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Single-Carrier Frequency Domain Equalization
for Hammerstein Communication Systems
Using Complex-Valued Neural Networks

Xia Hong, Senior Member, IEEE, Sheng Chen, Fellow, IEEE, Chris J. Harris, and Emad F. Khalaf

Abstract—Single-carrier (SC) block transmission with fre-
quency-domain equalization (FDE) offers a viable transmission
technology for combating the adverse effects of long dispersive
channels encountered in high-rate broadband wireless com-
munication systems. However, for high-bandwidth efficiency
and high-power-efficiency systems, the channel can generally
be modeled by the Hammerstein system, which includes the
nonlinear distortion effects of the high-power amplifier (HPA)
at transmitter. For such nonlinear Hammerstein channels, the
standard SC-FDE scheme no longer works. This paper advocates
a complex-valued (CV) B-spline neural-network-based nonlinear
SC-FDE scheme for Hammerstein channels. Specifically, we model
the nonlinear HPA, which represents the CV static nonlinearity
of the Hammerstein channel, by a CV B-spline neural network,
and we develop two efficient alternating least squares schemes
for estimating the parameters of the Hammerstein channel, in-
cluding both the channel impulse response coefficients and the
parameters of the CV B-spline model. We also use another CV
B-spline neural network to model the inversion of the nonlinear
HPA, and the parameters of this inverting B-spline model can
easily be estimated using the standard least-squares algorithm
based on the pseudo training data obtained as a natural byproduct
of the Hammerstein channel identification. Equalization of the
SC Hammerstein channel can then be accomplished by the usual
one-tap linear equalization in the frequency domain as well as
the inverse B-spline neural network model obtained in the time
domain. Extensive simulation results are included to demonstrate
the effectiveness of our nonlinear SC-FDE scheme for Hammer-
stein channels.

Index Terms—Single-carrier frequency domain equalization,
high power amplifier, Hammerstein channel, complex-valued
B-spline neural network.
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I. INTRODUCTION

I T is well-known that for high-speed broadband commu-
nication applications with data rates in tens of Mbps or

higher over wireless channels of typical delay spread in mi-
croseconds, the intersymbol interference (ISI) of wireless chan-
nels will span over tens or even hundreds of symbols. This
causes the nightmare scenario for time-domain (TD) equaliza-
tion, as an impractically long equalizer is required which suf-
fers from excessively slow convergence and has poor perfor-
mance. Orthogonal frequency-division multiplexing (OFDM)
[1], [2] provides a low-complexity high-performance solution
for mitigating long ISI. Owing to its virtues of resilience to fre-
quency selective fading channels, OFDM has found its way into
many recent wireless network standards. However, OFDM sig-
nals are notoriously known to have high peak-to-average power
ratio (PAPR), which requires the high power amplifier (HPA) at
the transmitter to have an extremely long linear dynamic range.
This requirement may not be met by practical HPAs which ex-
hibits nonlinear saturation characteristics [3]–[7]. Single-carrier
(SC) block transmission with frequency-domain equalization
(FDE) [8], [9] offers a viable alternative solution for long ISI
mitigation. Although the total complexity of a SC-FDE based
transceiver is the same as that of an OFDM based transceiver,
the SC-FDE transmitter does not require the fast Fourier trans-
form (FFT) operation, and therefore it is better suited for uplink
implementation. Therefore, the long term evolution advanced
(LTE-A) has specified the standard for the uplink of the fourth
generation (4G) systems based on the SC-FDE solution [10].
SC based high-rate broadband systems typically employ

high-order quadrature amplitude modulation (QAM) signalling
[11] for the sake of further enhancing the achievable bandwidth
efficiency. The higher the order of QAM signalling, the better
the bandwidth efficiency but also the higher the PAPR of
the resulting transmit signal. This may drive the HPA at the
transmitter into the nonlinear saturation region, which will
significantly degrade the system’s achievable bit error rate
(BER) performance. Moreover, green communication [12]
by emphasizing energy-efficiency aspect of communication
favours high power-efficiency nonlinear HPAs, which however
could not accommodate high bandwidth-efficiency transmis-
sion technologies. Furthermore, recently, millimeter-wave
(mmW) communications have been attracting extensive at-
tentions, owing to the huge amount of unlicensed bandwidth
offered by mmW systems [13]–[15]. SC transmission provides
a viable technology for mmW based beyond 4G (B4G) sys-
tems [15]. However, for mmW communications, the design of
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HPA encounters severe nonlinearity [16], [17]. Therefore, it is
important to be able to effectively compensate the nonlinear
distortions of the HPA in the design of a SC-FDE based B4G
wireless system in order to achieve both high bandwidth effi-
ciency and high power efficiency.
An effective approach to compensate for the nonlinear

distortions of HPA is to implement a digital predistorter
at the transmitter, which is capable of achieving excellent
performance, and various predistorter techniques have been
developed [18]–[24]. Implementing the predistorter is attrac-
tive for the downlink, where the base station (BS) transmitter
has the sufficient hardware and software capacities to ac-
commodate the hardware and computational requirements
for implementing digital predistorter. In the uplink, however,
implementing predistorter at transmitter is much more difficult,
because it is extremely challenging for a pocket-size handset to
absorb the additional hardware and computational complexity.
Therefore, the predistorter option is not viable for the SC-FDE
based uplink system. Alternatively, the nonlinear distortions
of the transmitter HPA can be dealt with at the BS receiver,
which has sufficient hardware and software resources. With the
nonlinear HPA at transmitter, the channel is a complex-valued
(CV) nonlinear Hammerstein system and, moreover, the re-
ceived signal is further impaired by the channel additive white
Gaussian noise (AWGN). Therefore, nonlinear inversion or
equalization of the SC-FDE based CV Hammerstein channel is
a challenging task.
In this contribution, we propose an efficient nonlinear

SC-FDE scheme for Hammerstein channels based on the CV
B-spline neural network. Motivated by our previous works
[24]–[26], which demonstrate the effectiveness of the CV
B-spline neural network approach for identification and inver-
sion of CV Wiener systems, we adopt a CV B-spline neural
network to model the CV static nonlinearity of the Hammer-
stein channel, and we develop two highly efficient alternating
least squares (ALS) identification algorithms for estimating
the channel impulse response (CIR) coefficients as well as the
parameters of the CV B-spline neural network that models
the HPA’s CV static nonlinearity. As linear equalization is
naturally accomplished in SC-FDE based systems by a one-tap
equalization in frequency domain (FD), nonlinear SC-FDE of
the Hammerstein channel additionally involves the inversion
of the estimated CV B-spline neural network that models
the HPA’s nonlinearity in TD. The previous works [24], [26]
considers the inversion of a B-spline model as the root finding
problem, and develop an iterative root finding procedure based
on the Gauss-Newton algorithm for inverting the estimated
B-spline neural network mode. This approach requires to carry
out the iterative root finding procedure for detecting every data
symbol. We propose a much faster and more efficient alterna-
tive for inverting the HPA’s nonlinearity. Specifically, we use
another CV B-spline neural network to model the inversion
of the HPA’s CV nonlinearity. Although the HPA’s output at
the transmitter is unobservable at the receiver for identifying
this CV inverse model, the pseudo training data obtained as a
natural byproduct of the Hammerstein channel identification
can be used to estimate the parameters of the inverting B-spline
model using the standard least squares (LS) algorithm. The ef-
fectiveness of our proposed CV B-spline neural network based

SC-FDE scheme for Hammerstein channels is demonstrated in
an extensive simulation study.
To the best of our knowledge, this is the first practical and

effective scheme proposed for compensating the transmitter
HPA’s nonlinearity at the receiver for SC-FDE based systems.
It should be emphasized that the scheme developed in a recent
paper [27] is not applicable to the SC-FDE based system,
and it can only be applied to a TD equalization based system.
More specifically, for pure TD transmission systems, the work
[27] develops a highly-complicated, high-training-overhead
and high-complexity nonlinear TD based equalization scheme
for the Hammerstein channel. Firstly, a specially designed
unity-PAPR training sequence has to be adopted to identify the
HPA biased CIR. Linear TD equalization is carried out with
the equalizer order set to the data frame length, based on the
estimated biased CIR. Then a second training sequence with
the same data modulation scheme and same data frame length
has to be employed to identify the so-called the distortion
constellation set (DCS). Finally, the estimated DCS is used
for data detection based on the TD linearly equalized received
signal sequence, which has a much higher complexity then a
standard data detection. It is clearly that the scheme of [27] not
only suffers from the drawbacks of high-training-overhead and
high-complexity but also cannot be applied to SC-FDE based
systems. By contrast, the B-spline based approach adopted in
this manuscript for SC-FDE based systems can be applied to
the same pure TD transmission system considered in [27]. In
fact, we have applied our B-spline based nonlinear equalization
scheme to a similar TD transmission system in [28], which
offers lower training overhead and lower complexity than the
scheme developed in [27].
The rest of this paper is organized as follows. Section II

presents the Hammerstein channel model and summarizes the
requirements of nonlinear SC-FDE given the Hammerstein
channel. Section III details our proposed CV B-spline neural
network based nonlinear SC-FDE scheme, while the simulation
study is presented in Section IV to demonstrate the excellent
performance of our proposed nonlinear SC-FDE scheme. Our
conclusions are offered in Section V.
Throughout this contribution, a CV number is

represented either by the rectangular form ,
where , while and denote the
real and imaginary parts of , or alternatively by the polar form

with denoting the amplitude of and its
phase. The vector or matrix transpose and conjugate transpose
operators are denoted by and , respectively, while
stands for the inverse operation and the expectation operator
is denoted by . Furthermore, denotes the identity matrix
with an appropriate dimension, and
is the diagonal matrix with as its diagonal
elements.

II. HAMMERSTEIN CHANNEL MODEL FOR SC-FDE

In our SC block based transmission system, each transmit
block consists of data symbols expressed as

(1)
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where denotes the block index. We assume that
, take the values from the -QAM symbol set

(2)

where is the minimum distance between symbol points. For
notational simplification, the block index is dropped in the
sequel. Adding the cyclic prefix (CP) of length to yields

(3)

in which for . The signal block
is amplified by the HPA to yield the actually transmitted signal
vector

(4)

where

(5)

in which represents the CV static nonlinearity of the trans-
mitter HPA, and for . The most
widely used HPA is the solid state power amplifier [6], [7],
whose nonlinearity is constituted by the HPA’s amplitude
response and phase response given by

(6)

(7)

where denotes the amplitude of the input to the HPA, is
the small gain signal, is the smoothness factor and is
the saturation level, while the parameters of the phase response,

and , are adjusted to match the specific amplifier’s
characteristics.
The NEC GaAs power amplifier used in the recent wireless

standards [6], [7] for example has the parameter set

(8)

Therefore, given the input to the HPA, the
output of the HPA can be expressed as

(9)

The operating status of the HPA may be specified by the output
back-off (OBO), which is defined as the ratio of the maximum
output power of the HPA to the average output power
of the HPA output signal, given by

(10)

The smaller OBO is, the more the HPA is operating into the
nonlinear saturation region.
The amplified signal is transmitted through the channel

whose CIR coefficient vector is expressed by

(11)

The CIR length satisfies . Without loss of generality,
we assume that . This is because if this is not the case,
can always be absorbed into the CV static nonlinearity ,

and the CIR coefficients are re-scaled as for
. At the receiver, after the CP removal, the channel-impaired

received signals are given by

(12)

in which for , where
is the channel AWGN with . Passing

through the -point FFT processor
yields the FD received signal vector

(13)

where

...
...

...
...

(14)

is the FFT matrix which has the orthogonal property of
. The elements of are given by

(15)

where is the FD representation of the
channel AWGN with , and the
frequency domain channel transfer function coefficients (FD-
CTFCs) for are given by the -point FFT
of

(16)

while

(17)

is the -point FFT of . Note that is unobservable and, there-
fore, neither nor is available at the receiver. If we denote

, the FD received signal (15) can be
expressed concisely as

(18)
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Given the FDCTFCs for , the FD one-tap
equalization can be carried out. The zero-forcing equalization,
for example, is given by

(19)

Performing the -point inverse FFT (IFFT) on
yields

(20)

where , and

(21)

If the HPA at the transmitter were linear, would be an es-
timate of the transmitted data symbol . But is nonlinear,
and the linear equalization (19) alone is no longer sufficient for
estimating . If the nonlinearity is known and it is invert-
ible, then the effects of can be compensated by inverting
it. Specifically, an estimate of the transmitted data vector is
given by

(22)

III. NONLINEAR SC-FDE OF HAMMERSTEIN SYSTEM

The reliable detection of the transmitted data symbols de-
pends on the ability of estimating the FDCTFCs or the CIR
coefficients and the CV static nonlinearity of the trans-
mitter HPA as well as the ability of inverting . We adopt
the CV B-spline neural network [25], [26] to represent the map-
ping that is the estimate of the CV non-
linear function . We then propose two efficient algorithms
for jointly estimating and based on this CV B-spline
modelling of . Furthermore, we utilize another CV B-spline
neural network to model , the inversion of the HPA’s
CV nonlinearity. To estimate this inverting model requires the
“input-output” training data , but is unobserved. For-
tunately, as a byproduct of the Hammerstein channel identifi-
cation, we can construct the pseudo training data , and this
allows us to estimate the inverting model. Before we proceed,
we point out that the HPA of (6) and (7) satisfies the fol-
lowing conditions.
1) is a one to one mapping, i.e., it is an invertible and
continuous function.

2) and are upper and lower bounded by some finite and
known real values, where denotes the input
to the HPA . Furthermore, the distributions of and
are identical.

According to the property 2), we assume that
, where and are known finite real values, while
symbolically represents either or .

A. Complex-Valued B-Spline Neural Network

A set of univariate B-spline basis functions based on is
parametrized by the degree of a piecewise polynomial and a
knot sequence which is a set of values defined on the real line

Fig. 1. Visualization of the De Boor recursion for and ,
where and .

that break it up into a number of intervals. To have basis
functions, the knot sequence is specified by knot
values, , with

(23)

At each end, there are “external” knots that are outside the
input region and one boundary knot. As a result, the number of
“internal” knots is . Given the set of predetermined
knots (23), the set of B-spline basis functions can be formed
by using the De Boor recursion [29], yielding for

,

(24)

as well as for and ,

(25)

Here again we have the superscript/subscript or .
The De Boor recursion is illustrated in Fig. 1. to

4 is sufficient for most practical applications. The number of
B-spline basis functions should be chosen to be sufficiently large
to provide accurate approximation capability but not too large
as to cause overfitting and to impose unnecessary computational
complexity. The internal knots may be uniformly spaced in the
interval , where and are known. The
extrapolation capability of the B-spline model is influenced by
the choice of the external knots. Note that there exist no data
for and in identification but it is de-
sired that the B-splinemodel has certain extrapolating capability
outside the interval . The external knots can be set
empirically to meet the required extrapolation capability.
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Using the tensor product between the two sets of univariate
B-spline basis functions [30], for
and for , a set of new B-spline basis
functions can be formed and used in the CV B-spline
neural network, giving rise to

(26)

where and
, are the CV weights.
Consider now using the CV B-spline neural network (26) to

approximate the HPA nonlinearity over one data symbol
block . Firstly, define the overall parameter vector ,
where , of the B-spline model (26) as

(27)

and the B-spline basis function matrix as

...
...

...
...

(28)

Then the B-spline model (26) over can be represented con-
cisely by

(29)

where with .
Because of the piecewise nature of B-spline functions, given

a value , there are only basis functions with nonzero
values at most for each of the real and imaginary parts. This is
advantageous as can be set to a quite low value, e.g.,
is often sufficient. The complexity of the De Boor recursion
is, therefore, on the order of , denoted by . Thus the
computational cost of evaluating (26) scales up to about three
times of the De Boor recursion, including evaluation of both real
and imaginary parts as well as the tensor product calculation.
Remarks: B-splines have been widely studied in the sub-

jects of approximation theory and numerical analysis, owing to
their many excellent properties, including numerical stability.
B-spline basis functions as model basis have the best approxi-
mation capability according to the Stone Weierstrass Approxi-
mation Theorem. Although any polynomial function can also be
used to approximate a continuous function, the B-spline func-
tions are proven to be optimally stable bases [31]–[33]. Specif-
ically, a critical aspect to consider in the evaluation of a model
representation is the stability with respect to perturbation of
the model parameters, and a significant advantage of using the
B-spline model with De Boor algorithm for functional approx-
imation over many other polynomial forms is its superior nu-
merical stability [31]–[33].

Fig. 2. Illustration of the superior numerical stability of the B-spline model
over the polynomial model. (a) Polynomial basis and (b) B-spline basis.

The excellent numerical stability of the B-spline model
is demonstrated using a simple example. Fig. 2(a) plots a
quadratic polynomial function
defined over in solid line. Based on the
knot sequence of , this function
is estimated exactly as a quadratic B-spline model of

,
which is depicted in Fig. 2(b) in solid line. In any identifi-
cation, the data are inevitably noisy, which will perturb the
model parameters away from their true values. To simulate
this noise effect, we draw three uniformly distributed random
numbers from and add them to the three
parameters in the two models, respectively. Fig. 2 depicts the
ten sets of the perturbed functions in dotted line generated by
perturbing the two models, respectively, in this manner. It can
be clearly seen from Fig. 2(a) that the polynomial function

is seriously perturbed, but there
is no noticeable change in Fig. 2(b) for the quadratic B-spline
model. Optimality of the B-spline model in terms of numerical
stability is due to the convexity of its model bases, i.e., they are
all positive and sum to one.
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B. Identification of the SC-FDE Hammerstein Channel
We present two identification schemes for the SC-FDE Ham-

merstein channel, each involving the estimation of the CIR co-
efficient vector as well as the parameter vector of the CV
B-spline neural network (26). Consider the joint estimation of
and based on a block of training data, , where

. The identification task can be formulated as the one
that minimizes the cost function

(30)

subject to the constraint of , in which the model predic-
tion is given by

(31)

where if .
Scheme 1: Note that (31) can be viewed as two different

linear regression models, namely, one is with respect to when
fixing and the other is with respect to given a fixed ,
each problem having a closed-form solution. Specifically, let

and . Then over
the training data set, the system can be represented as

(32)

where the regression matrices and
are given respectively by

...
...

...
...

...
...

...
...

(33)

...
...

...
...

...

...
...

...
...

...

(34)

in which

(35)

(36)

with if . For the cost function (30) and the
model (32), according to [34], [35], the estimates of and are
unbiased, irrespective to the optimization algorithm used.
We adopt the following ALS procedure to estimate and
, which is a coordinate gradient descent algorithm [36], [37].
However, unlike a generic coordinate gradient descent algo-
rithm, in our case we have the closed-form solutions for both

and , and our ALS procedure guarantees to converge fast to
an unbiased estimate of and jointly.
Initialization. Initialize in of (33). Calculate as
the LS estimate given by

(37)

Then obtain by normalizing for
.

TD ALS estimation. For , where is the
maximum number of iterations, perform:

a) Fix to in of (34). The LS estimate of is
readily given by

(38)

b) For of (33), fix according to (35) based on .
Calculate

(39)

Then obtain by normalizing for
.
A few iterations, i.e., a very small , are sufficient for the

above ALS estimation procedure to converge to a joint unbiased
estimate of and that is at least a local minimum solution for
minimizing the cost function (30).
Scheme 2: Our second algorithm is based on the following

two linear regression models to represent the HPA and channel
respectively as

(40)

(41)

in which the real-valued B-spline basis function matrix is
given in (28). This scheme therefore requires . Note
that unlike the white given in (20), in (40) is colored. The
joint estimation of and can be carried out by minimizing

and using the coordinate descent algorithm given in
the following.
Initialization. Initialize in of (33). Calculate

as the LS estimate given by of (37). Then obtain by
normalizing for . Also calculate

.
TD-FD ALS estimation. For , where is the
maximum number of iterations, perform:

a) Apply the -point FFT to to yield the current es-
timate of for , and then apply the
FD one-tap equalization using (19) to yield the current
estimate of . Next apply the -point IFFT on the FD
estimate of to yield the TD estimate of , and then
compute

(42)

b) For of (33), fix according to (35) based on .

Calculate of (39). Then obtain by normalizing
for .
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE TWO ALS ALGORITHMS

A few iterations, i.e., a very small , are sufficient for the
above ALS estimation procedure to converge.
Remarks: The two schemes differ in their step a). The TD-FD

ALS estimation scheme (Scheme 2) is more efficient because

there is no need of iterative matrix inversion to calculate .
Scheme 2 requires the training data in a full transmitting

block. This is because in step a) the FDE is performed based
on the full transmitting block. While the TD ALS estimation
(Scheme 1) does not have this restriction and can be smaller
than . However in step b) of Scheme 2, can also be formed
in the same way as of Scheme 1 by only using samples,
so that there can be the same computational costs for step b)
of the two schemes. Table I summarizes the computational
complexity of these two ALS algorithms.

The solution of the proposed TD-FD ALS estimation
scheme given in (42) is a statistically suboptimal solution min-
imizing the equation error . Alternatively the maximum
likelihood (ML) estimator is given by

(43)

in which
is the inverse of the covariance matrix of the colored noise term

. Clearly, the optimal ML estimator (43) is computa-
tionally more expensive than the proposed (42).
We now perform a simple analysis on the statistical properties

of the estimator (42) based on an assumed “true” system given
by (20) in which is obtained from the “true” and is
parametrized by the B-spline neural network. Under this ideal-
ized condition, we have

(44)

Substituting (44) into (42) leads to

(45)

We have owing to the facts that and
is uncorrelated with the regressors, i.e., B-spline basis functions.
Thus, no bias is introduced to the estimator (42). Similarly, the

covariance matrix of is given by

(46)

Provided that is full rank and none of is zero, the covari-

ance matrix of converges to as .

C. Inversion of the Hammerstein Channel’s Static Nonlinearity

Given the CV Hammerstein channel’s static nonlinearity
, we wish to compute its inverse defined by

in order to complete the nonlinear SC-FDE. We adopt the
strategy of constructing a mapping
also based on the CV B-spline neural network of Section III.A,
where denotes the associated parameter vector of this
inverting B-spline model. In order to learn the mapping

, however, a training data set would
be needed but is unobservable and, therefore, is not avail-
able. Fortunately, as a byproduct of the Hammerstein channel
identification presented in Section III.B, we already obtain an
estimate for as . Therefore, we may construct
the pseudo training data set to estimate .
More specifically, define two knots sequences similar to (23)

for and , respectively. Similar to (26), we have1

(47)

where and are respectively calcu-
lated based on (24) and (25), while

(48)

Here again for notational simplicity, we assume that the same
number of basis functions and polynomial degree are used for
the two B-spline neural networks and . Over the
pseudo training data set , the regression matrix

can be formed as

...
...

...
...

(49)

and the LS solution for is readily given by
.

IV. SIMULATION STUDY

We considered a Hammerstein SC-FDE System in which the
HPA employed was described by (6) and (7) with the parameter
set given in (8). The size of the transmitted data block was set to

1In order to avoid repetitions, we keep the same B-spline notations of Sec-
tion III.A.
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TABLE II
EMPIRICALLY DETERMINED KNOT SEQUENCES

Fig. 3. Comparison of the HPA’s nonlinearity and the estimated nonlinearity : (a) Scheme 1 under dB, dB; (b) Scheme 2 under

dB, dB; (c) Scheme 1 under dB, dB; and (d) Scheme 2 under dB, dB.

and 64-QAM was used. We assumed a quasi-static
Rayleigh multipath channel with an exponentially decreasing
power delay profile, where the average gain for the th path was
given by

(50)

with being the channel degradation factor. In the simulation
study, we set and . The CIR coefficients

for remained constant during the communication
session. Note that the effective system throughput is given by

(51)

where the CP length . The larger the data block
length is, the more bandwidth efficient the system is. We also
tested , and the results obtained, not shown here, are
very similar to the results obtained for .
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TABLE III
IDENTIFICATION RESULTS FOR THE CIR COEFFICIENT VECTOR OF THE HAMMERSTEIN CHANNEL

We used a full data block with training
samples in the joint estimation of the CV CIR coefficient vector
and the CV parameter vector of the B-spline model for
as well as the estimation of the CV parameter vector

of the B-spline model for . The piecewise quartic poly-
nomial of was chosen as the B-spline basis function,
since is sufficient for most practical applications. The
number of B-spline basis functions was set to ,
because 8 basis functions is sufficient to partitioning or cov-
ering the input interval . As ex-
plained in Section III.A, the B-spline model has the desired op-
timal robustness property. We also tested and
as well as and , the corre-
sponding results obtained, not shown here, are very similar to
the results presented here. Owing to the symmetric distribution
of and , the knot sequence for was set to be iden-
tical to that for . Similarly, the knot sequences for and
were chosen to be identical. The empirically determined knot se-
quences covering different HPA operating conditions are listed
in Table II. The system’s signal-to-noise ratio (SNR) was de-
fined as , where was the average power of
the input signal to the HPA and was the channel
AWGN’s power.
For both Schemes 1 and 2, the identification experiments

were conducted under two combinations of the HPA operating
region and the SNR condition, which were set as dB
with dB and dB with dB, re-
spectively. The identification results of the linear subsystem in
the Hammerstein channel under these two experimental condi-
tions obtained by the two schemes are summarized in Table III,
while the modelling results of the HPA static nonlinearity
by the B-spline neural network for the given simulation
conditions achieved by the two schemes are illustrated in Fig. 3.
It can be seen from Table III that the CIR estimates obtained
by the two schemes achieve high accuracy for the both system
operating conditions. The results of Fig. 3 clearly demonstrate
the capability of the proposed CV B-spline neural network to
accurately model the HPA’s static nonlinearity, where it can be
observed that the maximum deviation of the estimated phase re-
sponse from the HPA’s true phase response is less than 0.05 even
under the adverse condition of dB and dB.
The combined responses of the HPA’s true nonlinearity and

its estimated inversion obtained by the two schemes under the
operating condition of dB and dB are

Fig. 4. Combined response of the true HPA and its estimated inversion obtained
under dB and dB: (a) combined amplitude response by
Scheme 1; (b) combined amplitude response by Scheme 2; (c) combined phase
response by Scheme 1; and (d) combined phase response by Scheme 2.

depicted in Fig. 4. The results of Fig. 4 demonstrate the capa-
bility of the CV B-spline neural network to accurately model
the inversion of the HPA’s nonlinearity based only on the pseudo
training data.More specifically, the results of Fig. 4 clearly show
that the combined response of the HPA’s nonlinearity and
its estimated inversion satisfies

(52)

where denotes the input to the HPA. That is, the magnitude of
the combined response is and the phase shift
of the combined response is approximately zero. In other words,

is an accurate inversion of .
The effectiveness of the proposed nonlinear SC-FDE scheme

based on the CV B-spline neural network approach is illustrated
in Fig. 5, where the nonlinear SC-FDE was constructed based
on the estimated CIR and the inverse mapping
obtained under the two operating conditions. The standard linear
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Fig. 5. Effectiveness of the proposed nonlinear SC-FDE scheme based on the
estimated CIR and the estimated HPA’s CV static nonlinearity as well as the
estimated inverse mapping for the HPA’s CV nonlinearity under: (a)
dB, dB; and (b) dB, dB. The top three
plots in the two sub-figures (a) and (b) depict one transmitted QAM symbol
block , its received signal block , and the corresponding estimated obtained
by the linear SC-FDE. The bottom three plots in (a) and (b) show the estimated
obtained by the previous 2RV NN based SC-FDE [38] and the current CVNN

based SC-FDE using the two proposed schemes, respectively.

SC-FDE scheme is also illustrated in Fig. 5 for comparison. As
can be seen clearly in Fig. 5, the linear SC-FDE cannot compen-
sate the nonlinear distortions of the Hammerstein channel. In the
recent work [38], we developed a nonlinear SC-FDE approach
which uses two real-valued (RV) B-spline neural networks to
model the HPA’s amplitude response and phase response

, respectively, as well as uses another RV B-spline neural
network to model the inverse mapping of the HPA’s amplitude
response . The computational complexity of this two RV
B-spline neural networks (2RV NN) based approach is similar
to our CV B-spline neural network (CVNN) based approach.
The equalization results obtained by the 2RVNN based SC-FDE
scheme [38] are also depicted in Fig. 5 for the purpose of compar-
ison. From Fig. 5, we observe that the current CVNN approach
attains slightly better equalization than this previous 2RV NN
approach. This is expected. The CVNN based estimator with the
LS cost function adopted in this paper is theMLestimator (MLE)
under the assumption of the CVGaussian noise. TheMLE based

Fig. 6. The bit error rate performance comparison of the proposed two CVNN
based nonlinear SC-FDE schemes with the standard linear SC-FDE as well as
the 2RV NN based nonlinear SC-FDE [38].

on the amplitude and phase response (AM/PM) systems is very
complicated, involving nonlinear transformations, and thisMLE
needs nonlinear optimization. In this paper, we solve this non-
linear optimization with an ALS procedure. The 2RV NN based
scheme developed in [38] is simpler, in which the two LS cost
functions are defined based on theAM/PM responses separately,
but the resulting model residuals no longer follow Gaussian dis-
tribution. Consequently, the estimator or the optimization of [38]
is no longer statistically optimal, rather the scheme of [38] is only
an approximation for the purpose of computational convenience,
which can cause errors at extreme points. For example, an input
data point at very low amplitude will not contribute much to the
cost function in the CVNN model. But the same data point will
influence the RV NN based cost function a lot more if there is
a high phase error caused by the channel AWGN.
The achievable BER performance of the proposed CVNN

based nonlinear SC-FDE are plotted in Fig. 6 under the three
different operating conditions of the HPA, in comparison to the
BER performance obtained by the standard linear SC-FDE and
the 2RV NN based nonlinear SC-FDE [38]. Clearly, the stan-
dard linear SC-FDE is incapable of compensating the nonlinear
distortions of the Hammerstein channel and its attainable BER
performance is very poor even under the HPA operating condi-
tion of dB, as can be seen from Fig. 6. By contrast,
the proposed two CVNN based nonlinear SC-FDEs based on the
estimated CIR and the inverse mapping of the HPA are able to
compensate most of the nonlinear distortions and attain a much
better BER performance. Observe that the two proposed CVNN
based SC-FDEs outperform the 2RV NN based SC-FDE of [38]
under the adverse conditions of dB and 3 dB.

V. CONCLUSION

A novel nonlinear equalization scheme has been developed
for the complex-valued Hammerstein SC-FDE system, where
the nonlinear distortion is caused by the high power amplifier
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at transmitter. We have proposed to use a CV B-spline neural
network for modelling the HPA’s CV static nonlinearity as well
as to use another CV B-spline neural network for modelling the
inverse mapping of the HPA’s nonlinearity. Our novel contri-
bution includes deriving two highly efficient alternating least
squares algorithms for estimating the CIR coefficients and the
parameters of the CV B-spline neural network that models the
static nonlinearity of the Hammerstein channel. Moreover, as a
natural byproduct of this Hammerstein channel identification,
the pseudo training data can be constructed to effectively es-
timate the inverse B-spline neural network that models the in-
verse mapping of the CV HPA nonlinearity. All the three es-
timates, the CIR coefficients, the parameters of the B-spline
model and the parameters of the inverse B-spline model, have
the closed-form LS solutions. Simulation results obtained have
demonstrated that our proposed identification procedure is ca-
pable of accurately estimating the CV Hammerstein channel as
well as the inverse mapping of the channel’s CV static nonlin-
earity. The results obtained also confirm the effectiveness of
the proposed nonlinear equalizer constructed based on the es-
timated CIR and inverse B-spline mapping.
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