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Importance Sampling Simulation for Evaluating
Lower-Bound Symbol Error Rate of the Bayesian

DFE With Multilevel Signaling Schemes
Sheng Chen, Senior Member, IEEE

Abstract—For the class of equalizers that employs a symbol-de-
cision finite-memory structure with decision feedback, the optimal
solution is known to be the Bayesian decision feedback equalizer
(DFE). The complexity of the Bayesian DFE, however, increases
exponentially with the length of the channel impulse response
(CIR) and the size of the symbol constellation. Conventional
Monte Carlo simulation for evaluating the symbol error rate
(SER) of the Bayesian DFE becomes impossible for high channel
signal-to-noise ratio (SNR) conditions. It has been noted that
the optimal Bayesian decision boundary separating any two
neighboring signal classes is asymptotically piecewise linear and
consists of several hyperplanes when the SNR tends to infinity.
This asymptotic property can be exploited for efficient simulation
of the Bayesian DFE. An importance sampling (IS) simulation
technique is presented based on this asymptotic property for
evaluating the lower bound SER of the Bayesian DFE with a
multilevel pulse amplitude modulation ( -PAM) scheme under
the assumption of correct decisions being fed back. A design
procedure is developed, which chooses appropriate bias vectors
for the simulation density to ensure asymptotic efficiency (AE) of
the IS simulation.

Index Terms—Asymptotic decision boundary, Bayesian decision
feedback equalizer, importance sampling, Monte Carlo simula-
tion, symbol error rate.

I. INTRODUCTION

EQUALIZATION technique plays an ever-increasing role
in combating distortion and interference in communica-

tion links [1], [2] and high-density data storage systems [3], [4].
For the class of equalizers based on a symbol-by-symbol deci-
sion with decision feedback, the maximuma posterioriprob-
ability equalizer with decision feedback or Bayesian decision
feedback equalizer (DFE) [5]–[8] is known to provide the best
performance. The complexity of this optimal Bayesian solution,
however, increases exponentially with the CIR length and the
size of symbol constellation. Furthermore, due to its compli-
cated structure, performance analysis of the Bayesian DFE is
usually based on conventional Monte Carlo simulation, which
is computationally costly even for modest SNR conditions. To
obtain a reliable SER estimate, at least 100 errors should occur
during a simulation. Thus, for an SER level of , at least
data samples are needed. Investigating the Bayesian DFE under
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SER performance better than is very difficult, if not im-
possible, using a conventional Monte Carlo simulation.

Within the context of communication systems, IS refers to a
simulation technique that aims to reduce the variance of the error
rate estimator. By reducing the variance of error rate estimator,
IS can achieve a given precision from shorter simulation runs,
compared with a conventional Monte Carlo simulation. For an
excellent review of IS techniques, see [9]. The basic idea be-
hind IS is that certain values of the input random variables in
a simulation have more impact on the error probability being
estimated than others. If these “important” values are empha-
sized by sampling more frequently, the estimator variance can
be reduced. The fundamental issue in IS simulation is then the
choice of the biased distribution, which encourages the impor-
tant regions of the input variables. One of the most effective IS
techniques is the mean translation approach [10]–[14], where
the distribution is moved toward the error region. This is usually
corresponding to shifting the density to a decision boundary. It
is highly desired that a chosen IS technique is asymptotically
efficient. For a precise definition of AE, see, for example, [11].
Loosely speaking, an AE estimator requires a number of simu-
lation trials that grows less than exponentially fast as the error
rate tends to zero. Thus, when AE estimators are available, it is
realistic to attempt extremely low error probability simulation.

Application of a mean-translation based IS technique to prac-
tical simulation systems is by no means a straightforward and
easy task. For the binary phase shift keying (BPSK) modulation
scheme, Iltis [15] developed a randomized bias technique for
the IS simulation of Bayesian equalizers without decision feed-
back. The simulation density in Iltis’ scheme consists of a sum
of Gaussian distributions with the bias vector being chosen from
a fixed set in a random manner. Although it can only guarantee
asymptotic efficiency for certain channels, this IS simulation
technique provides a valuable method in assessing the perfor-
mance of the Bayesian equalizer. This IS simulation technique
was extended to evaluate the lower bound (assuming correct de-
cision feedback) bit error rate of the Bayesian DFE with the
BPSK scheme [16], [17]. This paper considers an IS simulation
for evaluating the lower bound SER of the Bayesian DFE with

-PAM symbols. Based on a geometric translation property
for the subsets of noise-free channel states, the asymptotic
Bayesian decision boundary for separating any two neighboring
signal classes can be deduced [18]. Furthermore, by exploiting a
symmetric distribution within each subset of channel states, the
SER of the Bayesian DFE for the -PAM symbol constella-
tion is shown to be a scaled error rate of the equivalent “binary”
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Bayesian DFE evaluated on any two neighboring signal subsets.
These two properties enable an extension of the IS simulation
technique for the binary Bayesian DFE [16], [17] to the general

-PAM case.

II. BAYESIAN DECISION FEEDBACK EQUALIZER

Consider the real-valued channel that generates the received
signal samples of

(1)

where are the CIR taps, is the CIR length, the Gaussian
white noise has zero mean and variance , and the

-PAM symbol takes the value from the symbol set

(2)

The channel SNR is defined as

SNR (3)

where is the symbol variance. The generic DFE uses the
information present in the noisy observation vector

and the past detected symbol
vector to produce an
estimate of , where and are the de-
cision delay, the feedforward and feedback orders, respectively.
The choice of and will
be used as this choice is sufficient to guarantee a desired linear
separability for different signal classes [19]. With this choice,
the observation vector can be expressed as [8], [19]

(4)

where
and

...
...

...
. . .

. . .
(5)

...
...

. . .
...

. . .
. . .

(6)

are the and CIR matrices, respectively.
Assuming correct past decisions, we have and

(7)

Thus, the decision feedback translates the original observation
space into a new space

(8)

There are possible values or sequences of ,
wich are denoted as . The set of the noiseless
channel states in the translated signal space is then defined by

(9)

The channel state set can be partitioned into subsets con-
ditioned on the value of

(10)

The optimal Bayesian DFE [8] can now be summarized. The
decision variables are given by

(11)
and the minimum-error-probability decision is defined by

with (12)

A. Symmetric Structure of Subset States and Asymptotic
Bayesian Decision Boundary

In [18], a geometric translation property has been established,
relating any two “neighboring” subsets of channel states. This
property is reiterated here in Lemma 1.

Lemma 1: For , the subset is a trans-
lation of by the amount :

(13)

where . Furthermore, and
are linearly separable.

It is obvious that has one neighbor , has
one neighbor , and has two
neighbors and . This shifting property implies
that asymptotically, the decision boundary for separating

and is a shift of for separating and
by an amount . Thus, the construction of the asymptotic
Bayesian decision boundary for the binary Bayesian DFE [20]
can readily be applied for the construction of the asymptotic
decision boundary for separating any two neighboring signal
classes [18]. For the completeness, the relevant results given in
[18] are summarized. Without the loss of generality, consider the
two neighboring subsets and , which corre-
sponds to the two classes and .
First, define the concept of Gabriel neighbor states.

Definition 1: A pair of opposite-class channel states
is said to be a Gabriel neighbor

pair if and

(14)

where denotes the union operator, and

(15)
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The following lemma describes the optimal decision
boundary that separates and in the
asymptotic case of .

Lemma 2: Asymptotically, the optimal decision boundary
separating and is piecewise linear

and made up of a set of hyperplanes. Each of these hyper-
planes is defined by a pair of Gabriel neighbor states, and the
hyperplane is orthogonal to the line connecting the Gabriel
neighbor pair and passes through the midpoint of the line.

Consequently, a necessary condition for a point
is

(16)

where denotes an arbitrary vector in the subspace orthogonal
to and are a pair of Gabriel neighbor states, and the
sufficient conditions for are

(17)

(18)

(19)

Based on these necessary and sufficient conditions, a simple al-
gorithm can be used to select the set of all theGabriel neighbor
pairs , as in the binary case [15], [20]. For the
completeness, the algorithm is summarized as follows.

;

FOR

FOR

;

IF AND

;

;

END IF

NEXT

NEXT

The number of Gabriel neighbor pairsdepends on the CIR
and the size of the symbol constellation and is automatically
determined in the above algorithm.

A useful property regarding the distribution of a subset
should be emphasized. Due to the symmetric distribution of the
symbol constellation defined in (2), the states of are dis-
tributedsymmetricallyaround the mass center of . In
particular, if a point has a distance to the deci-
sion boundary , then there is another point with
the same distance to the other decision boundary. This sym-
metric distribution property together with the shifting property
are illustrated in Fig. 1.

Fig. 1. Illustration of symmetric and shifting properties of subset states.

B. SER of the Bayesian DFE With-PAM Symbols

Although there exists no closed-form expression for the SER
of the Bayesian DFE with -PAM symbols, the calculation of
the theoretic lower-bound SER for the Bayesian DFE

Prob (20)

can be simplified by utilizing the above-mentioned properties.
Consider the conditional error probability given
with . Denote this conditional error probability as

. The decision region for is defined by the
two decision boundaries and . Error occurs when

, that is, when the noise makes the observation either crossing
over or over . Because of the symmetric distribution of

, probability for crossing over is equal to that
of over . Denote this “one-side” error probability as .
Then, . The cases of
and are special as the decision regions and are half
spaces, where each is defined by a single decision boundary.
Thus, , and . Since all these
one-sided conditional error probabilities
are equal, the error probability or SER of the Bayesian DFE is
simply

(21)

Now, consider a “binary” Bayesian DFE defined on
and with the decision function given by

(22)

and the decision rule defined by

sgn
sgn

(23)

but the error probability of this “binary” Bayesian DFE, which is
denoted as , is equal to . Thus, the SER of the Bayesian
DFE for -PAM symbols is the scaled error probability of the
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equivalent binary Bayesian DFE, which is defined in (22) and
(23), by a factor .

Remark 1: Strictly speaking, equals
only at the asymptotic case. If the SNR is not sufficiently large,
the decision boundary defined by may no
longer coincide with . More fundamentally, the realiza-
tion of the optimal decision boundary by the multiple-hyper-
plane decision boundary as described in Lemma 2 is accurate
only for sufficiently large SNR.

III. IS SIMULATION FOR THE BAYESIAN DFE
WITH -PAM SYMBOLS

To evaluate the SER ( ) of the Bayesian DFE with -PAM
symbols, we only need to evaluate the error probabilityof the
equivalent binary Bayesian DFE defined on the two neighboring
subsets and . The IS simulation technique
[16], [17] can readily be used to evaluate as follows:

(24)

where the error indicator function if causes
an error, and otherwise; is the true
conditional density given , which is Gaussian
with mean and covariance is the identity
matrix, and is the number of states in

is the number of samples used for each signal
pattern , and the sample is generated using the simula-
tion density chosen to be

(25)
In the simulation density (25), is the number of the bias vec-
tors for for

, and . An estimate of the IS gain
for , which is defined as the ratio of the numbers of trials re-
quired for the same estimate variance using the Monte Carlo and
IS methods, is given as [11], [15]

(26)

where

(27)

The IS simulated is simply

(28)

The estimated IS gain for will be used as the estimated IS
gain for .

A. Construction of the IS Simulation Density

To achieve AE, the bias vectors must meet certain
conditions [11]. A design procedure is presented for con-

structing the simulation density to meet these
conditions. Let be the set of
Gabriel neighbor pairs selected from and .
Each Gabriel neighbor pair defines a hyperplane

that is part of the asymptotic decision
boundary . The weight vector and bias of the
hyperplane are given by

(29)

Notice that the theory of support vector machines [21], [22] has
been applied to determine with as its two sup-
port vectors, and is acanonicalhyperplane having the prop-
erty and . The following two
definitions are useful in the construction of the simulation den-
sity.

Definition 2: A state is said to besufficiently

separableby the hyperplane if . Similarly,

a state is said to besufficiently separableby

if .

Definition 3: The hyperplane is reachablefrom

if the projection of onto is on the asymp-
totic decision boundary .

For each , its separability index for is

if is sufficiently separable by ; otherwise,

. Similarly, if is suffi-

ciently separable by , and otherwise. The reacha-

bility of from can be tested by computing

(30)

If (i.e., is

reachable from ( is then a bias vector), and the reacha-
bility index is ; otherwise, . The whole process
produces the separability and reachability table, shown at the
bottom of the next page.

In order to construct a convex region covering a
, first select those hyperplanes that can sufficiently

separate and that are reachable from with the aid of
the separability and reachability table. This yields the integer set

and (31)

Then, is the intersection of all the half-spaces

with . In fact, it is not necessary to use

every hyperplane defined in to construct . A subset
of these hyperplanes will be sufficient, provided that every op-
posite-class state in can sufficiently be separated by at
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least one hyperplane in the subset. If this can be done, the error
region satisfies

(32)

with the half-spaces . Obviously, all
the hyperplanes defined in are reachable from , and
at least one of is the minimum rate point (as defined in
[11]). Notice that these are sufficient conditions in which a set of
bias vectors (related to a ) must be met to achieve AE [11]. If

such a exists for each , the simulation

density constructed with the bias vectors for
all will guarantee AE.

An illustrative example with and is
depicted in Fig. 2. In this example, ,
and . It is obvious that is
a Gabriel neighbor pair, as all the other states satisfy (14),
given . Similarly, and

are Gabriel neighbor pairs. Thus, the asymptotic
decision boundary is formed from the corresponding three
hyperplanes and . Obviously, is sufficiently
separable by , whereas is not, as and

. Both and are sufficiently separable
by as and , but is not
reachable from as the projection of onto is not at
the asymptotic decision boundary. Continuing this process for
the other two hyperplanes leads to the separability and reach-
ability table given in Table I. As is sufficiently separated
from the opposite-class states by the two reachable hyperplanes

and , there are two bias vectors and for ,
where is the minimum rate point, and the error region
is covered by the half space formed from and . Since

is sufficiently separable by a single reachable hyperplane
, there is one bias vector for , where is the

minimum rate point, and the error region is covered by the half
space formed from . For this example, the constructed IS
simulation density achieves AE.

Remark 2: The construction procedure for the IS simula-
tion density discussed previously, if it can be done, will guar-
antee the AE of IS simulation. Strictly speaking, however, AE
can only be guaranteed at the asymptotic case. As pointed out
in Remark 1, if the SNR is too small, the multiple-hyperplane
decision boundary may deviate from the true optimal decision
boundary . Shifting the density to the asymptotic deci-
sion boundary is then not “optimal.” This is the main source for

Fig. 2. Simulation density construction for the case of binary(M = 2)
symbols with a two-tap channel. In this example, there are three Gabriel
neighbor pairs(r ; r ); (r ; r ); and(r ; r ). The asymptotic
decision boundary is formed from the three corresponding hyperplanesH ;

H ; andH . The separability and reachability table for this example is given
in Table I.

TABLE I
SEPARABILITY AND REACHABILITY TABLE FOR THEEXAMPLE GIVEN IN FIG. 2

a relatively small IS gain when SNR is small, as can be observed
in the simulation results.

Remark 3: Since it is assumed that correct decisions are fed
back, the IS simulation procedure considered here provides a
lower boundSER for the Bayesian DFE. In practice, it is more
useful to provide someupper boundSER and to take into ac-
count error propagation caused by incorrect decisions being fed
back. However, due to its highly complicated structure, deriva-
tion of an upper bound SER for the Bayesian DFE will be ex-
tremely difficult, if not impossible. In the lack of any upper
bound, the lower bound SER is the only means that can be used
to evaluate potential performance of the Bayesian DFE.

B. Numerical Examples

Example 1: The IS technique was simulated for the Bayesian
DFE with four-PAM symbols using the three-tap CIR defined by

. The DFE structure was specified by
and . The channel state sethad states.

Five pairs of Gabriel neighbor states were found from the sub-
sets and , giving rise to five separating hyperplanes.
The separability and reachability table for this example is listed
in Table II, from which the required bias vectors were gener-
ated. For this example, it is straightforward to verify that the
constructed simulation density achieves AE. An inspection of
Table II shows that the states to in are sufficiently

...
...

...
...

...
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TABLE II
SEPARABILITY AND REACHABILITY TABLE FOR THE CHANNEL

h = [0:4 1:0 0:6] WITH FOUR-PAM SYMBOLS

separated from the opposite class by the two reachable hy-
perplanes and to are sufficiently separated
from by the two reachable hyperplanes and , and

to are sufficiently separated from by the hyper-
plane .

As in [15], the bias vectors were selected with uniform prob-
ability in the simulation with for ,
that is, no attempt was made to optimize the probabilities
in (25). For each SNR, iterations were employed, averaging
over all the possible states in . Thus, the total samples used
for a given SNR were . Fig. 3(a) shows the lower bound
SERs obtained using the IS and conventional sampling (CS)
simulation methods, respectively. It can be seen that the con-
ventional Monte Carlo results for low SNR conditions based di-
rectly on the Bayesian DFE of (11) and (12) agreed with those of
the IS simulation. The estimated IS gains, which are depicted in
Fig. 3(b), indicate that exponential IS gains were obtained with
increasing SNRs. It can be seen that for small SNR conditions,
the IS gain is relatively small for the reason given in Remark 2.
For example, given SNR dB, the IS gain was a modest
value of . It should be emphasized that an IS simula-

Fig. 3. (a) Lower bound SERs and (b) the estimated IS gain of the Bayesian
DFE for the CIRh = [0:4 1:0 0:6] with four-PAM symbols using
conventional sampling (CS) and importance sampling (IS) simulation.

tion is really needed at very low SER or high SNR situations.
Under such conditions, the proposed IS simulation technique
is extremely efficient. For example, given SNR dB, the
SER of the Bayesian DFE with correct symbols being fed back
evaluated by the IS technique was approximately with an
estimated IS gain of . The CS method could not
work under the same SNR condition, and it would require ap-
proximately samples to achieve a similar estimation
variance.

Example 2: A two-tap channel with
eight-PAM symbols was simulated, and the Bayesian DFE
structure was defined by and . The
channel state set had states. Nine pairs of Gabriel
neighbor states were selected from the subsets and ,
and Table III lists the separability and reachability table for
this example. It is straightforward to verify that the constructed
simulation density achieves AE. The state is sufficiently
separable from the opposite-class by the two reachable
hyperplanes and is sufficiently separable from

by the two reachable hyperplanes and is
separable by the two reachable hyperplanesand
is separable by the two reachable hyperplanesand , and

to are separable from by the single reachable hy-
perplane . As this is a two-dimensional example, the graphic
illustration of the simulation density construction can be made
and is shown in Fig. 4. Notice the difference between the true
optimal decision boundary under a low SNR condition and
the asymptotic decision boundary. This explains the relatively
small IS gain in the simulation for low SNR conditions.

Again, the bias vectors were selected with uniform proba-
bility in the simulation. For each SNR, samples were used
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TABLE III
SEPARABILITY AND REACHABILITY TABLE FOR THECHANNEL h = [0:3 1:0]

WITH EIGHT-PAM SYMBOLS

Fig. 4. Simulation density construction for the channelh = [0:3 1:0]
with eight-PAM symbols. Thick solid curve indicates the asymptotic decision
boundary, thick dashed curve the true optimal decision boundary for small
SNR, and thin lines indicate the bias vectors used in the simulation density.

for each state in , resulting in a total of samples
for a given SNR. Fig. 5(a) depicts the lower bound SERs ob-
tained using the IS and CS simulation methods, respectively.
Again, the conventional Monte Carlo results for low SNR con-
ditions agreed with those of the IS simulation. It can be seen
from Fig. 5(b) that exponential IS gains were obtained with in-
creasing SNRs.

IV. CONCLUSION

A randomized bias technique for IS simulation has been ex-
tended to evaluate the lower bound SER of the Bayesian DFE
with -PAM symbols. It has been noted that the Bayesian de-
cision boundary separating any two neighboring signal classes
is asymptotically piecewise linear and consists of several hyper-
planes. Furthermore, it has been shown that asymptotically the
SER of the Bayesian DFE for the -PAM symbol constellation
is a scaled error rate of the equivalent binary Bayesian DFE eval-
uated on any two neighboring signal subsets. Although asymp-
totic efficiency of the proposed IS simulation method for the
general channel has not rigorously been proved, a design proce-
dure has been presented for constructing the simulation density
that meets the asymptotic efficiency conditions. The SER evalu-
ated is under the assumption that correct symbols are fed back,
and error propagation is not taken into account. Nevertheless,
the method provides a practical means of evaluating the poten-

Fig. 5. (a) Lower-bound SERs and (b) estimated IS gain of the Bayesian DFE
for the CIRh = [0:3 1:0] with eight-PAM symbols using conventional
sampling (CS) and importance sampling (IS) simulation.

tial performance for the Bayesian DFE under high SNR condi-
tions.
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