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Abstract—For a learning model to be effective in online modeling
of nonstationary data, it must not only be equipped with high
adaptability to track the changing data dynamics but also maintain
low complexity to meet online computational restrictions. Based
on these two important principles, in this paper, we propose a
fast adaptive gradient radial basis function (GRBF) network for
nonlinear and nonstationary time series prediction. Specifically,
an initial compact GRBF model is constructed on the training data
using the orthogonal least squares algorithm, which is capable of
modeling variations of local mean and trend in the signal well.
During the online operation, when the current model does not
perform well, the worst performing GRBF node is replaced by
a new node, whose structure is optimized to fit the current data.
Owing to the local one-step predictor property of GRBF node, this
adaptive node replacement can be done very efficiently. Experi-
ments involving two chaotic time series and two real-world signals
are used to demonstrate the superior online prediction performance
of the proposed fast adaptive GRBF algorithm over a range of
benchmark schemes, in terms of prediction accuracy and real-time
computational complexity.

Index Terms—Nonlinear and nonstationary signals, prediction,
radial basis function (RBF) network, gradient RBF network,
adaptive algorithm, tunable nodes.

I. INTRODUCTION

MOST real-world time series are nonlinear to a large
extent, and radial basis function (RBF) neural networks,

as effective means of modeling nonlinear characteristics from

Manuscript received August 15, 2019; revised February 4, 2020; accepted
March 11, 2020. Date of publication March 18, 2020; date of current version
April 10, 2020. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Mark A. Davenport. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61771077, and in part by the Key Research Program of Chongqing Science
& Technology Commission under Grant CSTC2017jcyjBX0025. The work of
T. Liu was supported by the Chinese Scholarship Council and School of Elec-
tronics and Computer Science, University of Southampton, UK. (Corresponding
author: Sheng Chen.)

Tong Liu and Shan Liang are with the Key Laboratory of Dependable Ser-
vice Computing in Cyber Physical Society, Ministry of Education, Chongqing
University, School of Automation, Chongqing University, Chongqing 400044,
China (e-mail: tl3n18@soton.ac.uk; lightsun@cqu.edu.cn).

Chris J. Harris is with the School of Electronics and Computer Sci-
ence, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail:
cjh@ecs.soton.ac.uk).

Sheng Chen is with the School of Electronics and Computer Science, Univer-
sity of Southampton, Southampton SO17 1BJ, U.K., and also with the King
Abdulaziz University, Jeddah 21589, Saudi Arabia (e-mail: sqc@ecs.soton.
ac.uk).

Shaojun Gan is with the Beijing Key Laboratory of Traffic Engineering,
College of Metropolitan Transportation, Beijing University of Technology,
Beijing 100124, China (e-mail: s.gan@bjut.edu.cn).

Digital Object Identifier 10.1109/TSP.2020.2981197

data, have enjoyed considerable success in time series prediction
[1]–[5]. One important advantage of RBF networks compared
with other neural network models is that the orthogonal least
squares (OLS) algorithm [4]–[9] can readily be applied to
construct a parsimonious RBF model that generalizes well in
prediction for stationary data. Like many other neural network
models, the RBF model constructed on training data does not
characterize temporal variability of unseen data well [10]. There-
fore, using the fixed RBF model constructed on training data
to predict nonstationary signals generally yields unsatisfactory
performance.

As an alternative to the feedforward RBF neural network
for nonlinear dynamic modeling, the recurrent neural networks
(RNNs) have received considerable attention due to their better
capabilities in capturing nonlinear dynamic characteristics in
data [11]–[13]. Different from feedforward RBF networks, the
nodes in RNNs are connected in a loop, and the internal state of
the network exhibit dynamic temporal behavior, which makes
RNNs particularly suitable for modeling nonlinear time series
data with long memory or embedding dimension [14], [15]. Un-
like the training of a RBF network, which offers a single global
optimal solution, training of a RNN is much more challenging.
In particular, traditional RNNs suffer from the problem of van-
ishing gradients and thus have difficulty to capture long-term
dependencies [16]. Recently, long short-term memory (LSTM)
network [17] and the gated recurrent unit (GRU) [18], [19]
have been developed to combating this limitation. By adding
multi-threshold gates, The LSTM and GRU are more effective in
learning long-term temporal dependencies, and they have been
successfully applied to many sequence modeling problems [20]–
[23]. However, the underlying structure of RNNs deters the use
of RNNs in many online scenarios, where data are fast arriving
and the underlying dynamics of data are fast time-varying. This
is because the structure and parameters of an RNN are fixed
during online operation, since it is impossible to optimize its
structure and parameters within a small sampling period in order
to track the fast time-varying nonstationary characteristics.

Since most real-world signals are not only nonlinear but also
nonstationary, Online learning in nonstationary environment has
been a very hot topic in the machine learning community [24]–
[31]. Predicting nonstationary time series imposes a set of chal-
lenges, including model adaptability for evolving environment
and stringent real-time computational constraint. Specifically,
a learning model must not only be equipped with effective
adaptation mechanism for tracking changing data dynamics
but also be sufficiently efficient to meet online complexity
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restrictions. To cope with nonstationary data, a commonly used
simple method is using adaptive recursive estimators, such as the
recursive least square (RLS) [1], [32] or the online sequential
extreme learning machine (OS-ELM) [33]–[36], to update the
RBF model’s weights in real time.

The OS-ELM of [33]–[36] is a popular online learning method
due to its ‘simplicity’ in model construction. By randomly
selecting a large number of training data as the RBF centers to
fix the RBF model structure, only the model weights are adapted
online using the RLS algorithm. Because the size of the RBF
model has to be very large for OS-ELM, online adaptation of the
model weights is computationally costly and, moreover, there is
no guarantee that the fixed RBF nodes, no matter how dense
they are in the training data space, will also cover the changing
nonstationary data space well. Therefore, the OS-ELM only
works for relatively slow time varying data with priori known
data space. It can be seen that adapting the RBF model structure
to track time-varying characteristics, not just adapting the RBF
model weights, is the key to success for nonstationary data
modeling. However, for fast arriving data with short sampling
period, optimizing the whole RBF model structure online may
not meet the real-time constraint.

Starting with a compact RBF model constructed for exam-
ple in training by the OLS algorithm, the fast tunable RBF
method [37] adjusts RBF nodes as well as the model weights
online to adaptively model nonstationary signals. Specifically,
the fast tunable RBF adapts the RBF model structure by replac-
ing an ‘insignificant’ RBF node with a new node to better fit
the current data. Equipped with this fast adaptive mechanism
together with a small fixed model size, the fast tunable RBF
learning is capable of tracking changing characteristics in non-
stationary signals, while imposing a low online computational
complexity. The experimental results of [37] show that this fast
tunable RBF method outperforms the OS-ELM considerably, in
terms of both prediction accuracy and real-time computational
complexity.

It is well known that for nonstationary time series involving
variations of local mean and trend, the series can be made
stationary by applying an appropriate difference operation on the
original signal [38]. Inspired by this property, the gradient RBF
(GRBF) neural network is proposed for nonstationary signal
prediction [39]. In the GRBF model, the input signal to the
network is the difference of the original signal and each hidden
node, which consists of a center and a width as well as a scalar,
can be interpreted as a local one-step predictor [39]. The OLS
algorithm can readily be applied to determine an appropriate
model size and, therefore, to construct a compact GRBF model
from the training data. Not surprisingly, this GRBF network
trained by the OLS algorithm outperforms the classic RBF
network also trained by the OLS algorithm in nonstationary time
series prediction [39].

Obviously, nonstationary time series or signals also exhibit
other time-varying characteristics, not just variations of local
mean and trend. In a nonstationary environment, the signal
dynamics can change significantly from the initial training data
space and some new time-varying characteristics, other than
variations of local mean and trend, may appear, which are unseen
in the training data. The fixed GRBF model constructed on the

training data is unlikely to track these unseen dynamics well and,
consequently, its online prediction performance may degrade. A
solution to this problem is to update the GRBF model structure
online. This motivates our current work.

In this paper, we propose a fast adaptive or tunable GRBF net-
work for online prediction of nonlinear and nonstationary time
series. To be specific, starting from the initial GRBF network
constructed from the training data using for example the OLS
algorithm, the worst performing node during online operation is
replaced with a new node when the current model does not fit
the current data well. This enables the GRBF network to track
the changing dynamics online with high adaptability. It turns
out that online optimization of a GRBF node is far easier and
simpler than online updating a RBF node as given in [37]. This
is because owing to local one-step predictor interpretation of
GRBF node, the center and scalar of the replacement GRBF
node can simply be chosen to be the current input data and the
output gradient, respectively, which is actually optimal, while
the new width can be computed easily from the set of centers,
and the new network weight vector is calculated using the least
squares (LS) estimator. By comparison, the center and width of
the replacement RBF node also need to be determined via an
iterative optimization procedure for the fast tunable RBF [37].
Consequently, our proposed fast tunable GRBF method imposes
significantly lower online computational complexity than the
fast tunable RBF method of [37]. Experiments involving predic-
tion of two chaotic time series and two real-world signals demon-
strate the superior performance of the proposed fast tunable
GRBF algorithm over a range of benchmark schemes, including
the fast tunable RBF of [37], in terms of both prediction accuracy
and online computational complexity.

II. THE GRBF NETWORK

Without loss of generality, consider the one-step-ahead time
series prediction, which uses the past signal samples

xt = [yt−1 yt−2 · · · yt−M ′ ]T, (1)

to predict the current signal value yt, where M ′ is referred to as
the embedding vector length. The task of the online prediction
therefore can be formulated as follows: given the observation
data {xt, yt}, construct an estimator ŷt = Ft(xt) to approxi-
mate the underlying dynamics at every sampling time t, where
Ft(·) denotes the estimator mapping. All the our discussions
equally apply to multi-step-ahead prediction.

A. GRBF Neural Network

The GRBF network [39], like the conventional RBF network,
is a single-hidden-layer feedforward neural network. However,
unlike the RBF network, where the network input is given by
(1), the input vector to the GRBF network is generated by
differencing the raw data. More specifically, given the M ′ past
samples, the input vector of the first-order GRBF at time t is
given by

xt = [yt−1 − yt−2 yt−2 − yt−3 · · · yt−M − yt−M−1]
T, (2)

where M = M ′ − 1. The elements of xt in (2) show the rate
of change in the trajectory of the time series for the past M ′
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Fig. 1. Structure of the GRBF network [39].

samples. Differencing helps to eliminate or reduce trend and
seasonality [38].

Fig. 1 depicts the structure of the GRBF network. Without loss
of generality, we use the Gaussian function to serve as the hidden
node’s nonlinearity which compares the similarity of the input
vector to the hidden node’s center. In addition to differencing, the
main difference between a GRBF node and a classic RBF node
is that the Gaussian function response in a GRBF hidden node is
further multiplied by an additional term (yt−1 + δ). Hence, the
response of the jth hidden node to the input vector xt is given
by [39]

φj(xt) = exp
(

−α ‖xt − cj‖2
)

× (yt−1 + δj) , (3)

where cj is an M -dimensional center vector, α is a positive
constant which determines the width of the symmetric response
of the hidden node, and δj is a constant scalar associated with
the jth hidden node. Because the network input is (2), the hidden
nodes now sense the gradient of the time series rather than the
series itself as in the case of the classic RBF model. The term
yt−1 + δj also has a clear geometrical interpretation as a local
one-step prediction of yt by the jth hidden node. Observe from
(3) that ifxt is very similar tocj , the response of the jth Gaussian
hidden node will be very close to the maximum value of 1 and
the local predictor yt−1 + δj becomes fully active.

The output layer of the GRBF network is a linear combiner
with weights θj , just as in a classical RBF network. Thus,
assuming a total ofK hidden nodes and given the input vectorxt

of (2), the relationship between the output of the GRBF network
ŷt and the actual output yt can be expressed as

yt = ŷt + et =

K
∑

j=1

φj(xt)θj + et, (4)

where et denotes the modeling error.

B. GRBF Neural Network Construction

The centers cj and the scalars δj can be chosen during the
training from the training data {xk, yk}Nk=1. First, for each

training input vector xk, define

dk = yk − yk−1. (5)

If xk is selected as the jth center cj , we set δj = dk to ensure
that the jth hidden node is a perfect predictor of yk. Next
assume that the width parameter α is chosen. Then the problem
of constructing the GRBF network is equivalent to the task
of selecting a K-term subset model {cj , δj}Kj=1 from the full
N -term model {xk, dk}Nk=1, and the OLS method can readily
be applied to complete this subset selection problem.

Specifically, according to (4), the full N -term GRBF model
over the training data set can be expressed as

y = Φθ + e, (6)

where y = [y1 y2 · · · yN ]T ∈ RN is the desired output vector,
Φ ∈ RN×N is the full regression matrix whose (k, i)th entry is
Φk,i = φi(xk), and θ = [θ1 θ2 · · · θN ]T ∈ RN is the full model
weight vector, while e = [e1 e2 · · · eN ]T ∈ RN represents the
error vector over the training samples.

Let the orthogonal decomposition of the regression matrix be
Φ =WA, whereW = [w1 w2 · · ·wN ] ∈ RN×N denotes the
orthogonal regression matrix that satisfieswT

i wj = 0 for i �= j,
andA is an unit upper triangular matrix given by

A =

⎡

⎢

⎢

⎢

⎢

⎣

1 a1,2 · · · a1,N

0 1 · · · a2,N
...

. . .
. . .

...

0 · · · 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (7)

The regression model (6) can then be rewritten as

y =Wg + e, (8)

where the transformed weight vector g = [g1 g2 · · · gN ]T =
Aθ, whose elements are given by gi = w

T
i y/w

T
i wi for 1 ≤

i ≤ N . The sum of squares of the output y is therefore given by

yTy =

N
∑

j=1

g2jw
T
j wj + e

Te. (9)

The contribution of the jth model term or the error reduction
radio [err]j is defined by

[err]j =
wT

j wjg
2
j

yTy
. (10)

The orthogonal forward selection (OFS) procedure [6] can
readily be utilized to select a subset of K centers ci and scalars
δi one by one from the full model. At each step, a candidate
with the maximum value of [err]i is chosen. The selection
procedure is terminated when some termination criterion is met,
yielding a K-term subset model WKgK which contains the
selected {ci, δi}Ki=1, whereWK ∈ RN×K is the selected subset
orthogonal regression matrix and gK ∈ RK is the associated
weight vector. Let the corresponding upper triangular matrix be
AK ∈ RK×K . Then the weight vector of the selected K-term
subset GRBF model θK ∈ RK can readily be solved from
gK = AKθK by the backward substitution. Termination of the
OFS procedure can base on Akaike’s information criterion [40],
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regularization techniques [5],D-optimality experimental design
[7] or leave-one-out mean square error [8].

C. Determining Width of Gaussian Node

A variety of ways exist to determine the width α of Gaussian
hidden nodes. A simple way is to set the width to [41]

α =
1

2d2max

, (11)

where dmax is the maximum distance between the centers. The
number of centersK can also be taken into account by modifying
(11) as [42]

α =
K

d2max

. (12)

Furthermore, the dimension of the input M can also be consid-
ered by setting the width to [43]

α =
M 2/M

√
K

2d2max

. (13)

Unsupervised clustering [1] can also be applied to partition
the input data into an appropriate number of clusters which
also yields the cluster variance suitable as the width of hidden
nodes. Individual hidden nodes can also have tunable widths,
which can be optimized using gradient descend or evolutionary
algorithms, and moreover this width optimization can naturally
be embedded with the OFS procedure [44]–[50] to construct
the GRBF network having individually optimized hidden nodes.
Since we will consider online adaptation of the GRBF model,
we only adopt the simple OLS algorithm of Subsection II-B to
construct the initial GRBF model from the training data with a
common width α.

III. ONLINE ADAPTATION OF THE GRBF NETWORK

At the beginning of online operation, we have the initial
GRBF model with K hidden nodes constructed based on the
training data. During online operation, the signal dynamics
can vary dramatically from those seen in the training data. A
simple way of adapting the GRBF model online is to apply the
RLS algorithm to update the weights. However, this is clear
inadequate to track highly time-varying signals. In order to
capture the newly emerged signal’s dynamics, it is necessary
to adapt the GRBF network structure as well. To maintain low
online computational complexity, we do not attempt to grow the
GRBF model by adding new hidden nodes to capture the newly
emerging signal’s dynamics. Rather, we opt for maintaining the
model size, similar to the fast tunable RBF of [37], and modify
the hidden nodes of the GRBF network, namely, update the
centers and associated scalars as well as individual widths of
the hidden nodes, to track the signal’s changing dynamics.

Therefore, for our fast adaptive GRBF, when the weight
adaptation becomes inadequate at sample t, modification of
the hidden nodes takes place. It is worth pointing out that it is
generally not necessary, in fact, it is undesired to update all theK
hidden nodes of the GRBF network. Recalling from the previous
two subsections, each hidden node encodes a local signal state

learnt from the history. Since the existing hidden nodes contain
the previous system dynamics and they can be important in the
future prediction, it is unwise to ‘wipe out’ them all. Rather, it is
far better to identify the most out-of-date or most insignificant
hidden node and replace it with a new hidden node that better
represents the newly emerging local signal state. It can be seen
that our fast adaptive GRBF is designed to have self-tuned fast
tracking capability for capturing local characteristics of non-
stationary signals, while maintaining low online computational
complexity. To achieve these two objectives, three issues need to
be addressed: 1) when the hidden node replacement takes place,
and which node should be replaced; 2) how the structure of the
new node is optimised; and 3) how the weight vector of the new
network is optimized. We now provide the details below.

A. Node Replacement

At sample t, we have the data point (xt, yt) and the weight
vector θt−1 = [θ1(t− 1) · · · θK(t− 1)]T. We first need to de-
cide whether a node replacement should take place. We can
calculate the residual error et according to

et = yt − φT
t θt−1, (14)

whereφT
t = [φ1(xt) · · ·φK(xt)] is the hidden layer’s response

to xt. The following squared relative error (SRE) is defined to
measure the overall network performance

SREt =
e2t
y2t

, (15)

and we introduce the following decision rule
{

if SREt < ε, model structure remains unchanged,
if SREt ≥ ε, node replacement takes place,

(16)

where ε is a preset positive threshold. In general, a small ε leads
to frequent node replacements that improves modeling accuracy
but imposes more computational cost, and vice verse.

1) No node replacement: When SREt < ε, we simply keep
the GRBF network model structure unchanged.

2) Which node to replace: When SREt ≥ ε, we need to
decide which node to be replaced. Similar to [37], we define
the weighted node-output variance (WNV) that measures the
individual node’s contribution. Specifically, the WNV of the jth
node is given by

WNVj = |φj(xt)θj(t− 1)|2 . (17)

Then find the node with the smallest WNV value:

m = arg min
1≤i≤K

WNVi. (18)

Since the node m has the smallest WNV, it is the worst perform-
ing node and is replaced by a new node.

B. Optimizing New Replacement Node

At sample t, we have decided to replace the node m. We need
to determine the new center cm, scalar δj and width αm. By
exploiting the geometric property of GRBF hidden node, the
task of optimizing this new node becomes straightforward. We
simply set cm = xt and δm = yt − yt−1 to ensure that the new
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replacement node m is a perfect local predictor of yt and the
new local signal state, represented by {xt, yt}, is automatically
encoded into the updated network structure. Since the set of
centers now contains a new one, the new maximum distance
dmax between the centers is recalculated, and the new width αm

is determined according to, for example, (11) based on this new
dmax.

C. Updating Network Weight Vector

1) SREt < ε: Since the model structure is unchanged, we
simply update the weight vector using the RLS algorithm

⎧

⎨

⎩

ψt = P t−1φt

(

λ+ φT
t P t−1φt

)−1
,

P t =
(

P t−1 −ψtφ
T
t P t−1

)

λ−1,
θt = θt−1 +ψtet,

(19)

where ψt ∈ RK is the Kalman gain vector, 0.9 ≤ λ < 1 is the
forgetting factor, and the inverse of covariance matrix P t ∈
RK×K is usually initialized to P 0 = ϑIK in which ϑ is a large
positive constant and IK is the K ×K identity matrix.

2) SREt ≥ ε: Since the network structure has been changed,
the previous weight vector θt−1 is no longer relavent, and we
need to recompute the weight vector. We will compute the new
weight vector θt as the LS estimate based on the p latest data
Dp = {xt−i, yt−i}p−1

i=0 .
Specifically, define the desired output vector and the regres-

sion matrix over the data set Dp respectively as

yp = [yt yt−1 · · · yt−p+1]
T, (20)

Φp =

⎡

⎢

⎢

⎢

⎢

⎣

φ1(xt) φ2(xt) · · · φK(xt)

φ1(xt−1) φ2(xt−1) · · · φK(xt−1)
...

...
...

...

φ1(xt−p+1) φ2(xt−p+1) · · · φK(xt−p+1)

⎤

⎥

⎥

⎥

⎥

⎦

.

(21)

Then the regularized LS estimate of θt is readily given by

θt =
(

ΦT
pΦp + βIK

)−1
ΦT

p yp, (22)

where β is a small positive regularization parameter, e.g., β =
10−6. To achieve the smooth transition from one mode to another
at the next sample, the inverse of the covariance matrix P t for
θt is needed. Therefore, we always set P t to

P t =
(

ΦT
pΦp + βIK

)−1
, (23)

after the regularized LS estimation of (22). The value of p trades
off estimation accuracy with complexity. It can be seen that
the main computational complexity of our fast adaptive GRBF
algorithm comes from this online LS estimation.

D. Algorithm Summary

The proposed fast adaptive GRBF algorithm is summarized
in Algorithm 1. We highlight that our fast adaptive GRBF net-
work is capable of effectively address the well-known stability-
plasticity dilemma [51]. The hidden nodes of our GRBF network
basically encode the past local data dynamics, which provides
the ability to retain acquired knowledge, i.e., stability. During

Algorithm 1: Fast Adaptive GRBF Algorithm.
1: Initialization
2: Construct initial K-term GRBF model

{cj , δj , αj = α, θj}Kj=1 based on training data set
{xk, yk}Nk=1 using OLS algorithm of Subsection II-B.

3: Set θ0 to weight vector of initial GRBF model,
P 0 = ϑIK , and collect p latest data points
Dp = {x−i, y−i}p−1

i=0 .
4: Set sample index t = 1.
5: Online prediction
6: Given input xt, compute prediction of yt as

ŷt = φ
T
t θt−1.

7: Online adaptation
8: When actual output yt is available, shift oldest data

point out of Dp, and add (xt, yt) to Dp.
9: Calculate SREt using (14) and (15).

10: IF SERt < ε:
11: Update weight vector θt with RLS algorithm (19).
12: ELSE IF SER ≥ ε:
13: Calculate the WNV values for all K nodes using

(17), and find node with smallest WNV using (18).
14: Node m has smallest WNV, then replace it:
15: Set new center to cm = xt and new scalar

δm = yt − yt−1.
16: Recalculate maximum distance dmax between

centers, and set new width αm according to (11)
17: Recalculate network weight vector θt as regularized

LS estimate, and update P t with (23).
18: END IF
19: Set t = t+ 1 and go to step 5.

online learning in a nonstationary environment, a learning model
must be able to forget part of the previous knowledge in order
to capture the newly emerging data pattern as fast as possible,
i.e., plasticity. Basically, the number of hidden nodes in the
GRBF network can be regarded as its memory depth, and the
size K of the fast adaptive GRBF network can be quite small in
order to have excellent plasticity of not keeping too much past
knowledge. Our fast adaptive GRBF network forgets the most
out-of-date hidden node to free ‘space’ for encoding the newly
emerging local data characteristics as fast as these new dynamics
appear. Sensitivity of the algorithmic parameters, ε and p, to
the achievable prediction accuracy and online computational
complexity will be further investigated in the experimental study.

Compared with the work of [37], [52], our fast adaptive
GRBF algorithm imposes significantly lower online computa-
tional complexity per sample. This is because for the tunable
RBF network, the center and width of the replacement node
must be optimized, which is an (M + 1)-dimensional nonlinear
optimization problem. In [37], [52], this optimization is solved
using a gradient descent iterative procedure at each sampling
time to minimize the square of the current error. This iterative
optimization procedure imposes considerably online computa-
tional complexity per sample. In fact, to reliably determine the
center and width, the multi-innovation gradient descent [53]
should be employed, i.e., the optimization should be based on a
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block of p latest data points. This, however, would impose even
heavier computational complexity. By contrast, the optimiza-
tion of the replacement hidden node for our GRBF network
involve very little computation as can be clearly seen in the
previous subsection. To be specific, during online operation
if only weight adaptation is performed, the complexity comes
from the RLS algorithm (19), which is on the order of O(K2),
while if the node replacement occurs, the WNV calculation in
(17) costs O(K) and the weigh adaptation costs O(p3) for the
regularized LS estimation (22).Thus, the online computational
complexity per sample of the proposed algorithm is no more
than max{O(p3),O(K2)}. Since p and K are typically very
small, this is clearly affordable.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Extensive experiments involving several nonlinear and non-
stationary benchmark time series are conducted to evaluate the
proposed fast adaptive GRBF network. The first case study
includes online prediction of two chaotic time series, Rossler
series [54] and Lorenz series [55], while two real-world time
series, the monthly recorded sunspot number [56], [57] and
an electroencephalographic (EEG) time series [58]–[60], are
predicted in the second case study. The mean square error (MSE)
and mean absolute error (MAE), defined as

MSEt =
1

t

t
∑

i=1

(yi − ŷi)
2 , (24)

MAEt =
1

t

t
∑

i=1

|yi − ŷi| , (25)

are used to evaluate the online prediction performance, where
ŷi is the model prediction for yi. The online computational
complexity is quantified by its online averaged computation time
per sample (ACTpS). The experiments are carried out on Matlab
2017a, running on a PC with i7-3770 3.40 GHz processor of 4
cores and 16 GB of RAM.

The performance of our proposed approach is compared with
those of typical approaches including the LSTM [17], [20]–[22],
the GRU [18], [19], the OS-ELM [33]–[36], the RBF network
[4], the GRBF network [39] and the fast tunable RBF [37]. For
the OS-ELM, a RBF network is initialized during training by
randomly selecting a large number of input data points as its
centers, and the online adaptation of the OS-ELM involves the
weight updating using the RLS algorithm. For the RBF model,
a small RBF model is constructed during training using the
OLS algorithm, and the RBF network structure as well as its
weights are fixed throughout the online prediction. Similar, the
initial GRBF model is constructed during training using the
OLS algorithm, and the model structure as well as weights
are fixed during online prediction. For the fast tunable RBF,
the RBF model is initialized during training using the OLS
algorithm, and adaptation takes place during online modeling
and prediction according to the algorithm described in [37]. For
both the LSTM and GRU with single hidden layer, the mini batch
stochastic gradient descend is used to tune the parameters of the

LSTM and GRU during training, and their network structures
and parameters are fixed throughout online prediction.

A. Chaotic Time Series Prediction

This case study involves prediction of Rossler and Lorenz
time series. For each chaotic time series, after removing a large
number of initial data points, 2100 samples are generated, with
the first 100 samples as the training set for initial modeling and
the remaining 2000 samples as the test dataset for adaptive pre-
diction. Also for each time series, 100 independent realizations
are generated. The performance of each method are presented
by its mean and standard deviation (STD) of the test MSE and
ACTpS over the 100 realizations.

The embedding dimension is set to M = 6. Hence, the input
dimension of the GRBF model is M ′ = 5. For our fast adaptive
GRBF, the decision threshold and the number of latest data
points for regularized LS estimate are empirically chosen to
be ε = 10−6 and p = 7, respectively. For a fair comparison,
we also use ε = 10−6 and p = 7 for the fast tunable RBF. The
regularization parameter for regularized LS estimator should be
a very small positive number and we setβ = 10−6. Additionally,
for the fast tunable RBF, the step size and the maximum number
of iterations are empirically chosen to be 0.01 and 5, respectively,
for its gradient descent iterative search procedure. For the LSTM
and GRU, the learning rate and batch size are carefully tuned
to be 0.005 and 1, respectively, for gradient descend training,
while the number of maximum training epochs is set to 50 for
the both RNNs.

1) Rossler Chaotic Time Series: Rossler process is a system
of three ordinary differential equations

⎧

⎪

⎨

⎪

⎩

dx(t)
d t = −y(t)− z(t),

dy(t)
d t = x(t)− ay(t),

d z(t)
d t = b+ z(t)(x(t)− c),

(26)

which define a continuous dynamical map that exhibits chaotic
dynamics associated with the fractal properties of the Rossler
attractor [54]. The fourth-order Runge-Kutta method with a
step size of 0.01 is used to generate the samples, and only
Y -dimension samples {yt} are used for time series prediction.

First consider this chaotic time series with the fixed control-
ling parameters a = 0.2, b = 0.2 and c = 5.7. Table I compares
the performance of the seven methods, in terms of test predi-
cation accuracy and ACTpS. For the RBF, GRBF, LSTM and
GRU methods, no online adaptation takes place, and they do
not impose the computational complexity of online adaptation.
Fig. 2 depicts the MSE learning curves for all the seven methods,
where it can be seen that the performance of the OS-ELM is
poor, only attaining a prediction accuracy similar to the small
nonadaptive RBF model. The LSTM and GRU are only slightly
better than the OS-ELM and the nonadaptive RBF, with the
GRU attaining lower test MSE than the LSTM. Also the small
nonadaptive GRBF model is more than 20 dB better in the test
MSE than the GRU in this case. The test MSE of the fast tunable
RBF is about 23 dB lower than the fixed GRBF, while our fast
adaptive GRBF attains the best test MSE performance, about
19 dB lower than the fast tunable RBF. Observe from Table I
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TABLE I
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE (AVERAGE±STD) OF DIFFERENT PREDICTORS FOR ROSSLER SERIES WITH FIXED PARAMETERS

Fig. 2. Comparison of average MSE learning curves of various one-step
predictors for Rossler time series with fixed control parameters. The RBF and
GRBF models both have 20 hidden nodes, and the LSTM and GRU models both
have 100 hidden nodes.

that the ACTpS imposed by the fast tunable RBF is significantly
lower than that of the OS-ELM, and our fast adaptive GRBF
is considerably better than the fast tunable RBF, in terms of
ACTpS.

The three methods of determining the node width α in Sub-
section II-C, (11) to (13), are well investigated in the literature,
each performing better than the others in different situations.
In our application, we find (11) is better, and it is employed in
Algorithm 1. To demonstrate this, Fig. 3 shows the achievable
test MSE performance by three adaptive GRBF models with
these three Gaussian width calculations. It can be seen that the
adaptive GRBF predictor based on the width calculation (11)
attains the best prediction accuracy.

We now investigate how the algorithmic parameters of
Algorithm 1, the latest data points p and threshold ε, impact
on the achievable test MSE performance. Fig. 3 also depicts
the achievable test MSE performance as the function of ε, given
p = 7 andK = 10, where it can be seen that the lowest test MSE
is attained at ε = 10−6 (when (11) is used). Fig. 4 investigates the

Fig. 3. Impact of the threshold ε with different calculations of Gaussian width
α on the test MSE for the proposed method in online prediction of Rossler time
series with fixed control parameters, given p = 7 and K = 10.

Fig. 4. Impact of number of latest data points p on the test MSE for the
proposed method in online prediction of Rossler time series with fixed control
parameters, given different thresholds ε and K = 10 hidden nodes.

impact of p on prediction performance, given various threshold
values and K = 10. Observing the test MSE curve related to
ε = 10−6, it can be seen that p = 7 is appropriate in this case, as
further increasing p does not lead further improvement in MSE
but will impose higher online computational complexity.
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TABLE II
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE (AVERAGE±STD) OF DIFFERENT PREDICTORS FOR ROSSLER SERIES WITH TIME-VARYING PARAMETERS

Fig. 5. Impact of threshold ε on the test MSE for the proposed method in
online prediction of Rossler time series with fixed control parameters, given
different numbers of hidden nodes K and p = 7.

Note that it is impossible to determine the GRBF predictor’s
size K via its online test performance. The size of the GRBF
predictor K can only be determined in the initial training,
with the aim to construct a small predictor that imposes a
small online computational complexity while attaining adequate
training performance. Fig. 5 shows the impact of the threshold
ε with different numbers of hidden nodes K on the test MSE
performance, given p = 7. Observing the test MSE curve related
to K = 10, again it is seen that ε = 10−6 is appropriate in
this case. Also from Fig. 5, it can be seen that better test
MSE performance can be achieved by using K = 15, 20 or 25,
with approximate optimal value of ε = 10−7. However, these
predictors will increase the online computational complexity
considerably, compared the case of K = 10.

To show that all the methods can be extended to multi-step pre-
diction, we consider the multi-step adaptive prediction, which
uses the embedding vectorxt of (1) to provide the m-step ahead
prediction for yt+m−1. In Fig. 6, we compare the multi-step
prediction performance for the fast tunable RBF and our fast

Fig. 6. Average MSE performance and associated STDs of two multi-step
prediction models for Rossler time series with fixed control parameters. Both
the fast tunable RBF and fast adaptive GRBF have 10 hidden nodes.

adaptive GRBF. As expected, our fast adaptive GRBF signifi-
cantly outperforms the fast tunable RBF. Observe that the STD
of prediction accuracy for our method is much smaller than that
of the fast tunable RBF, indicating that our method attains much
more accurate and reliable prediction.

Next, we let the controlling parameters of Rossler map vary
with time to obtain an even more nonlinear and nonstationary
time series. Specifically, we set

⎧

⎨

⎩

a = 0.2,
b = 0.1 + 0.1 (1 + sin(0.1t)) ,
c = 3.7 + 2

(

1 + cos
(

20.1t
))

.
(27)

Table II and Fig. 7 compare the one-step prediction performance
of the seven methods for this Rossler chaotic time series with
time-varying control parameters. Again it can be clearly seen
that the proposed fast adaptive GRBF model attains the best
performance, in terms of both prediction accuracy and ACTpS.
The average MSE learning curves and associated STDs of the
multi-step fast tunable RBF and fast adaptive GRBF predictors

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on April 18,2020 at 09:06:36 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: FAST ADAPTIVE GRADIENT RBF NETWORKS FOR ONLINE LEARNING OF NONSTATIONARY TIME SERIES 2023

Fig. 7. Comparison of average MSE learning curves of various one-step
prediction models for Rossler time series with time-varying control parameters.
The RBF and GRBF models both have 20 hidden nodes, and the LSTM and
GRU models both have 100 hidden nodes.

Fig. 8. Average MSE performance and associated STDs of two multi-step
prediction models for Rossler time series with time-varying control parameters.
Both the fast tunable RBF and fast adaptive GRBF have 10 hidden nodes.

are shown in Fig. 8, which again demonstrates the superior
performance of our method.

2) Lorenz Chaotic Time Series: Lorzen process [55] is a non-
linear dynamic system that exhibits chaotic flow. It is governed
by the three differential equations as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dx(t)
d t = a(y(t)− x(t)),

dy(t)
d t = cx(t)− x(t)z(t)− y(t),

d z(t)
d t = x(t)y(t)− bz(t).

(28)

The fourth-order Runge-Kutta method with a step size of 0.01
is used to generate the samples, and only Y -dimension samples
{yt} are used for the time-series prediction.

Again, we first consider the fixed controlling parameters with
a = 10, b = 8/3 and c = 28. Table III compares the perfor-
mance of the seven one-step predictors, in terms of prediction

Fig. 9. Comparison of average MSE learning curves of various one-step
prediction models for Lorenz time series with fixed control parameters. The
RBF and GRBF models both have 20 hidden nodes, and the LSTM and GRU
models both have 100 hidden nodes.

Fig. 10. Average MSE performance and associated STDs of two multi-step
prediction models for Lorenz time series with fixed control parameters. Both
the fast tunable RBF and fast adaptive GRBF have 10 hidden nodes.

accuracy and ACTpS, while Fig. 9 depicts the average test MSE
learning curves of these seven one-step prediction models. The
results obtained again show that both RNN predictors and the
classic RBF model are inferior to the fixed GRBF network. The
fast tunable RBF achieves the second best prediction perfor-
mance, which is about 31 dB better than the nonadaptive GRBF
predictor. Our proposed adaptive GRBF is dramatically better
than the fast tunable RBF, in terms of both online prediction
accuracy and ACTpS.

The results of multi-step ahead prediction performance for
the two best predictors, the fast tunable RBF and our fast
adaptive GRBF, are shown in Fig. 10. It can be seen that our
proposed method consistently outperforms the fast tunable RBF.
In particular, the average MSE of the 50-step-ahead fast adaptive
GRBF predictor is more than 15 dB lower than that of the
50-step-ahead fast tunable RBF predictor. Moreover, the STDs
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TABLE III
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE (AVERAGE±STD) OF DIFFERENT PREDICTORS FOR LORENZ SERIES WITH FIXED PARAMETERS

TABLE IV
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE (AVERAGE±STD) OF DIFFERENT PREDICTORS FOR LORENZ SERIES WITH TIME-BASED DRIFT

of the test MSE for the multi-step fast adaptive GRBF predictor
are consistently much smaller than those for the multi-step
fast tunable RBF predictor. This confirms that the fast adap-
tive GRBF is much more accurate and reliable than the fast
tunable RBF.

Next, we create a new series by modifying Lorenz chaotic
time series with a time-based drift. Specifically, Lorenz time
series samples {yt} are weighted by an exponential time-based
drift to obtain a new series {ỹt} according to

ỹt = 1.10.01tyt. (29)

The new time series {ỹt} is then used for the time series
prediction. Note that {ỹt} is seriously nonstationary, and the
dynamic range of ỹt change from initially around [−10, 10]
to about [−400, 400] in the end. Table. IV summarizes the
performance of the seven one-step predictor models, in terms
of prediction accuracy and online computational complexity,
while Fig. 11 compares the average test MSE learning curves
for different one-step predictors. Clearly, except for the fast
tunable RBF and our method, the other five models all have
difficulty to predict this time series accurately, as evidenced
by their large testing MSEs. Unlike the previous example, the

GRBF can hardly improve the performance over the RBF. This is
because most of the nonstationary features of Lorenz time series
with time-based drift are not nearly variations of local mean and
trend. Moreover, the dynamics of this series varies significantly
beyond the initial modeling space. Thus fixed predictors, such
as the RBF, GRBF, LSTM and GRU perform poorly. It can be
seen that the average test MSE of the one-step fast tunable RBF
predictor is more than 30 dB lower than those of the RBF, GRBF,
LSTM and GRU. Also observe that the average test MSE of
our fast adaptive GRBF is more than 15 dB lower than the fast
tunable RBF, while imposing a significantly smaller ACTpS than
the latter.

The multi-step-ahead prediction performance of the fast tun-
able RBF and our fast adaptive GRBF are shown in Fig. 12.
Except for the prediction steps of 10 and 30, our fast adaptive
GRBF predictor consistently outperforms the fast tunable RBF
predictor, in terms of both average test MSE and STD. Although
the average MSEs of the fast tunable RBF predictor are lower
than those of our fast adaptive GRBF predictor at the prediction
steps of 10 and 30, the corresponding STDs of the former are
much larger than those of the latter. Therefore, our multi-step
fast adaptive GRBF predictor is much more reliable than the
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Fig. 11. Comparison of average MSE learning curves of various one-step
prediction models for Lorenz time series with time-based drift. The RBF and
GRBF models both have 20 hidden nodes, and the LSTM and GRU models both
have 100 hidden nodes.

Fig. 12. Average MSE performance and associated STDs of two multi-step
prediction models for Lorenz time series with time-based drift. Both the fast
tunable RBF and fast adaptive GRBF have 10 hidden nodes.

multi-step fast tunable RBF predictor over the entire range of
the prediction steps tested.

B. Real-World Time Series Prediction

To further illustrate its applicability and efficiency for real
data prediction, we apply our method to two real-life time
series, namely, the sunspot number time series [56] and an EEG
signal [60].

1) Prediction of Sunspot Number Series: The sunspot time
series is an annual averaged relative number of sunspots ob-
served, which exhibits highly complex and nonstationary char-
acteristics. It is widely used as a benchmark for nonlinear
time series analysis and prediction [57]. The monthly recorded
sunspot time series from 1945 to 2017 s is considered here.
In constructing one-step predictor, the entire sunspot series is
divided into the training set, from 1945 to 1953, and the test set,

Fig. 13. Comparison of MSE learning curves of various one-step prediction
models for sunspot time series. The RBF and GRBF models both have 50 hidden
nodes, and the LSTM and GRU models both have 500 hidden nodes.

from 1954 to 2017. The embedding vector’s dimension is chosen
to be M = 4 as in [57]. For our fast adaptive GRBF, ε = 10−2

and p = 7 are empirically chosen. The same ε and p are also
used for the fast tunable RBF. The regularization parameter is
again set to β = 10−6. Additionally, the step size for gradient
descent and the maximum number of iterations for RBF node
optimization are chosen to be 0.01 and 5, respectively, for the
fast adaptive RBF. For the LSTM and GRU, the learning rate and
batch size are empirically chosen to be 0.005 and 1, respectively,
for its gradient descend training, while the maximum epochs
during training is 50. Since the sampling rate of this time
series is month, one-step-ahead prediction is one-month-ahead
prediction, one-year-ahead prediction is 12-step-ahead, and two-
year-ahead prediction is 24-step-ahead, etc. Consequently, when
constructing one-year-ahead predictor, the desired outputs are
the sunspot number series from 1946 to 1954, and the test data
are from 1955 to 2017. Thus, the test data becomes shorter as
the prediction step increases.

One-step prediction performance of the seven predictors are
compared in Table V, and their corresponding test MSE learning
curves are depicted in Fig. 13. It can be seen again that the
OS-ELM and the nonadaptive RBF are the worst predictors, as
evidenced by their large test MSEs. Both the LSTM and GRU
also find hard to track this sunspot number time series. The
fixed GRBF predictor is much better but its prediction accuracy
is still poor. This is further confirmed in Fig. 14, where it is
clearly seen that the fixed GRBF one-step predictor cannot track
the monthly recorded sunspot number adequately. Again the
results demonstrate that our fast adaptive GRBF attains the best
prediction accuracy, while imposing the lowest ACTpS.

Fig. 15 depicts the multi-year prediction performance using
the two best methods, the fast tunable RBF and fast adaptive
GRBF. Clearly, our method significantly outperforms the fast
tunable RBF. It is interesting to note that the both methods
achieve the lowest prediction errors in the 10-year-ahead predic-
tion. This may be due to the fact that the sunspot number exhibits
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TABLE V
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE OF DIFFERENT PREDICTORS FOR SUNSPOT NUMBER TIME SERIES

Fig. 14. One-step sunspot number predictions using the GRBF of size 50 and
the fast adaptive GRBF of size 10.

Fig. 15. MSE performance of two multi-year-ahead prediction models for
sunspot time series. Both the fast tunable RBF and fast adaptive GRBF have 10
hidden nodes. A-year-ahead corresponds to 12-step-ahead.

Fig. 16. Comparison of 10-year-ahead sunspot number predictions using the
fast tunable RBF and the proposed fast adaptive GRBF. The both models have
10 hidden nodes.

approximately a 10-year cycle feature as can be seen from the
sunspot series shown in Fig. 14. Fig. 16 further compares the
10-year predictions obtained by the fast tunable RBF and fast
adaptive GRBF. It can be seen that the fast tunable RBF has
difficulty to predict the sunspot series points where rates and
gradient signs are changing. By contrast, our fast adaptive GRBF
is inherently immune to this difficult.

2) Modeling of EEG Data: The EEG data set used is avail-
able publicly from University of Bonn [60], which is sampled
at a sampling rate of 173.61 Hz. When constructing one-step
predictor, we use 6 seconds of the EEG signals. The first second
of observations are used for the initial training, while the signals
from 2 s to 6 s are used for online prediction. The embedding
vector’s dimension is chosen to be M = 4. The algorithmic
parameters of the fast adaptive GRBF are empirically chosen
to be ε = 10−4 and p = 2, with the regularization parameter
set to β = 10−6. The same ε and p are also used for the fast
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TABLE VI
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE OF DIFFERENT PREDICTORS FOR EEG SIGNAL

Fig. 17. Comparison of MSE learning curves of various one-step prediction
models for EEG signal. The RBF and GRBF models both have 50 hidden nodes,
and the LSTM and GRU models both have 500 hidden nodes.

tunable RBF, while its step size and the maximum number of
iterations are set to 0.01 and 5, respectively. Again the LSTM
and GRU predictors employ the same structure settings with the
previous simulation. Because the sampling rate is 173.61 Hz,
one-second-ahead prediction corresponds to 173-step-ahead.
As a result, when constructing one-second-ahead predictor, the
desired outputs are the EEG series from 1 s to 2 s, and we use the
EEG series from 2 s to 7 s for evaluating the test performance.
Likewise, for 5-second-ahead prediction, the EEG series from
6 s to 11 s are user for test evaluation.

Table VI compares the performance of different one-step pre-
diction models, while the corresponding MSE learning curves
are depicted in Fig. 17. Not surprisingly, the OS-ELM as well
as fixed RBF and fixed GRBF predictors can hardly capture
the highly time-varying nonlinear dynamics of this EEG signal.
Even the nonadaptive GRBF predictor performs poorly as can
be clearly seen from Fig. 18. The LSTM and GRU have better

Fig. 18. One-step EEG signal predictions using the GRBF of size 50 and the
fast adaptive GRBF of size 10.

Fig. 19. Prediction accuracy comparison of two multi-second-ahead predic-
tors for EEG signal. Both the fast tunable RBF and fast adaptive GRBF have 10
hidden nodes.
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Fig. 20. Comparison of 5-second-ahead EEG signal predictions using the fast
tunable RBF and fast adaptive GRBF. The both models have 10 hidden nodes.

prediction performance than the OS-ELM, fixed RBF and fixed
GRBF, but they are still considerably inferior to the fast tunable
RBF. Our fast adaptive GRBF predictor tracks this EEG signal
extremely well. From Table VI, it is seen that the one-step fast
adaptive GRBF predictor outperforms the one-step fast tunable
RBF predictor by about 8 dB in prediction accuracy, although it
imposes a slightly higher ACTpS in this case.

The multi-second-ahead prediction performance of the two
best methods are shown in Fig. 19, where it can be seen that
our fast adaptive GRBF predictor consistently outperforms the
fast tunable RBF predictor. The 5-second predictions of the two
models are illustrated in Fig. 20, which again conforms the
superior performance of our fast adaptive GRBF predictor.

V. CONCLUSION

In this paper, we have proposed a novel fast adaptive GRBF
network with adaptive tunable nodes for nonlinear and non-
stationary time series modeling and prediction. By exploiting
the local predictor property of hidden GRBF node, a compact
initial GRBF network can readily be constructed using the OLS
algorithm during initial training, which encodes the underlying
dynamics seen from the training data in its hidden nodes. With
the number of hidden nodes fixed, during online operation, our
fast adaptive GRBF model automatically replaces the worst
performing hidden node in the current signal environment with
a new hidden node which encodes the newly emerging signal
dynamics. It has been shown that the optimization of this new
replacement node is straightforward and imposes little compu-
tation. We have demonstrated that the proposed fast adaptive
GRBF model has excellent adaptability and plasticity. Extensive
experiments have been conducted, involving two chaotic time
series and two real-world signals. The results obtained have
shown that our proposed fast adaptive GRBF network con-
sistently outperforms the existing state-of-the-art fast tunable
RBF network, in terms of both prediction accuracy and online
computational complexity.
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