1)) i (i) } (i) Under such conditions, the proposed IS simulation technique
1 8 0 1 (O) 0 (1) 1 (1) is extremely efficient. For example, given SNR 30 dB, the
1(1) o 1 Eog 0 1 8 SER of the Bayesian DFE with correct symbols being fed back
evaluated by the IS technique was approximat@ly® with an
1(1) 0 1(1) 1(1) 1()
1(1) 0 1(1) o 1 (1) estimated IS gain df = 1326 783. The CS method could not
1(1) 0 1(1) 0 1(1) work under the same SNR condition, and it would require ap-
1(1) o 1(1) o 1(1) proximately2.1 x 10*2 samples to achieve a similar estimation
variance.
Example 2: A two-tap channelh = [0.3 1.0]%" with

separated from the opposite cld&@ by the two reachable hy- €ight-PAM symbols was simulated, and the Bayesian DFE
perplanes; and Ha, &P to r{" are sufficiently separated Structure was defined by, = 2, d = 1, andn, = 1. The
from R by the two reachable hyperplanés and H., and channel state sét hadNV; = 64 states. Nine pairs of Gabriel

(P to r(} are sufficiently separated frof(® by the hyper- neighbor states were selected from the sub&&ts and R©),

plane Hs. and Table Il lists the separability and reachability table for

As in [15], the bias vectors were selected with uniform proﬁt_‘is exarmple. It i_s straightforward to verify tr;a_t the c_o_nstructed
ability in the simulation withp, ; = (1/L;) for1 < I < L;, simulation density achreve_s AE. Trle staﬁé is sufficiently
that is, no attempt was made to optimize the probabiliies Separable from the oppo%rrt)e-.claBé ) by the two reachable
in (25). For each SNRL0? iterations were employed, averaginglYPerplanest; and Hs, r;" is sufficiently separable from
over all the possible states®®. Thus, the total samples usedR by the two reachable hyperplanés; and Hy, rg* is
for a given SNR weré.6 x 106, Fig. 3(a) shows the lower boundseparable by the two reachable hyperplafigsand Hy, rf’)
SERSs obtained using the IS and conventional sampling (GS)separable by the two reachable hyperplaHesind Hg, and
simulation methods, respectively. It can be seen that the cmgrf) to r§+) are separable froR(*) by the single reachable hy-
ventional Monte Carlo results for low SNR conditions based dperplanefy. As this is a two-dimensional example, the graphic
rectly on the Bayesian DFE of (11) and (12) agreed with thoseitifistration of the simulation density construction can be made
the IS simulation. The estimated IS gains, which are depictedand is shown in Fig. 4. Notice the difference between the true
Fig. 3(b), indicate that exponential IS gains were obtained witptimal decision boundar$, under a low SNR condition and
increasing SNRs. It can be seen that for small SNR conditiotise asymptotic decision boundary. This explains the relatively
the IS gain is relatively small for the reason given in Remark 8mall IS gain in the simulation for low SNR conditions.

For example, given SNR= 25 dB, the IS gain was a modest Again, the bias vectors were selected with uniform proba-
value ofI' = 3.5. It should be emphasized that an IS simulability in the simulation. For each SNRf)® samples were used
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TABLE I
SEPARABILITY AND REACHABILITY TABLE FOR THECHANNEL h = [0.3 1.0]7
WITH EIGHT-PAM SymBOLS £
@
Hl HZ H3 H4 H5 HG H7 H8 HQ E
i 0 i 0 1 0 1 0 1 =
1 o 1 0 1 0o 1 0o 1 €
1 0 1 0 1 0 1 0 1 ¢
1 0 1 0 1 0 1 0 1 g
R® |0 1 1 0 1 0 1 0 1
0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 1 0 1 28 32 36 40
0 1 0 1 0 1 0 1 1 Signal to Noise Ratio (dB)
1(1) 1(1) o 1) o 1(1) 0 1(1) o @
1(1) o 11 1(1) o 1(0) 0 1(1) o 18
1(0) 0 1(1) 0 1(1) 1(1) 0 1() o 15
1(1) o 1(0) 0 1(1) 0 1(1) 1(1) 0 =
R® 1 1(1) 0 1(1) 0 1(0) 0 1(1) 0 1(1) &2
1(1) o 1(1) 0 1(1) 0 1(1) 0 1(1) )
1(1) 0 1(1) o 1(1) 0 1(1) 0 1(1) 3 9
11 o 1(1) 0 1(1) 0 1(1) 0 1 (1) E, .
®
3
—Q—H—O’.—'ll‘/’f

28 44

32 36 40
Signal to Noise Ratio (dB}
O]

Fig. 5. (a) Lower-bound SERs and (b) estimated IS gain of the Bayesian DFE

for the CIRh = [0.3 1.0]T7 with eight-PAM symbols using conventional
sampling (CS) and importance sampling (IS) simulation.

tial performance for the Bayesian DFE under high SNR condi-
tions.

Fig. 4. Simulation density construction for the chanbel= [0.3 1.0]7

with eight-PAM symbols. Thick solid curve indicates the asymptotic decision
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