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Nonlinear Equalization of Hammerstein
OFDM Systems
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Abstract—A practical orthogonal frequency-division mul-
tiplexing (OFDM) system can generally be modelled by the
Hammerstein system that includes the nonlinear distortion ef-
fects of the high power amplifier (HPA) at transmitter. In this
contribution, we advocate a novel nonlinear equalization scheme
for OFDM Hammerstein systems. We model the nonlinear HPA,
which represents the static nonlinearity of the OFDM Hammer-
stein channel, by a B-spline neural network, and we develop a
highly effective alternating least squares algorithm for estimating
the parameters of the OFDM Hammerstein channel, including
channel impulse response coefficients and the parameters of the
B-spline model. Moreover, we also use another B-spline neural
network to model the inversion of the HPA’s nonlinearity, and
the parameters of this inverting B-spline model can easily be
estimated using the standard least squares algorithm based on the
pseudo training data obtained as a byproduct of the Hammerstein
channel identification. Equalization of the OFDM Hammerstein
channel can then be accomplished by the usual one-tap linear
equalization as well as the inverse B-spline neural network model
obtained. The effectiveness of our nonlinear equalization scheme
for OFDM Hammerstein channels is demonstrated by simulation
results.

Index Terms—B-spline neural networks, De Boor algorithm,
equalization, Hammerstein channel, nonlinear high power ampli-
fier, orthogonal frequency-division multiplexing.

I. INTRODUCTION

RTHOGONAL FREQUENCY-DIVISION MULTI-
O PLEXING (OFDM) [1], [2] has found its way into
numerous recent wireless network standards, owing to its
virtues of resilience to frequency selective fading channels.
Both the modulation and demodulation operations of an OFDM
system facilitate convenient low-complexity hardware imple-
mentations with the aid of the inverse fast Fourier transform
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(IFFT) and fast Fourier transform (FFT) operations. However,
OFDM signals are notoriously known to have high peak to
average power ratios, and a transmitted OFDM signal can be
seriously distorted by the high power amplifier (HPA) at the
transmitter, which exhibits nonlinear saturation characteristics
[3]-[7]. Thus, the nonlinearities of the HPA at transmitter will
significantly degrade the OFDM system’s achievable bit error
rate (BER) performance, and it is particularly critical to be able
to effectively compensate for the nonlinear distortions of the
HPA in the design of an OFDM wireless system.

An effective approach to compensate for the nonlinear
distortions of HPA is to implement a digital predistorter
at the transmitter, which is capable of achieving excellent
performance, and various predistorter techniques have been
developed [8]-[14]. Implementing the predistorter is attractive
for the downlink, where the base station (BS) transmitter has the
sufficient hardware and software capacities to accommodate the
hardware and computational requirements for implementing
digital predistorter. In the uplink, however, implementing
predistorter at transmitter is difficult, because it is much more
challenging for a pocket-size handset to absorb the additional
hardware and computational complexity. Alternatively, the
nonlinear distortions of the transmitter HPA can be dealt with
at the BS receiver, which has sufficient hardware and software
resources. With the nonlinear HPA at transmitter, the channel
is a complex-valued (CV) nonlinear Hammerstein system and,
moreover, the received signal is further impaired by the channel
additive white Gaussian noise (AWGN). Therefore, inversion
or equalization of the OFDM Hammerstein channel is not a
trivial task.

Against this background, in this paper, we develop a highly
effective nonlinear equalization scheme for OFDM Hammer-
stein channels based on the B-spline neural network. The reason
that we adopt the B-spline neural network is because it has been
demonstrated to be very effective in identification and inversion
of CV Wiener systems [ 14], [15]. Specifically, we propose an ef-
ficient alternating least squares (ALS) identification algorithm
for estimating the channel impulse response (CIR) coefficients
together with the parameters of the B-spline neural network
that models the HPA static nonlinearity of the OFDM Hammer-
stein channel. As linear equalization is naturally accomplished
in OFDM systems by a simple yet effective one-tap equalization
in frequency domain (FD), nonlinear equalization of the OFDM
Hammerstein channel only additionally involves the inversion
of the estimated B-spline neural network that models the HPA’s
nonlinearity. The previous works [14], [15] consider the inver-
sion of a B-spline model as the root finding problem, and de-
velop an iterative root finding procedure based on the Gauss-
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Newton algorithm. In this paper, we propose a much faster and
more efficient alternative for inverting the HPA’s nonlinearity.
In particular, we also use another B-spline neural network to
model the inversion of the HPA’s nonlinearity. Although the
HPA’s output at the transmitter is unobservable at the receiver
for identifying this inverse model, the pseudo training data ob-
tained as a natural byproduct of the Hammerstein channel iden-
tification can be used to estimate the parameters of the inverting
B-spline model using the standard least squares (LS) algorithm.
Simulation results are presented to demonstrate the effective-
ness of our proposed B-spline neural network based nonlinear
equalization scheme for OFDM Hammerstein channels.
Throughout our discussion, a CV number z € C is repre-
sented either by the rectangular form ¢ = zr + j - x7, where
j = V=1, while zg = R[z] and z; = 3[z] denote the real
and imaginary parts of x, or alternatively by the polar form
x = |z|- el with || denoting the amplitude of - and £° its
phase. The vector or matrix transpose and conjugate transpose
operators are denoted by ()T and (), respectively, while ()~*
stands for the inverse operation and the expectation operator is
denoted by E{ }. Furthermore, I denotes the identity matrix with
an appropriate dimension, and diag{zg,z1, -+, 2,_1} is the
diagonal matrix with xy, x1, - - -, &1 as its diagonal elements.

II. OFDM HAMMERSTEIN CHANNEL MODEL

For mathematical analysis tractability, we restrict to a
non-turbo detection-decoding based OFDM system, where
the detector and the channel decoder operate separately. The
OFDM system considered has N subcarriers and employs
the M -quadrature amplitude modulation (QAM). The sth FD
OFDM symbol vector is expressed as

X[s] = [Xo[s]X[s] -+ Xn_a[s]]", )

where X, [s] is the CV data symbol at the nth subcarrier, which
takes the value from the M -QAM symbol set

x:{d(zz—\/ﬁ—nﬂ d(2g—VM—-1),1<1,qg< m}
(2)

with 2d being the minimum distance between symbol points.
For notational simplification, we will drop the OFDM symbol
index [s] in the sequel. Feeding X through the N -point IFFT
based modulator yields the time-domain (TD) OFDM signal

2k

LN
Tp = —— Xpe V¥,
* mg

0<k<N-1. (3

Define the FFT matrix F € CV*¥ given by

1 1 e 1

e o—i2m/N e—i27(N=1)/N
F=—1.
VN :
e 2R (N—1)(N-1)/N

“

which has the orthogonal property of F*F = FF" = I, and
let

i 67j27r(1;"71)/i\r'

an-1]"t Q)

.’E:[ZL'()ZL‘l
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Then, the IFFT based modulation operation (3) can be expressed
concisely by

r=F"X. (6)

After adding the cyclic prefix (CP) of length N, to x, the
resultant TD OFDM signal

~ T

T=[v N, T No41 - To1|ZT] (7

inwhichz_;, = ay_; for1 < & < N, is amplified by the
HPA and the actually transmitted TD signal vector

w= [w,Ncp WoN, 41 W1 | wowy - wN,l] B
= [w N, w N1 - Wy |w™]" ®)
is defined by
wr = ¥(zr), —Nep <k<N-1, O]

where ¥() represents the CV static nonlinearity of the trans-
mitter HPA, and w_y, = wy _¢ for1 < k < N,,. We consider
the solid state power amplifier [6], [7], whose nonlinearity ¥ ()
is constituted by the HPA’s amplitude response A(r) and phase
response Y(r) given by

AQr) = gu? ,

N\ 28, ﬁ
(")
4l
T(”I) = qu’
1+ (%)
Pe

where 7 denotes the amplitude of the input to the HPA, g, is
the small gain signal, 3, is the smoothness factor and Ay, is
the saturation level, while the parameters of the phase response,
og. ¢, q1 and ¢, are adjusted to match the specific amplifier’s
characteristics. The NEC GaAs power amplifier used in the stan-
dardization [6], [7] has the the parameter set

(10)

(11)

Go =19, By = 0.81, Ay = 1.4;
ay = — 48000, B, = 0.123, gy = 3.8, g = 3.7. (12)

Hence, given the input 2 = |zg|- e L™ the output of the HPA
can be expressed as

wi = A(ay]) - (4 HXD), (13)

The operating status of the HPA may be specified by the output
back-off (OBO), which is defined as the ratio of the maximum
output power Pp,,x of the HPA to the average output power P,
of the signal at the HPA output, given by

Pmax
P,

OBO =10 - logy, (14)
The smaller OBO is, the more the HPA is operating into the
nonlinear saturation region.

Let us denote the vector of the CIR coefficients by

h=1lhohy - he]", (15)

cir
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whose length satisfies Lci; < Nep. It is assumed that hg =
1 because if this is not the case, sy can always be absorbed
into the CV static nonlinearity ¥ (), and the CIR coefficients are
re-scaled as h; /ho for 0 < ¢ < L. At the receiver, after the
CP removal, the channel-impaired received signals y;, are given
by

Lo
Yp = Zhiwk—i +ep, 0<kESN-1,
=0

(16)

in which wy_; = wnxyr—; for & < ¢, where e, = eg,, +
j - ek, is the TD AWGN with E{e; } = E{e; } = o
Because N, > L, the CP removal at the receiver auto-
matically cancels the inter block interference and transfers the
linear convolution channel into the circular one. Passing y =
[yo y1 -+ yn_1]T through the N-point FFT processor yields
the FD received OFDM vector Y = [Yy Y --- Y]t = Fy
whose elements are expressed by

Yo=HW,+5, 0<n<N-1, 17)
where =,, = =, +]j- =5, is the FD nth subcarrier AWGN
with E{Z? } = E{Z7 } = o2, and the frequency domain
channel transfer function coefficients (FDCTFCs) H,, for 0 <
n < N — 1 are given by the N-point FFT of h

[Ho Hy --- HN,l]T = Fh, (18)

while

W=[WoW, - Wy {]* = Fw 19)
is the NV -point FFT of w. Note that w is unobservable and, there-
fore, neither w nor W is available at the receiver.

If we denote E = [5y =1 --- Enx_1]T, the received FD
OFDM signal (17) can be expressed concisely as

Y = diag{HU, Hl, ceey, HNfl}W + =

:dia’g{HO:Hla"'aHi\/vfl}Fw_FE' (20)
Given the FDCTFCs H,, for0 < n < N — 1, the FD one-tap
equalization can be carried out. The zero-forcing equalization,
for example, is given by

_ Y,

WZ,L:H—, ()STLS]\/‘—I
k£3

ey

If the HPA ¥() at the transmitter were linear, Wn would be an
estimate of the transmitted data symbol X,,. But ¥() is non-
linear, and the linear equalization (21) alone is no longer suffi-
cient for estimating X . If the nonlinearity ¥() is known and it
is invertible, then the effects of W() can be compensated by in-
verting it. Specifically, let us define W = [W() Wy - WN,;[]T
and

Y(z) = [V(xo) W(xy) -

U(zy_1)]". (22)

Performing the IFFT on w yields

W= [w Wy - wn 1]t = F'W = ¥(z)+ F'E, (23)
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where E = diag{H, ', H, ',-++, Hy' | }E. Thus, an estimate
of the TD OFDM signal & is given by
E=0Yw) = [V Ya@o) ¥ i) - U N(ano1)]
(24)
which further yields the estimate of the FD OFDM symbol
vector X by

X = Fz. (25)

III. NONLINEAR EQUALIZATION OF OFDM
HAMMERSTEIN SYSTEM

The reliable detection of the transmitted OFDM data sym-
bols depends on the ability of estimating the FDCTFCs H,, or
the CIR coefficients 4; and the CV static nonlinearity ¥() of
the transmitter HPA as well as the ability of inverting ¥(). Note
that the CV HPA’s nonlinearity, (10) and (11), is completely
unknown to the receiver and w is unobserved. We adopt the
CV B-spline neural network [15], [16] to represent the mapping
@W=V(rrg+]j-xr): C— C thatis the estimate of the under-
lying CV nonlinear function (). We then propose an efficient
algorithm for jointly estimating H,, and ¥() based on the CV
B-spline modeling of ¥(). As a byproduct of this Hammerstein
channel identification, we construct the pseudo training data @,
and this allows us to estimate another B-spline neural network
that models ¥ !(). Before introducing the B-spline modelling
of W(), we point out that the HPA W() of (10) and (11) satisfies
the following conditions.

1) ¥() is a one to one mapping, i.e. it is an invertible and

continuous function.

2) zp and x; are upper and lower bounded by some finite and
known real values, where x = x g +j- x5 denotes the input
to the HPA U(). Furthermore, the distributions of 2z and
27 are identical.

According to the property 2), we assume that Ui, < Zod <
U nax, where Uy, and Uy are known finite real values, while
o4 symbolically represents either zp or zy, namely, the sub-
script o4 is either g or ;.

A. Complex-Valued B-Spline Neural Network

A set of univariate B-spline basis functions based on x4 is
parametrised by the order (P, — 1) of a piecewise polynomial
and a knot sequence which is a set of values defined on the one-
dimensional real line that break it up into a number of intervals.
To have N,q basis functions, the knot sequence is specified by
(Noa + P, + 1) knot values, {Uy. Uy, -+, Un_, 4P, }, with

Uy<U <---< Upafg < Upofl =Upin < Upo < e K
UNou < Unpy41 = Unax < Un,y42 <+ < Un_y+p,. (26)

Ateach end, there are P, — 1 “external” knots that are outside the
input region and one boundary knot. As a result, the number of
“internal” knots is N,q + 1 — P,. Given the set of predetermined
knots (26), the set of V4 B-spline basis functions can be formed
by using the De Boor recursion [17], yielding for 1 < [ <
N, od + P, 0>

1, ifU_1 <zoa < U,

(od,0) . _
By (oa) = {0, otherwise, @7
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Fig. 1. Visualisation of the De Boor recursion for P, = 4 and N,q = 3, where
Upmin = Us and Upar = Us.

Fig. 2. Complexity of the B-spline model with F, = 4 using the De Boor
recursion, where {a, b} beside a node indicates that it requires a additions and
b multiplications to compute the basis function value at this node.

aswellasforl=1,---,Nog+ P, —pandp=1,---, F,,
o od — U1 (od,p—1)
B( d,p) o — Tod B pP— Zo
( d) Up-‘,—lfl - Ul,1 ! ( d)
Upti — Tad (0dp—1)
+-=E B Tod). (28
Up+l LT 1+1 ( d) ( )
Here we have the superscript/subscript od = R or /.
The De Boor recursion is illustrated in Fig. 1. P, = 3 to

4 is sufficient for most practical applications. The number of
B-spline basis functions should be chosen to be sufficiently large
to provide accurate approximation capability but not too large
as to cause overfitting and to impose unnecessary computa-
tional complexity. The internal knots may be uniformly spaced
in the interval [Uyipn, Unax]. The extrapolation capability of the
B-spline model is influenced by the choice of the external knots.
Note that there exist no data for z,q < Upin and o9 > Upax
in identification but it is desired that the B-spline model has cer-
tain extrapolating capability outside the interval [Upin, Unax)-
The external knots can be set empirically to meet the required
extrapolation capability.

Because of the piecewise nature of B-spline functions, given
a value 2,4 € R, there are only P, + 1 basis functions with
nonzero values at most. This is advantageous as P, can be set to
a quite low value, e.g. P, = 4 is often sufficient. The complexity
of the De Boor recursion is, therefore, on the order of POQ. Fig.2
shows the complexity of generating the B-spline basis function
set for P, = 4 using the De Boor recursion. Note that the com-
plexity does not depend on the number of basis functions N,q
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employed. For the B-spline model with the polynomial degree
P, = 4, the total computational requirements are 26 additions
and 38 multiplications at most.

Using the tensor product between the two sets of univariate
B-spline basis functions [18], B (xp) for 1 < | < Ny
and B,(,{’P") gm) for 1 < m < Ny, a set of new B-spline basis
functions Bli;f) (7) can be formed and used in the CV B-spline
neural network, giving rise to

Np Ny
~ _ Ti( E :E : (P)
_LI} B] m ()l m
=1 m=1
Npr Np

=2 Z B wr) BT

I=1 m=1

(xl)'gl,m-, (29)

where 0; ., = Hh,,,R +jtm, €C,1<I<Nrpandl <m <
Ny, are the CV weights.

Consider now using the CV B-spline neural network (29) to
approximate the HPA nonlinearity ¥ () over one OFDM symbol
x. Firstly, define the overall parameter vector § € CV? where
Np = Npg - Nj, of the B-spline model (29) as

0=1[011015 - i - Onpns]”, (30)

and the B-spline basis function matrix B € RV*¥# a5
B

r, r,
B (xo) B (w0) By, (xo)
P, P(, P,
Bg,l )(-7?1) BE 2>(1 1) BASVR?NI(.IH)

B

r, : ' ’
Bil)(l‘f\"fl) B§2)( TN — 1) Ng, \I( /Nfl()3l

Then the B-spline model (29) over & can be represented con-
cisely by

@ = Bf (32)

where @ = [y @ - @n_1]T with D) = W(ay).

Remarks: B-splines have been widely studied in the sub-
jects of approximation theory and numerical analysis, owing
to their many good properties, including numerical stability.
Specifically, the B-spline basis functions as model basis have
the best approximation capability according to the Stone
Weierstrass approximation theorem, i.e. the basis function is
complete. Although any polynomial function can also be used
to approximate a continuous function, the B-spline functions
are proven to be optimally stable bases [19]-[21]. One critical
and practical aspect to consider in the evaluation of a model
representation is the stability with respect to perturbation of
the model parameters, because in any identification, the data
are inevitably noisy, which will perturb the model parameters
away from their true values. A significant advantage of using
the B-spline model with De Boor algorithm for functional
approximation over many other polynomial forms is its su-
perior numerical stability [19]-[21]. We now elaborate this
aspect. Assume that the true system can be represented by the
polynomial model of degree P, as

P,

k!
Yod = E i * Tods

=0
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as well as by the following B-spline model exactly

Noda
Yod = Z bi . BEOd.’PO)(*TOd)'

i=1

Because the identification data are noisy, the estimated model
coefficients are perturbed from thelr true values to @; = a; + &;
for the polynomial model, and to b = b; + ¢, for the B-spline
model. Assume that all the estimation noises &; are bounded,
namely, |£;| < £uax. The upper bound of |¢oa — Yoa| for the
B-spline model can be worked out as follows

Nod
2 : (od, I, ) z : od r,)
|yod J0(1|— b B Tol bl i Tod)

=1
A"\rod
E : (od,Po), . _

< Emax * BL (:Lod) = €max-

i=1

Observe that the upper bound of the B-spline model output per-
turbation only depends on the upper bound of the perturba-
tion noise, and it does not depend on the input value z.q, the
number of basis functions N,q or the polynomial degree P,.
This confirms that the B-spline model has the maximum numer-
ical robustness, which is well known. Optimality of the B-spline
model in terms of numerical stability is due to the convexity of
its model bases, i.e. they are all positive and sum to one. By con-
trast, the upper bound of |¢oq — Yoa| for the polynomial model
can be worked out as follows

Py

E ai - iy

=0

|yod - 'Z/\od| - < €max °

E &Z od

i=0

ZL

=0

Observe that the upper bound of the polynomial model output
perturbation depends not only on the upper bound of the pertur-
bation noise but also on the input value x,q and the polynomial
degree P,. The higher the polynomial degree F,, the more se-
rious the polynomial model may be perturbed, a well-known
drawback of using polynomial modeling.

Fig. 3(a) plots a quadratic polynomial function yg =
0.001z% — 0.02zp + 0.1 defined over zp € [0,20] in solid
line. Based on the knot sequence of {—5, —4.0, 20,24, 25},
this function is modeled as a quadratic B-spline model of
yr =0.14BFD (25} — 0.10BY"? () + 0.14BD (25),
which is depicted in Fig. 3(b) in solid line. We now draw three
noises g;, 1 < ¢ < 3, from a uniformly distributed random
number in [—0.0001, 0.0001], and add them to the three pa-
rameters in the two models, respectively, to simulate the effects
of the noise in identification. Fig. 3(a) and Fig. 3(b) depict the
ten sets of the perturbed functions in dashed line generated by
perturbing the two models, respectively. It can be clearly seen
from Fig. 3(a) that the polynomial model is seriously perturbed,
but there is no noticeable change in Fig. 3(b) for the quadratic
B-spline model. We next draw three perturbation noises from
a uniformly distributed random number in [—0.001, 0.001],
and add them to the three parameters of the B-spline model.
Again, the B-spline model is hardly affected, as can be seen
from Fig. 3(c). We then draw three perturbation noises from
a uniformly distributed random number in [-0.01,0.01] to
add to the three B-spline parameters, and the results obtained
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0.02 - 1 0.02

0 0
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Fig. 3. (a) The polynomial model with three perturbation noises drawn from
a uniformly distributed random number in [—0.0001, 0.0001], (b) the B-spline
model with three perturbation noises drawn from a uniformly distributed
random number in [—0.0001, 0.0001], (c) the B-spline model with three
perturbation noises drawn from a umformly distributed random number in
[—0.001, 0.001], and (d) the B-spline model with three perturbation noises
drawn from a uniformly distributed random number in [—0.01, 0.01].

are shown in Fig. 3(d). Observe from Fig. 3(a) and Fig. 3(d)
that, despite of the fact that the strength of the perturbation
noise added to the B-spline model coefficients is 100 times
larger than that added to the polynomial model coefficients,
the B-spline model is much less seriously perturbed than the
polynomial model.

B. Identification of the OFDM Hammerstein Channel

The identification of the OFDM Hammerstein channel in-
volves estimating the parameter vector @ of the B-spline neural
network (29) that represents the nonlinearity W() as well as the
CIR coefficient vector h. Given a block of K training samples
{k, yk}{i*ol , where K < N, the task can be formulated as the
one that minimises the cost function

1 K—-1 1 K—-1
_ ~ 12 _ ~ 12
0) = I7d E exl” = % § Yk — Tk

k=0 k=0

» (33)

subject to the constraint of hg = 1, in which the model predic-
tion 7y, is given by

Leir Liy Nr Nr
yk_Zhwk ; Zh SO BTN ). (34)
=1 m=1

where 1, _; = xn41—¢ if & < 4. Note that (34) can be viewed
as two different linear regression models, namely, one is with
respect to A when fixing @ and the other is with respect to @
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given a fixed h, each problem having a closed-form solution.
According to [22], [23], the estimates of # and h are unbiased,
irrespective the optimization algorithm used.

Specifically, denote ¥ = [yo w1 yr—1]T and
€ = [éo €1 -+ €x_1]T. Then over the training data set,
the system can be represented as

y=Ph+e=Q8 +¢, (3%)

where the regression matrices P € CEX(Zet1) and Q ¢
CHEXN8 are given respectively

g W_q W_r,.,
P=| @ W Wr_1 (36)
L1 Wr—2 WK 1L,
801,1(0) Qol,m(()) PNg,Nr (())
Q=| v¢i.1(k) o1,m (k) Ong N, (K)
Lo (K=1) - wrm(K—1) -+ ongn, (K1)
(37)
in which
Nr Ny
B =0() =Y. > B @)bim,  (39)
=1 m=1
or,m(k —1+Zh B, m ‘kaqz)-, (39)

with x, = x4 if £ < 0.

We adopt the following ALS procedure to estimate b and 8,
which is a coordinate gradient descent algorithm [25], [24]. The
global convergence of the generic coordinate gradient descent
algorithm for quasi convex cost functions was given in [24].
The cost function (33) is quasi convex and moreover, unlike a
generic coordinate gradient descent algorithm, in our case we
have the closed-form solutions for both & and 8. Therefore, our
ALS procedure guarantees to converge fast to an unbiased esti-
mate of A and 8 jointly.

Initialisation: Initialise @, = x in P of (36). Calculate h
as the LS estimate given by

A" — (Pip) ' Py,

(40)
~(0

Then obtain h( ) by normalising h; < h;/hg for 0 < i < L.

ALS Estimation: For1 < 7 < Ti1.., Where T, 1s the max-
imum number 0{ iterations, perform: -
~(t—1 ~(T

a) Fixhtoh ) in @ of (37). The LS estimate of 8~ is

readily given by

= (@' Q. 41)

b) For P of (36), fix @; according to (38) based on 5(7)
Calculate

~(7)

h = (PUip) Py (42)
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Then obtain E(T) by normalising h; + h;/hg for 0 < i < L.

A few iterations, i.e. a very small 7, are sufficient for the
above ALS estimation procedure to converge to a joint unbiased
estimate of A and # that is a minimum solution for minimising
the cost function (33).

C. Inversion of the OFDM Hammerstein Channel’s Static
Nonlinear Function

Given the CV Hammerstein channel’s static nonlinearity ¥ (),
we wish to compute its inversion defined by z, = ¥~ (wy).
This task is identical to find the CV root of wy = V(xy), given
wy., which can be solved iteratively [14], [15]. Given the esti-
mated nonlinearity \I/() and during the data detection phase, the
strategy of [14], [15] requires to iteratively calculate the root of
wy = Y(Zy) for each linearly equalised TD received signal
sample wy in order to obtain the TD transmitted signal esti-
mate 7. In order to avoid the iterative root finding procedure
for every sample wy, we adopt an alternative strategy by con-
structing a mapping x; = ®(wy, @) = ¥~ 1(wy) also based on
the CV B-spline neural network of Section III-A, where « de-
notes the associated parameter vector of this inverting B-spline
model. In order to learn the mapping zx = P(wyg,a), how-
ever, a training data set {wy, x } would be needed but wy, is
unobservable and, therefore, is not available. Fortunately, as a
byproduct of the OFDM Hammerstein channel identification
presented in Section III-B, we already obtain an estimate for
was w = B, Therefore, we may construct the pseudo
training data set {0, = k}j?:ol to estimate c.

Specifically, define two knots sequences similar to (26) for
wp and wy. Similar to (29), we have!

Nr Nr

‘/1; w (l Z Z Bl( ,,(Z) LU Uél,m
=1 m=1
Np N,
=35 B ) BE T (wn)onm. (43)
=1 m=1

where BI(R’P")('LUR) and B£,{’P°)('w[) are respectively calcu-
lated based on (27) and (28), while

T
o = [C¥171 Q1o " QAm O‘NH-,NJ] (44)

Here again for notational simplicity, we assume that the same
number of basis functions and polynomial order are used for
the two B-spline neural networks LIJ( 2 ) and ®(w,, ). Over the
pseudo training data set {Wy, T } e 01, the regression matrix
B € RY*¥# can be formed as

r, r, P,
351)(“]0) B%,z)(w'ﬁ) B(NH)N, (o)
- B @) B () By ()

’VI.(mel)
(45)

: .
- By
and the LS solution for a is readily given by a =
(BTB) BT

IIn order to avoid repetitions, we keep the same B-spline notations of Sec-
tion III-A
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IDENTIFICATION RESULTS FOR THE CIR COEFFICIENT VECTOR h OF THE HAMMERSTEIN CHANNEL

TABLE 1
EMPIRICALLY DETERMINED KNOT SEQUENCES
Knot sequence for z i and z; -10, -9, -0.3, -0.1, -0.05, -0.02, 0, 0.02, 0.05 0.1, 0.3, 9, 10
Knot sequence for wgr and wy 20, -10, -3.5, 2 -0.5, 0.2, O, 0.2, 0.5, 2, 3.5, 10, 20
TABLE 11

True Parameter estimate under
Parameters Ey/No =0 dB E, /N, =10 dB B, /N, =0 dB E, /N, =10 dB
OBO =5 dB OBO =5 dB OBO =3 dB OBO =3 dB

ho 1 1 1 1 1

h1 —0.2145 — j0.1867 | —0.2143 —j0.1872 | —0.2144 —j0.1869 | —0.2141 —j0.1874 | —0.2143 —j0.1869
ho 0.0399 + j0.3675 0.0396 + j0.3684 0.0399 + j0.3678 0.0396 + j0.3686 0.0399 + j0.3678
hz | —0.0900 + j0.4053 | —0.0903 4 j0.4051 | —0.0901 + j0.4052 | —0.0902 + j0.4051 | —0.0895 + j0.4052
hg | —0.0893 +j0.1287 | —0.0895 + j0.1265 | —0.0894 + j0.1280 | —0.0896 + j0.1261 | —0.0895 4+ j0.1279
hs | —0.1117 +j0.3035 | —0.1131 +j0.3035 | —0.1122 + j0.3035 | —0.1134 4 j0.3035 | —0.1122 + j0.3035
hg | —0.0766 —j0.0264 | —0.0765 — j0.0269 | —0.0766 — j0.0265 | —0.0765 — j0.0269 | —0.0766 — j0.0265
hr 0.0623 — j0.0668 0.0621 — j0.0668 0.0623 — j0.0668 0.0621 —j0.0670 0.0623 — j0.0669
hg 0.0282 + j0.0324 0.0283 + j0.0325 0.0282 + j0.0325 0.0284 + j0.0326 0.0282 + j0.0325
hg | —0.0395 —j0.0291 | —0.0393 —j0.0304 | —0.0394 — j0.0295 | —0.0391 — j0.0308 | —0.0393 — j0.0297

5635

IV. SIMULATION STUDY

We considered a Hammerstein OFDM system in which
the HPA employed was described by (10) and (11) with the
parameter set given in (12). The number of subcarriers was
N = 2048 and 64-QAM was used. We assumed a quasi-static
Rayleigh multipath channel with an exponentially decreasing
power delay profile, where the average power for the /th path
was given by

2

E{|mf} =¢ %, 0<1< La, (46)
with ~ being the channel degradation factor. In the simulation
study, we set v = 3 and L., = 9. The CIR coefficients h; for
0 <1 < L, remained constant during the communication ses-
sion. We used a full OFDM pilot symbol with K = N = 2048
training samples in the joint estimation of the CIR coefficient
vector b and the parameter vector 8 of the B-spline model for
W() as well as the estimation of the parameter vector a of the
B-spline model for ¥ 1(). The piecewise quartic polynomial
of P, = 4 was chosen as the B-spline basis function, and the
number of B-spline basis functions was set to Ng = Ny = 8.
Owing to the symmetric distribution of x5 and x 7, the knot se-
quence for xp was set to be identical to that for x;. Similarly,
the knot sequences for wg and w; were chosen to be identical.
The empirically determined knot sequences covering different
HPA operating conditions are listed in Table I. The system’s
signal-to-noise ratio (SNR) was defined as SNR = E},/N,,
where E}, was the average power of the input signal 2 to the
HPA and N, = ‘)af was the channel AWGN’s power.

The identification experiments were conducted under the
HPA operation conditions of OBO = 5 dB and OBO = 3 dB,
respectively, as well as given the two SNR conditions of
SNR = 0dDB and SNR = 10 dB, respectively. The identifica-
tion results of the linear subsystem in the Hammerstein channel
under these four experimental conditions are summarised in
Table II, while the modelling results of the HPA static nonlin-
earity W() by the B-spline neural network ¥() for all the four

simulation conditions are illustrated in Fig. 4. It can be seen
from Table II that the CIR estimates achieve high accuracy for
all the four conditions. The results of Fig. 4 clearly demonstrate
the capability of the proposed CV B-spline neural network
to accurately model the HPA’s static nonlinearity, where it
can be observed that the maximum deviation of the estimated
phase response from the HPA’s true phase response is less than
0.05 even under the adverse condition of OBO = 3 dB and
SNR = 0 dB.

The combined response of the HPA’s true nonlinearity ()
and its inverse estimate </I;() obtained under the condition of
OBO = 5 dB and SNR = 10 dB is depicted in Fig. 5. The
result of Fig. 5 demonstrates the capability of the proposed CV
B-spline neural network to accurately model the inversion of the
HPA’s nonlinearity based only on the pseudo training data. The
effectiveness of the proposed nonlinear equalization scheme is
illustrated in Fig. 6, where the nonlinear equalizer is constructed
based on the estimated CIR A and inverse mapping @() obtained
under OBO = 5 dB and E},/N, = 10 dB.

In order to demonstrated the effectiveness of our proposed
B-spline based nonlinear equalizer, we also investigated the
polynomial based nonlinear equalizer. For this polynomial
based nonlinear equalizer, we employed the polynomial model
with the polynomial basis set

2 2 .3 2 2 .3
{1,.rR,mI,.rR,mR:I:I,mI,mR,mRn,I,.TRmI,mI,

Th, vy, v hr wprt, vt } 47

to model the HPA’s nonlinearity W (), and the same ALS algo-
rithm was used to identify the parameters of this polynomial
model as well as the CIR coefficient vector h. Furthermore,
another polynomial model with the same polynomial basis set
(47) was adopted to model W ~1(), and the parameters of this
inverting polynomial model were estimated using the LS al-
gorithm based on the same pseudo training data. Without any
channel coding, the raw achievable BER performance of the
B-spline based nonlinear equalizer are plotted in Fig. 7 under
three different operating conditions of the HPA, in comparison
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Fig. 4. Comparison of the HPA’s static nonlinearity () and the estimated static nonlinearity \T/() under: (a) OBO = 5 dB, E,/N, = 0dB; (b) OBO = 5 dB,
E,/N, =104dB; (¢) OBO = 3dB, E,/N, = 0dB; and (d) OBO = 3 dB, E,,/N, = 10 dB.

to the BER performance obtained by the standard linear equal-
izer and the polynomial based nonlinear equalizer. Clearly, the
standard linear equalizer is incapable of compensating the non-
linear distortions of the Hammerstein channel and its attainable
BER performance is poor even under the HPA operating con-
dition of OBO = 10 dB, as can be seen from Fig. 7. By con-
trast, the proposed nonlinear equalizer constructed based on the
estimated CIR and inverse mapping of the HPA is able to cor-
rect most of the nonlinear distortions and attains a much better
BER performance. Also observe from Fig. 7 that the B-spline

based nonlinear equalizer significantly outperforms the polyno-
mial based nonlinear equalizer, particularly under the adverse
operating conditions of OBO = 3 dB and 5 dB.

Next, we added a channel coder to the transmitter, and per-
formed the channel decoding after equalization at the receiver.
In this coded and 64-QAM modulated OFDM Hammerstein
system, the source bits were encoded with the NASA standard
1/2 rate convolutional code [7, (133,171)], where the constraint
length is 7, the generator polynomials are 133 and 171, while
at the receiver, the demodulated bits were fed into the Viterbi
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Fig. 8. The coded bit error rate performance comparison of the proposed
B-spline based nonlinear equalizer with the standard linear equalizer and the
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decoder with trace back length of 20 [26]. Fig. 8 compares the
coded BER performance of the B-spline based nonlinear equal-
izer with those of the linear equalizer as well as the polynomial
based nonlinear equalizer under three HPA operating condi-
tions. By comparing Fig. 8 with Fig. 7, we can see that the coded
BER of the linear equalizer under the HPA operating condition
of OBO = 3 dB is actually worse than the uncoded case. This
is because for channel coding to be effective, the uncoded BER
must be below certain threshold; otherwise channel decoding
actually degrades the achievable BER. Given OBO = 3 dB,
the uncoded BER obtained by the linear equalizer is higher than
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this threshold, owing to the very serious nonlinear distortion of
the channel. Under the operating condition of OBO = 5 dB,
the channel coding does improve the BER of the linear equalizer
but only marginally, and the coded BER of the linear equalizer
has a high BER floor, again owing to the serious nonlinear dis-
tortion of the channel. This is because channel coding is very
effective in cleaning the errors caused by random noise but is
unable to correct the errors caused by the nonlinear distortion
at all. For OBO = 10 dB, the channel is almost linear, and
the channel coding significantly enhances the achievable BER
of the linear equalizer, as can be observed by the coded BER
of the linear equalizer for OBO = 10 dB in Fig. 8. Clearly,
in this case most of the errors are caused by the AWGN. Ob-
serve that this coded BER curve exhibits a BER floor around
109, This is obviously caused by the very mild channel non-
linearity under OBO = 10 dB, for which the channel coding
is completely powerless to correct. By contrast, as most of the
nonlinear distortions are corrected by the proposed nonlinear
equalizer, it benefits more from the channel coding, as is self-ev-
ident by comparing Fig. 8 with Fig. 7. The results of Fig. 8 again
confirm that the B-spline based nonlinear equalizer attains better
BER performance than the polynomial based nonlinear equal-
izer, especially under the highly nonlinear operating conditions
of OBO = 3 dB and 5 dB.

V. CONCLUSIONS

A novel nonlinear equalization scheme has been developed
for the Hammerstein OFDM system, where the nonlinear dis-
tortion is caused by the high power amplifier at transmitter.
We have proposed to use a CV B-spline neural network for
modelling the HPA’s static nonlinearity as well as to use another
B-spline neural network for modelling the inverse mapping
of the HPA’s nonlinearity. Our novel contribution includes
deriving a highly efficient alternating least squares algorithm
for estimating the CIR coefficients and the parameters of the
B-spline neural network that models the static nonlinearity of the
Hammerstein channel. Moreover, as a natural byproduct of this
Hammerstein channel identification, the pseudo training data
can be constructed to effectively estimate the inverse B-spline
neural network that models the inverse mapping of the HPA
nonlinearity. All the three estimates, the CIR coefficients, the
parameters of the B-spline model and the parameters of the
inverse B-spline model, have the closed-form LS solutions. Sim-
ulation results obtained have demonstrated that our proposed
identification procedure is capable of accurately estimating the
Hammerstein channel as well as the inverse mapping of the
channel’s static nonlinearity. The results obtained also confirm
the effectiveness of the proposed nonlinear equalizer constructed
based on the estimated CIR and inverse B-spline mapping. Our
future work will investigate applying turbo detection-decoding
technique to this challenging nonlinear equalization problem.
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