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Adaptive Minimum Symbol-Error-Rate
Decision Feedback Equalization for Multilevel
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Abstract—The design of decision feedback equalizers (DFEs)
is typically based on the minimum mean square error (MMSE)
principle as this leads to effective adaptive implementation in
the form of the least mean square algorithm. It is well-known,
however, that in certain situations, the MMSE solution can be
distinctly inferior to the optimal minimum symbol error rate
(MSER) solution. We consider the MSER design for multilevel
pulse-amplitude modulation. Block-data adaptive implementation
of the theoretical MSER DFE solution is developed based on
the Parzen window estimate of a probability density function.
Furthermore, a sample-by-sample adaptive MSER algorithm,
called the least symbol error rate (LSER), is derived for adaptive
equalization applications. The proposed LSER algorithm has
a complexity that increases linearly with the equalizer length.
Computer simulation is employed to evaluate the proposed alter-
native MSER design for equalization application with multilevel
signaling schemes.

Index Terms—Decision feedback equalizer, minimum mean
square error, minimum symbol error rate, stochastic gradient
adaptive algorithms.

I. INTRODUCTION

CONVENTIONAL decision feedback equalizers (DFEs)
employ a linear combination of channel observations and

past detected symbols to combat channel distortion and are a
most widely used equalization scheme for multilevel signaling.
In practice, they offer adequate performance at an achievable
low computational complexity. Classically, the minimum mean
square error (MMSE) criterion is adopted for DFE design, and
standard adaptive algorithms, such as the least mean square
(LMS) algorithm, are used for adaptive implementations. Since
the MMSE solution is not optimal in equalization application
[1]–[4], research has been conducted to find alternative designs
that are based on the minimum bit error rate (MBER) criterion
for the binary phase shift keying (BPSK) modulation or the
minimum symbol error rate (MSER) criterion for the general
multilevel signaling scheme. Most of the published works in
this area have been focused on the MBER design for the BPSK
scheme [2], [3], [5]–[8]. The MBER design principle has also
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been applied to the linear multiuser detection for downlink
code-division multiple-access (CDMA) systems with the BPSK
modulation [9], [10] and to the linear beamforming-assisted
BPSK receiver [11].

This paper considers an MSER approach for the DFE design
with the multilevel pulse-amplitude modulation ( -PAM)
scheme. We derive the symbol error rate (SER) expression
for the generic DFE. Although there exists no closed-form
solution for the MSER DFE, a simplified conjugate gradient
algorithm [10], [12] can be applied for numerical solutions.
An adaptive implementation of the theoretical MSER DFE is
then studied. The Parzen window or kernel density technique
[13]–[15] is adopted for approximating the probability density
function (p.d.f.) of the DFE output, and this naturally leads to a
block-data based adaptive MSER algorithm, which iteratively
minimizes the estimated SER of the DFE by adjusting the
equalizer’s weights using the conjugate gradient optimization
method. It is shown in a simulation study that this block-data
based adaptive MSER algorithm converges rapidly, and the
length of the data block required to achieve an accurate
approximation of the MSER solution is reasonably small.
Sample-by-sample adaptive implementation of the MSER
DFE solution is also considered, and a stochastic gradient
adaptive MSER algorithm, which is referred to as the least
symbol error rate (LSER), is derived. This LSER algorithm
has a low computational complexity, which is comparable with
that of the simple LMS algorithm. Simulation results suggest
that convergence speed of this stochastic gradient algorithm
depends on the initial value of the equalizer weight vector, and
the MMSE solution is typically not a good initial condition for
the algorithm. Simulation studies also suggest that the LSER
algorithm converges reasonably fast, provided that the initial
condition is not set to the MMSE solution. In the literature, we
have found a stochastic gradient algorithm that is based on an
approximate MSER approach called the approximate MSER
(AMSER) algorithm [16]. We compare our LSER algorithm
with this AMSER algorithm using computer simulation.

II. DECISION FEEDBACK EQUALIZER

It is assumed that the real-valued channel generates the re-
ceived signal samples of

(1)
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where are the channel impulse response (CIR) taps, is the
CIR length, the Gaussian white noise has zero mean and
variance , and the -PAM symbol takes the value from
the symbol set

(2)

The channel signal to noise ratio (SNR) is defined as

SNR (3)

where is the symbol variance. The reason for concentrating
on real-valued channels and signalling schemes is to keep nota-
tions and concepts relatively simple. There is no real difficulty to
apply the approach to complex-valued channels and signalling
schemes. The DFE considered has a linear-combiner structure
and is defined by

(4)

where is the noisy
observation vector with being the feedforward order,

is the past detected symbol
vector with being the feedback order, is the equalizer deci-
sion delay, and and
are the feedforward and feedback filter coefficient vectors, re-
spectively. We will choose , , and

. Although this choice of the DFE structure parameters is
not necessarily optimal, it is sufficient to guarantee that the sub-
sets of the noise-free signal states are linearly separable [3], [4]
and, therefore, guarantee an adequate performance. The equal-
izer output is passed to a threshold detector that provides
an estimate of the transmitted symbol .

Using matrix notations with and ,
the received signal vector can be expressed as

(5)

where ,
, ,

and the and CIR matrices, and are
given by

. . .
...

...
. . .

. . .
(6)

and

. . .
...

...
. . .

(7)

respectively. Under the assumption that the past decisions are
correct, , and the received signal vector can be
expressed as . Thus, the
decision feedback can be viewed to translate the original obser-
vation space into a new space [3], [17], [18]:

(8)
In this translated observation space, a “linear equalizer” can be
formulated as

(9)

where is Gaussian with zero mean and variance .
The elements of can be computed recursively according to
[3], [4]

for (10)

where is interpreted as the unit delay operator. Thus, in an
adaptive implementation, one needs to estimate the CIR, rather
than to estimate , when adopting the equalizer structure (9)
and (10). If the weight vectors in both (4) and (9) are set to
the MMSE solution , then the equalizer (9) is identical
to the DFE (4). In this case, (10) can be obtained by setting the
feedback filter coefficient vector to .

Define the combined impulse response of the equalizer and
channel as , which is given by

(11)

where the last column of is .
Then, can be expressed as

(12)

The first term in (12) is the desired signal, and the second term
represents the residual intersymbol interference. Thus, the op-
timal decision is made according to (13), shown at the bottom
of the page. The scaling factor and is often ignored.
Ignoring this scaling factor, however, will introduce bias [19].
Only in the case of (BPSK) can be ignored because
in this case, the only decision boundary is not affected by
the value of .

if
if for
if .

(13)
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Notice that has possible combinations.
Denote these sequence values of as , .
Then, only takes values from the signal state set defined by

(14)

which can be divided into subsets conditioned on

(15)

Similarly, can only take values from the scalar set

(16)

can be divided into subsets, depending on the value of

(17)

Note that , are always linearly separable [3].
That is, there always exists an equalizer weight vector such
that the resulting , are completely separated by
the decision thresholds .

III. MSER DECISION FEEDBACK EQUALIZER

Due to the symmetric distribution of the symbol constellation
(2), for , is the shifted version of by
the amount . This can easily be verified. From the definitions
of and , for each , there exists a
such that

(18)

that is, . Thus, is the shifted version of
by the amount , namely, .

This shift property allows us to consider only one subset in
evaluating the SER of the DFE (9) with the decision rule (13).
We further point out a symmetric structure of , namely, the
points of are distributed symmetrically around the symbol
point . In particular, given a point in with a distance
to the decision boundary , there is another point in

that has the same distance to the other decision boundary
. This symmetry property, as illustrated in Fig. 1, is

useful in simplifying the SER expression.

A. Expression of Symbol Error Rate

The conditional p.d.f. of given is a
Gaussian mixture given by

(19)
where is the number of points in . Referring to Fig. 1, for

, , an error occurs if is outside the region

Fig. 1. Illustration of the symmetric distribution of Y around c s , 1 � l �
M , and the related decision boundaries. The conditional probability density
function of y(k), given s(k�d) = s , is a Gaussian mixture, and each Gaussian
component centers at a �y 2 Y .

. For and , however, an error only
occurs at one side. The conditional SER, for ,
is

(20)

Taking into account the symmetric distribution of , as illus-
trated in Fig. 1

(21)

where

(22)

and

(23)

Using the shift property and noticing the fact that an error only
occurs at one side for and , the SER of the DFE (9) can
be expressed as

(24)

where . It is seen that the SER can be evalu-
ated using any single subset .
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B. Minimum Symbol-Error-Rate Solution

The MSER solution is defined as

(25)

Note that since the SER is invariant to a positive scaling of ,
there is an infinite number of MSER solutions. In fact, if
is an MSER solution, then are all MSER solutions
for any . Unlike the MMSE, there exists no closed-form
solution for , and a numerical solution has to be sought.
The gradient of with respect to is

(26)

With the gradient, the optimization problem (25) can be solved
iteratively using a gradient-based optimization algorithm. It is
also advantageous to normalize to a unit-length after every
iteration so that the gradient can be simplified as

(27)

Computational requirements are further simplified by consid-
ering the subset with , which results in

. We point out that the simplified conjugate gradient
algorithm [10], [12] offers an efficient means to find an MSER
solution, and this algorithm is summarized in the following.

Initialization. Choose step size
and termination scalar ; given
and ; set iteration index

.
Loop. If : goto Stop

, goto Loop.
Stop. is the solution.

At a minimum, . Therefore, the termination
scalar determines the accuracy of the solution obtained. The

Fig. 2. SER surface for the simple illustrative example. The central contour
line is log SER = �7:16, the outer contour is log SER = �2:76,
log P (w ) = �2:76, and log P (w ) = �7:16.

step size controls the rate of convergence. Typically, a much
larger value of can be used, compared with the steepest de-
scent gradient algorithm. As the SER surface is highly
complicated, occasionally, the search direction may no longer
be a good approximation to the conjugate gradient direction or
may even point to the uphill direction when the iteration number
becomes large. It is thus advisable to periodically reset to the
negative gradient in the above conjugate gradient algorithm.

In theory, there is no guarantee that the above algorithm can
always find a global minimum point of the SER surface .
In practice, we have found that the algorithm works well, and we
have never observed any case of the algorithm being trapped at
some local minimum solutions. This is perhaps because of the
special shape of the SER surface. As the SER is invariant to a
positive scaling of , the size of does not matter (except zero
size). Thus, the SER surface has an infinitely long valley, and
any point at the bottom of this valley is a true global MSER so-
lution. Once a weight vector is near the edge of this infinitely
long valley, convergence to the bottom is assured at a very fast
rate, as the slope or gradient is very large. For an illustration
of the SER surface, consider the simple example in which the
transfer function of the CIR is , and the
signaling scheme is 4-PAM. A two-tap equalizer with
and without decision feedback is used. At the SNR of 35 dB,
the SER surface is depicted in Fig. 2.

IV. ADAPTIVE MSER DFE

To derive an adaptive version of the MSER algorithm, it is
more convenient to write down the p.d.f. of explicitly:

(28)
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and express the SER alternatively as

(29)

In reality, the p.d.f. of is unknown, and the key to adaptive
implementation of the MSER solution is an effective estimate
of the p.d.f. (28). The Parzen window estimate, which is also
known as kernel density estimate [13]–[15], is a well-known
method for estimating a probability distribution. The Parzen
window method estimates a p.d.f. using a window or block of

by placing a symmetric unimodal kernel function on each
. Kernel density estimation is capable of producing reliable

p.d.f. estimates with short data records and, in particular, is nat-
ural when dealing with Gaussian mixtures. In our particular ap-
plication, it is obvious and natural to choose a Gaussian kernel
function with a kernel width that is similar in form
to the noise standard deviation for .

A. Block-Data Gradient Adaptive MSER Algorithm

Given a block of training samples , a
Parzen window estimate of the p.d.f. (28) is given by

(30)
The p.d.f. estimate (30) is known to possess a mean integrated
square error convergence rate at order of [13]. The radius
parameter is related to the noise standard deviation for

. In [14], a lower bound of is sug-
gested. In practice, can often be chosen from a large range
of values.

From the estimated p.d.f. (30), the estimated SER is given by

(31)

where

(32)

, and is an estimate of . The gradient of
is given by

(33)

By substituting with in the conjugate gra-
dient updating mechanism, a block-data gradient adaptive al-
gorithm is readily obtained. Again, the step size controls the

rate of convergence. The estimate is the MMSE estimate of
the CIR. In adaptive implementation, the LMS algorithm can be
used to update . Note that this is not “extra” work required by
the MSER approach. The estimate of , and, therefore, the CIR

, is always required to implement the optimal decision rule
(13). Furthermore, as pointed out in Section II, the estimation
of the CIR substitutes the estimation of the feedback coeffi-
cient vector . In fact, estimating is better than estimating .
This is because the former problem has a unit eigenvalue spread,
whereas the latter problem is tied to the estimation of , which
has a larger eigenvalue spread.

B. Least Symbol Error Rate Algorithm

In the Parzen window estimate (30), the kernel width
depends on the equalizer weight vector . In a

general density estimate, there is no reason why the kernel
width should be chosen in such a way, except that we notice the
dependency of the width to in the true density (28). However,
the SER is invariant to . To fully take advantage of this
fact, we propose use of a constant width in the density
estimate. One advantage of using a constant width , rather
than a variable one in the density estimate is that
the gradient of the resulting estimated SER has a much simpler
form, which leads to considerable reduction in computational
complexity. This is particularly relevant in the derivation
of stochastic gradient updating mechanisms. Adopting this
approach, an alternative Parzen window estimate of the true
p.d.f. (28) is given by

(34)

and an approximation of the SER is

(35)

with

(36)

This approximation is valid, provided that the width is
chosen appropriately.

To derive a sample-by-sample adaptive algorithm, consider a
single-sample estimate of :

(37)

and the corresponding single-sample SER “estimate” .
Using the instantaneous stochastic gradient

(38)
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gives rise to the following stochastic gradient adaptive algo-
rithm, which we refer to as the LSER:

(39)

where the adaptive gain and width are the two algorithm
parameters that need to be set appropriately. Note that there is
no need to normalize the weight vector after each update.

Convergence analysis of this LSER algorithm has yet to be
worked out, but the previous empirical results using this algo-
rithm in some other applications with BPSK signalling [11],
[20] have suggested that the algorithm behaves well and has a
reasonably fast convergence rate. There also exists some theo-
retical analysis to support this empirical observation. The terms
involving in the algorithm (39) can be seen to perform
some kind of shifting operation, which is needed due to the mul-
tilevel signaling nature. For simplicity, let us consider the BPSK
scheme. In this case, it can easily be shown that the LSER algo-
rithm (39) becomes [11], [20]

sgn

(40)
This belongs to the general stochastic gradient-based adaptive
algorithm investigated in [21]. Therefore, the results of conver-
gence analysis presented in [21] can readily be applied.

C. Approximate Minimum Symbol-Error-Rate Algorithm

The AMSER algorithm [16], which was originally derived for
linear equalizer, is also a stochastic gradient algorithm based on
the considerations of minimizing the SER. For a comparison
purpose, the AMSER algorithm is summarized here. The algo-
rithm updates the weight vector using

sgn (41)

where the error function is given by

(42)

, and the indication function is de-
fined by (43), shown at the bottom of the page. The adaptive
gain and the non-negative threshold are the two algorithm
parameters that need to be set appropriately. The AMSER has
the same number of algorithm parameters that require tuning as
the LSER.

Fig. 3. Theoretical SER comparison for the MMSE and MSER DFEs of
Example 1.

V. SIMULATION STUDY

Two examples were used in a simulation study to investigate
the proposed MSER approach for the DFE design.

Example 1: The transfer function of the CIR was
, and the 4-PAM signalling

scheme was employed. The structure parameters of the DFE
were accordingly set to , , and . The
theoretical SERs of the MMSE and MSER DFEs, which are
computed using the expression (24) on the single subset , are
given in Fig. 3, where the MSER solutions were computed nu-
merically using the simplified conjugated gradient algorithm of
Section III-B. The theoretical SERs shown in Fig. 3 represent
lower bound performance as they were obtained assuming cor-
rect symbols being fed back. To investigate the effects of error
propagation, the SERs of the MMSE and MSER DFEs were
also calculated using simulation with detected symbols being
fed back, and the results obtained are depicted in Fig. 4, in com-
parison with the theoretical SERs. It is interesting to see that
for this example, the degradation due to error propagation was
negligible for the MSER DFE, whereas the effects of error prop-
agation were serious for the MMSE DFE.

The performance of the block-data gradient adaptive MSER
algorithm employing the conjugate gradient updating mecha-
nism, as described in Section IV-A, was investigated next. Fig. 5
illustrates the convergence rates of the algorithm under SNR
28 dB, the block size 600, and two different initial weight
vector conditions: a) set to the MMSE solution, and b)

arbitrarily set to . From Fig. 5, it
can be seen that this block-data gradient adaptive MSER algo-
rithm converges rapidly. The effect of the block size to the per-
formance of this block-data gradient adaptive MSER algorithm
was also investigated, and the results obtained are summarized

if and

or and
otherwise.

(43)



2098 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 7, JULY 2004

Fig. 4. Effects of error propagation on SER for the MMSE and MSER DFEs
of Example 1, where T is the theoretical SER, and S is the simulated SER with
detected symbols being fed back.

Fig. 5. Convergence rates of the block-data gradient adaptive MSER algorithm
for Example 1 given SNR = 28 dB and with a block size K = 600, step
size � = 0:9 and squared width � = 2� � 0.03. (a) w(0) = w .
(b) w(0) = [�0:01 0:01 0:01 0:01] .

Fig. 6. Effect of block size on the performance of the block-data gradient
adaptive MSER algorithm for Example 1.

in Fig. 6, where it can be seen that the block size required
for the algorithm to closely approximate the MSER solution
is reasonably small, considering the fact that the signal set

Fig. 7. Learning curves of the two stochastic gradient adaptive MSER
algorithms averaged over 50 runs for Example 1 given SNR = 28 dB and
with w(0) = w , where DD denotes decision-directed adaptation with
ŝ(k � d) substituting s(k � d). DD (dashed) and training (solid) curves are
indistinguishable. (a) LSER algorithm with � = 0.01 and � = 30� � 0.4.
(b) AMSER algorithm with � = 0.005 and � = 0.5.

contains 256 points. The performance of the two stochastic gra-
dient adaptive MSER algorithms, the LSER, and AMSER dis-
cussed, respectively, in Sections IV-B and C were then studied.
Figs. 7 and 8 show the learning curves of the two algorithms
averaged over 50 runs, given SNR 28 dB and two different
initial weight vector conditions, respectively.

In the investigation, each stochastic gradient MSER algo-
rithm operated in the two modes, namely, the training mode in
which was known and the decision-directed (DD) mode
in which the detected symbol was used to substitute for

. In Fig. 7(a) and (b) and in Fig. 8(b), the learning curves
corresponding to the two operation modes are indistinguishable.
For a comparison purpose, we carefully tuned the algorithm pa-
rameters ( and for the LSER and and for the AMSER)
so that each algorithm achieved its best performance both in
terms of convergence speed and steady-state SER misadjust-
ment. Comparing Fig. 7 with Fig. 8, it is interesting to see that
the convergence rate of a stochastic gradient adaptive MSER al-
gorithm was much slower with the initial weight condition set
to the MMSE solution than with an arbitrarily set initial weight
condition of . It appears that the MMSE
solution is a bad choice as the initial condition for the both
stochastic gradient adaptive MSER algorithms. This was also
observed at another application involving the BPSK signalling
scheme [20]. For this example, with , the LSER
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Fig. 8. Learning curves of the two stochastic gradient adaptive MSER
algorithms averaged over 50 runs for Example 1 given SNR = 28 dB and
with w(0) = [�0:01 0:01 0:01 0:01] , where DD denotes decision-directed
adaptation with ŝ(k � d) substituting s(k � d).

had a much faster convergence speed than the AMSER, whereas
for the other arbitrarily set initial condition, both algorithms had
a similar convergence rate.

Example 2: The transfer function of the CIR was
with 8-PAM symbols. The structure

of the DFE was specified by , , and .
The theoretical lower bound SERs of the MMSE and MSER
DFEs, assuming correct symbols being fed back, are plotted
in Fig. 9. Fig. 10 shows the effects of error propagation on
the SER performance of the MMSE and MSER DFEs. The
convergence rates of the block-data gradient adaptive MSER
algorithm are illustrated in Fig. 11 with SNR 33 dB and two
different initial weight vector conditions. The effect of block
size on the performance of this block-data gradient adaptive
MSER algorithm is shown in Fig. 12. Figs. 13 and 14 com-
pare the convergence rates of the two stochastic gradient algo-
rithms (the LSER and AMSER), given SNR 33 dB and with
two different initial weight vector conditions, respectively. The
adaptive algorithm parameters ( and for the LSER and
and for the AMSER) were found empirically to ensure good
performance in terms of convergence speed and steady-state
SER misadjustment.

The results obtained again demonstrate that the MSER design
can outperform the MMSE design in terms of a smaller SER,
and the MSER DFE appears to be more robust to error propa-

Fig. 9. Theoretical SER comparison for the MMSE and MSER DFEs of
Example 2.

Fig. 10. Effects of error propagation on SER for the MMSE and MSER DFEs
of Example 2, where T is the theoretical SER, and S is the simulated SER with
detected symbols being fed back.

Fig. 11. Convergence rates of the block-data gradient adaptive MSER
algorithm for Example 2 given SNR = 33 dB and with a block size
K = 600. (a) w(0) = w , step size � = 0:2, and squared width
� = 2� � 0:025. (b) w(0) = [�0:01 0:01 0:01] , step size � = 0:05,
and squared width � = 2� � 0:025.

gation than the MMSE DFE. The proposed block-data gradient
adaptive MSER algorithm has a rapid convergence rate, and it
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Fig. 12. Effect of block size on the performance of the block-data gradient
adaptive MSER algorithm for Example 2.

Fig. 13. Learning curves of the two stochastic gradient adaptive MSER
algorithms averaged over 50 runs for Example 2 given SNR = 33 dB and
with w(0) = w , where DD denotes decision-directed adaptation with
ŝ(k � d) substituting s(k � d).

requires a relatively small block size to accurately approximate
the theoretical MSER solution. For this example, the LSER al-
gorithm has a faster convergence rate than the AMSER algo-
rithm. It is also seen that the MMSE solution is not a good choice
to be the initial weight vector condition for both of the stochastic
gradient adaptive MSER algorithms.

Fig. 14. Learning curves of the two stochastic gradient adaptive MSER
algorithms averaged over 50 runs for Example 2 given SNR = 33 dB and with
w(0) = [�0:01 0:01 0:01] , where DD denotes decision-directed adaptation
with ŝ(k � d) substituting s(k � d).

VI. CONCLUSIONS

An approach based on direct minimization of SER has been
proposed for the DFE design with an -PAM signaling scheme.
It has been demonstrated that the MSER solution is capable
of achieving significant performance gains in terms of reduced
SER over the traditional MMSE solution. Adaptive implemen-
tation of the proposed MSER design has been developed based
on a classical Parzen window estimate of the p.d.f. of the DFE
output. A block-data-based conjugate gradient adaptive MSER
algorithm has been shown to converge rapidly and requires a
reasonable small data block size to accurately approximate the
theoretical MSER solution. An LMS-style stochastic gradient
adaptive MSER algorithm has been shown to perform well, pro-
vided that the initial condition is set appropriately. Other in-
teresting results obtained in this study include that the MSER
design seems to be less sensitive to error propagation than the
MMSE design, and the proposed LSER algorithm has faster
convergence rate than an existing LMS-style stochastic gradient
adaptive MSER algorithm known as the AMSER algorithm.
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