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Matrix-Monotonic Optimization — Part I:
Single-Variable Optimization
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Abstract—Matrix-monotonic optimization exploits the mono-
tonic nature of positive semi-definite matrices to derive optimal di-
agonalizable structures for the matrix variables of matrix-variable
optimization problems. Based on the optimal structures derived,
the associated optimization problems can be substantially sim-
plified and underlying physical insights can also be revealed. In
our work, a comprehensive framework of the applications of
matrix-monotonic optimization to multiple-input multiple-output
(MIMO) transceiver design is provided for a series of specific
performance metrics under various linear constraints. This frame-
work consists of two parts, i.e., Part-I for single-variable optimiza-
tion and Part-II for multi-variable optimization. In this paper,
single-variable matrix-monotonic optimization is investigated un-
der various power constraints and various types of channel state
information (CSI) condition. Specifically, three cases are investi-
gated: 1) both the transmitter and receiver have imperfect CSI;
2) perfect CSI is available at the receiver but the transmitter has
no CSI; 3) perfect CSI is available at the receiver but the channel
estimation error at the transmitter is norm-bounded. In all three
cases, the matrix-monotonic optimization framework can be used
for deriving the optimal structures of the optimal matrix variables.

Manuscript received May 5, 2020; revised August 27, 2020 and September
29, 2020; accepted October 22, 2020. Date of publication November 11, 2020;
date of current version February 1, 2021. The associate editor coordinating
the review of this article and approving it for publication was Prof. Stefano
Tomasin. The work of Chengwen Xing was supported in part by the National
Natural Science Foundation of China under Grants 61671058, 61722104, and
61620106001, and in part by Ericsson. The work of Shaodan Ma was supported
in part by the Science and Technology Development Fund, Macau SAR (File no.
0036/2019/A1 and File no. SKL-IOTSC2018-2020), and in part by the Research
Committee of University of Macau under Grant MYRG2018-00156-FST. The
work of H. Vincent Poor was supported by the U.S. National Science Foun-
dation under Grant CCF-1908308. The work of Lajos Hanzo was supported
in part by the Engineering and Physical Sciences Research Council projects
EP/N004558/1, EP/P034284/1, EP/P034284/1, EP/P003990/1 (COALESCE),
of the Royal Society’s Global Challenges Research Fund Grant and in part by
the European Research Council’s Advanced Fellow Grant QuantCom. (Corre-
sponding author: Shuai Wang.)

Chengwen Xing is with the School of Information and Electronics, Beijing
Institute of Technology, Beijing 100081, China, and also with the Department
of Electrical and Computer Engineering, University of Macau, Macao, S.A.R.
999078, China (e-mail: xingchengwen @gmail.com).

Shuai Wang is with the School of Information and Electronics, Beijing
Institute of Technology, Beijing 100081, China (e-mail: swang @bit.edu.cn).

Sheng Chen is with the School of Electronics and Computer Science, Univer-
sity of Southampton, Southampton, SO17 1BJ, U.K., and also with the King Ab-
dulaziz University, Jeddah 21422, Saudi Arabia (e-mail: sqc@ecs.soton.ac.uk).

Shaodan Ma is with the State Key Laboratory of Internet of Things for Smart
City, Department of Electrical and Computer Engineering, University of Macau,
Macao, S.A.R. 999078, China (e-mail: shaodanma@umac.mo).

H. Vincent Poor is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA (e-mail: poor @princeton.edu).

Lajos Hanzo is with the School of Electronics and Computer Science, Univer-
sity of Southampton, Southampton 430205, U.K. (e-mail: lh@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TSP.2020.3037513

, Member;, IEEE, Sheng Chen
, Fellow, IEEE, and Lajos Hanzo

, Fellow, IEEE, Shaodan Ma ",
, Fellow, IEEE

Index Terms—Matrix-monotonic optimization, majorization
theory, optimal structures, transceiver optimization.

I. MOTIVATIONS

NTENNA arrays are widely employed for improving
A the bandwidth- and/or the power-efficiency, resulting in
the concept of multiple-input multiple-output (MIMO) sys-
tems [1]-[9]. Transceiver optimization is of critical importance
for fulfilling the potential of MIMO communication systems
[7]1-[10]. MIMO transceiver optimization hinges on numerous
factors, including their implementation issues, the availability of
channel state information (CSI) and their system architectures.
More specifically, MIMO transceivers can be classified into
linear transceivers [8], [9] and nonlinear transceivers [11]-[13].
According to the different levels of CSI knowledge, MIMO
transceiver designs can be classified into designs relying on
perfect CSI[4]-[6] and designs having partial CSI[15]-[19]. Fi-
nally, according to the system architecture, transceiver optimiza-
tion can be used for point-to-point systems [10], [20], for multi-
user (MU) MIMO systems [21], for distributed MIMO systems
[22], [23], and for cooperative MIMO systems [24], [25].

In all the above-mentioned multiple antenna aided systems,
the corresponding optimization variables become matrix
variables [26]. As a result, optimization relying on matrix
variables plays an important role in MIMO systems [27].
Optimization relying on matrix variables is generally very
challenging and such problems are much more difficult to
solve than their counterparts with vector variables or scalar
variables, because matrix variable based optimization usually
involves complex matrix operations, such as the calculation
of the determinants, inverses, matrix decompositions and so
on. Furthermore, because of their spatial multiplexing gains,
MIMO systems are capable of supporting multiple data streams.
This fact makes transceiver optimization problems inherently
multi-objective optimization problems. For example, given a
limited transmit power, any specific transceiver optimization
strikes a tradeoff between the performance of different data
streams. This is the reason why there exists a rich body of work
addressing various different MIMO transceiver designs [9], [10].

Any transceiver optimization problem hinges on the fun-
damental elements of the objective function and the specific
optimization tools used for finding the extremities of the ob-
jective function. The more components the objective function
has, the larger the search space becomes, which often makes a
full search unrealistic. A third related component is constituted
by the constraints. The most widely used objective functions or
performance metrics of MIMO transceiver optimization include
the classic mean square error (MSE) minimization, signal to
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interference plus noise ratio (SINR) maximization or mutual
information maximization, bit error rate (BER) minimization,
etc, [9]. Different performance metrics reflect different design
preferences and different tradeoffs among the transmitted data
streams [10]. Transceiver optimization problems using differ-
ent performance metrics imposes different degrees of diffi-
culty to solve. Furthermore, different objective functions also
correspond to different implementation strategies resulting in,
for example, linear transceivers, nonlinear transceivers using
Tomlinson-Harashima precoding (THP) or decision feedback
equalizer (DFE) etc. [12]-[14], [26]. Suffice to say that the
specific choice of the objective function has a more substantial
impact on the overall MIMO design than that of the tools used
for optimizing it.

On the other hand, there are many different types of power
constraints, such as the sum power constraint [26], per-antenna
power constraint [28]-[34], shaping constraint [35], [36], joint
power constraints [37], cognitive constraint [34], etc. The most
widely used power constraint is the sum power constraint re-
quiring the sum of the powers at all the transmit antennas to be
lower than a threshold. In communication systems, usually each
antenna has its own amplifier [21]. Therefore, the per-antenna
power constraint is more practical than the sum power constraint.
However, the per-antenna power constraint is more challenging
to consider than the sum power constraint [21], [29]-[31], [34].
The existing literature has revealed that if different transmit an-
tennas have the same statistics, the performance gain of consid-
ering the more challenging per-antenna power constraint based
design over using the simpler sum power constraint design is
negligible [32]. Thus, under the scenario of similar statistics for
different transmit antennas, the sum power constraint is an effec-
tive modeling technique. It is worth noting however that in some
cases, as in distributed antenna systems or heterogeneous net-
works, different antennas have significantly different statistics,
and thus the per-antenna power constraint cannot be replaced by
the sum power constraint without a significant performance loss
[32], [34]. Moreover, considering other practical constraints,
such as signal variances or the peak-to-average-ratio, joint power
constraints or other types of constraints have to be taken into
account [37].

It can be readily seen from the existing literature [10], [26],
[34] that the underlying design principles for various transceiver
optimization problems are almost the same. Generally, the
main idea is taking advantage of the specific structure of the
underlying optimization problem to simplify the transceiver
optimization. Optimization theory plays an important role in
MIMO transceiver optimization, and in the past decade many
elegant results have been derived based on convex optimiza-
tion theory [23], [27]. Deriving optimal structures is critical in
transceiver optimization [1], [6], [9]. Clearly, a general-purpose
optimal structure that can cover every MIMO transceiver op-
timization problems does not exist, and most research has
been focused on finding an optimal diagonalizable structure for
MIMO transceiver optimization. This is because based on the
optimal diagonalizable structures of the MIMO transceivers,
the corresponding optimization problems can be substantially
simplified and deep underlying physical insights can also be
revealed [1], [6], [9].

Again, the optimization variables of MIMO transceiver de-
signs are generally matrix variables. Matrix-monotonic opti-
mization exploits the monotonic nature of positive semi-definite
matrices to derive optimal structures of the matrix variables in
the underlying optimization problems [26], [34], [36]. Based on

matrix-monotonic optimization, the matrix variables can be sub-
stantially simplified into vector variables. The optimal structures
delivered by matrix-monotonic optimization, therefore, greatly
simplify complicated MIMO transceiver designs and make the
underlying physical interpretation more transparent. From a
matrix-monotonic optimization perspective, MIMO transceiver
optimization problems relying on different objective functions
and power constraints can be unified and, therefore, their asso-
ciated optimal structures can be derived using the same matrix-
monotonic optimization tool. Explicitly, matrix-monotonic op-
timization is a powerful mathematical tool conceived for
solving challenging matrix-variable transceiver optimization
problems.

This paper offers a comprehensive and novel matrix-
monotonic optimization framework for a series of specific per-
formance metrics under linear constraints in the context of
MIMO transceiver optimization. Explicitly, matrix monotonic
optimization problems with various levels of CSI are investi-
gated in depth. Our main contributions are listed as follows.

¢ In contrast to [26] with only simple sum power con-
straint, the framework of matrix-monotonic optimization
investigated in this treatise is subjected to diverse power
constraints, including the sum power constraint, multiple
weighted power constraints, joint power constraints and
shaping constraints. In other words, the framework inves-
tigated in this paper subsumes the solutions in [26] and
several other MIMO transceiver optimization solutions as
its special cases.

e In contrast to [9] and [11], where the linear and nonlinear
transceiver designs are investigated separately under only
the sum power constraint, the framework proposed in this
paper unifies the families of linear and nonlinear MIMO
transceiver optimization under the sum power constraint,
shaping constraint, joint power constraints and multiple
weighted power constraints.

® Moreover, robust MIMO transceiver optimization relying
on partial CSI under various power constraints is investi-
gated based on the matrix-monotonic optimization frame-
work. Specifically, the following three cases are investi-
gated:

1) Both the transmitter and receiver have only imperfect
CSI,

2) Thereceiver has perfect CSI but the transmitter has only
channel statistics,

3) The receiver has perfect CSI but the channel estimate
available at the transmitter is subject to a certain norm-
bounded error.

Although imperfect CSI makes the MIMO transceiver op-

timization more complex and challenging, the proposed

matrix-monotonic optimization framework is still capable
of deriving the underlying optimal structures.

The remainder of this paper is organized as follows. In
Section II, we present the fundamentals of the matrix-monotonic
optimization framework. Then Section III investigates clas-
sic Bayesian robust matrix-monotonic optimization for ro-
bust transceiver design when the channel estimation errors are
Gaussian distributed. In Section IV, stochastic robust matrix-
monotonic optimization is investigated for MIMO transceiver
optimization where the receiver has perfect CSI but the trans-
mitter knows only the channel statistics. Section V is devoted
to worst-case matrix-monotonic optimization, which focuses on
transceiver optimization in the face of norm-bounded channel
estimation errors.
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Notation: The following notational conventions are adopted
throughout our discussions. The normal-faced letters denote
scalars, while bold-faced lower-case and upper-case letters de-
note vectors and matrices, respectively. Z™, Tr(Z) and |Z|
denote the Hermitian transpose, trace and determinant of com-
plex matrix Z, respectively. Statistical expectation is denoted
by E{}, and a™ = max{0,a}, while ()T denotes the vec-
tor/matrix transpose operator. Z % is the Hermitian square root
of Z which is positive semi-definite. The ith largest eigenvalue
of Z is denoted by \;(Z), and the ith-row and jth-column
element of Z is denoted by [Z]; ;, while d[Z] denotes the vector
consisting of the diagonal elements of Z and diag{{ A} ,}
denotes the block diagonal matrlx whose diagonal sub-matrices
are Ay,..., Ag. The symbol d?[Z] denotes the vector con-
sisting of the squared moduli of the diagonal elements of Z.
Additionally, the ith element of a vector z is denoted by [z];.
The identity matrix of appropriate dimension is denoted by I
and ® is the Kronecker product. In this paper, A always denotes a
diagonal matrix, and the expressions A \, and A " represent a
rectangular or square diagonal matrix with the diagonal elements
in descending order and ascending order, respectively.

II. FUNDAMENTALS OF MATRIX-MONOTONIC OPTIMIZATION

An optimization problem with a real-valued objective func-
tion fo(-) that depends on a complex matrix variable X is
generally formulated as

min fo(X), | W

st 0i(X) <0,1<i <1,
where 1);(+), 1 <4 < I, are the constraint functions and C de-
notes the complex matrix set. A wide range of optimization
problems can be cast in this optimization framework, including
the classic MIMO transceiver optimization [10], training designs
[26], MIMO radar waveform optimization [26], etc. In order to
analyze the properties of this generic optimization problem, we
first discuss two of its basic components, namely, the objective
function and the constraints, separately.

A. Objective Functions

The objective function reflects the cost or utility of the opti-
mization problem. In this paper, all the optimization problems
discussed are formulated with the objective of minimizing a
cost function. Let us now discuss the commonly used objective
functions, listed in Table I. For transceiver optimization, the
mutual information is one of the most important performance
metrics. For training optimization, the mutual information is also
an important performance metric as it reflects the correlation
between the estimated parameters and the true parameters. In
these cases, the objective function is given by Obj. 1 [38], where
IT and @ are constant positive semi-definite matrices which have
different physical meanings for different systems. The MSE is
another important performance metric for transceiver or training
optimization, which reflects how accurately a signal can be
recovered rather than how much information can be transmitted.
For the optimization problem of sum MSE minimization, the
objective function is given in the form of Obj. 2 [38].

Generally, the MSE formulation for linear transceiver opti-
mization is determined by the specific signal model considered.
For example, in a dual-hop AF MIMO relaying network, the
MSE minimization has Obj. 3 [39], where « is a positive scalar
and A is a constant complex matrix. Similarly, the mutual
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TABLE I
THE OBJECTIVE FUNCTIONS

Index Objective function

Obj.1 |—log |XUTIX + &|

obj.2 [Tr ((X"IX +@) ")

Obj.3  [Tr (A" (XIIX +al) ' A)

Obj.4  [log|A™ ( XHHX+aI)_1A+<I>|
obj.5.1 |f$ey (a (XHIX +a1) ')

Obj.5.2 |fSgsie (a (XMILX +al) ')

Obj.6.1 |fSomex (g2[L]), (XHUTIX + o) '=LLY
0bj.6.2 |fSomeave (G2[L]), (XHIIX + oI) '=LLH
Obj.7 |—log |[ARXHIIX A + ®|

Obj.8  [Tr ((A"X"IIXA+al) )

Obj.9  |Tr (AY (XMIIX + @) ' A)

Obj.10 |—log |® ® =1 + (XHIIX) ® 3|
Obj.11 |—log|T1 ® 4 3o @ (XHILX)|
Obj.12 [Tr ((® ©3 + (X'IX) @ %))
Obj.13 [Tr ((21 ®® + Ty ® (XUIIX)) 1)
Obj. 14 [Tr (AAM)es, (I+(XPIX) @ %) ')
Obj.15 [Tr (Z10(AAM) (143 © (XT11X)) ")

information maximization for a dual-hop AF MIMO relaying
network aims at minimizing the objective function Obj. 4 [39]".
For linear transceiver optimization, to realize different levels of
fairness between different transmitted data streams, a general
objective function can be formulated as an additively Schur-
convex function [9] or additively Schur-concave function [9] of
the diagonal elements of the MSE matrix, which are given by
Obj. 5.1 and Obj. 5.2 [10], respectively. The additively Schur-
convex function fL25ye*(-) and the additively Schur-concave
function fo8s2ve(.) represent different levels of fairness among
the diagonal elements of the data MSE matrix. In addition,

comex(.) and fomsave(.) are both increasing functions with
respect to the vector variables.

When nonlinear transceivers are chosen for improving the
BER performance at the cost of increased complexity, e.g., THP
or DFE, the objective functions of the transceiver optimization
can be formulated as a multiplicative Schur-convex function or a
multiplicative Schur-concave function of the vector consisting of
the squared diagonal elements of the Cholesky-decomposition
triangular matrix of the MSE matrix, that is, Obj. 6.1 and
Obj. 6.2 [26], respectively, where L is a lower triangular matrix.
The multiplicatively Schur-convex function f{P8yex(-) and the
multiplicatively Schur-concave function fiPg5ave(-) reflect the
different levels of fairness among the different data streams,
i.e., different tradeoffs among the performance of different data
steams [26]. In addition, fiPeucx(-) and fyPesve(-) are both
increasing functions with respect to the vector variables.

I'This conclusion is based on the fact that maximizing mutual information is
equivalent to minimizing the determinant of the MSE matrix [26].
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In wireless communication designs, even for the same system
or the same optimization problem, the mathematical formulae
are not unique. More specifically, for the mutual information
maximization, we have the alternative objective function Obj. 7
[26]. Similarly, the sum MSE minimization has the alternative
objective function Obj. 8 [26]. Moreover, the weighted MSE
minimization can be considered as a general extension of the sum
MSE minimization by introducing a weighting matrix, which
has the objective function Obj. 9.

As discussed in the existing literature, some MIMO system
optimization problems may involve Kronecker products due to
vec(-) operations [26]. The optimization problems relying on
Kronecker product usually look very complicated. In this paper,
the pair of optimization problems relying on either the matrix
determinant or on the matrix trace are discussed that involve
Kronecker products. Based on Obj. 1, we have the extended
Kronecker structured objective function Obj. 10, which is equiv-
alent to Obj. 11 [26]. It can readily be seen that with the choice
of 3y = 35, Obj. 10 and Obj. 11 are equivalent to Obj. 1. In
this paper, we also consider a more general case in which 3
and 32, have the same eigenvalue decomposition (EVD) unitary
matrix. Under this assumption and based on Obj. 2, we have
the extended Kronecker structured objective function Obj. 12,
which is equivalent to Obj. 13. Similarly, based on Obj. 3, we
have the objective function Obj. 14, which is also equivalent
to Obj. 15. In our following discussions involving Obj. 10 to
Obj. 15, it is always assumed that 33y and 35 have the same
EVD unitary matrix.

B. Constraint Functions

In practical communication system designs, typically the
associated optimization problems have constraints, and these
constraints have different physical meanings for different com-
munication systems.

The most natural constraints are the power constraints, since
practical amplifiers have certain maximum transmit power
thresholds. The simplest power constraint is the sum power
constraint, which can be expressed as

Constraintl : Tr (XXH) <P. 2)

For the sum power constraint, the optimization problems asso-
ciated with training sequence designs or transceiver designs are
subjected to the constraint of the sum power of all the transmit
antennas. In practical systems, each antenna has its own power
amplifier and, therefore, the per-antenna power constraints or
individual power constraints provide a more reasonable power
constraint model, which is expressed as

Constraint2 : [XXHLMSP”, n=1,...,N, (3)

where we have assumed that the number of transmit antennas is
N and the matrix variable X has N rows. The per-antenna power
constraint (3) may be more practical but it does not include the
sum power constraint (2) as its special case.

In sophisticated communication networks, the constraints are
not limited to reflect the maximum power constraints at the
transmit antennas for the desired signal but they also reflect many
other constraints such as the interference constraints between
adjacent links. A more general power constraint is the following
one having multiple weighted components [38]

Constraint3 : Tr (QZXXH) <P, i=1,....,1I, &

where [ is the number of weighted power constraints.
Constraint 3 is more general than Constraint 1 and Constraint
2. The constraint model (4) includes the sum power constraint (2)
and per-antenna power constraint (3) as its special cases. Specif-
ically, by choosing I =1 and €2; = I, this power constraint
model becomes the sum power constraint (2). Furthermore,
when I = N and 2; is the matrix whose :th diagonal element
is one and all the other elements are zeros, this model is exactly
the per-antenna power constraint (3).

In order to avoid or control the interference, it is expected to
be cast to the null space of the desired signals, hence the signal
and interference become orthogonal to each other. In order to
achieve this, constraints can be imposed on the covariance matrix
of the transmitted signal, which are referred to as spectral mask
constraints [35]. A classic example is the shaping constraint,
which is formulated as the following matrix inequality [35], [36]

Constraint4 : X X" < R,. )

From matrix inequality theory, this constraint is equivalent to
[40,471]

Tr (2, XX") < Tr (%R,), (6)
for any positive semi-definite matrix €2;. Based on this fact, we
can argue that the shaping constraint represents a special case
of the multiple weighted power constraint. A simplified version
of Constraint 4 is the constraint imposed on the eigenvalues of
the covariance matrix X X ™ formulated as

Constraint5 : \; (XX") <7, )
A widely used eigenvalue constraint is the constraint on the max-
imum eigenvalue, A1 (X X H) <7y, which is equivalent to [36]

XXH<nI. (8)

This constraint can be used together with the sum power
constraint to limit the transmitter’s peak power. This is because
most of the existing power constraints are based on statistical
averages, while from a practical implementation perspective, the
power constraint is an instantaneous constraint instead of being
an average one [37]. This kind of combined power constraint is
termed as the joint power constraint, which is expressed as [36]

Constraint 6 : Tr (XX") < P, XX" <nI. (9)

In cognitive radio communications, the interference imposed
by the secondary user on the primary user must be smaller than
a threshold and this constraint can be written in the following
form

Constraint 7 : Tr (H. XX"HY) < ¢, (10)

where H . is the channel matrix between the secondary user and
primary user, while 7¢ is the interference threshold. This kind
of constraint is also a special case of Constraint 3.

In summary, all the power constraint models discussed above
represent the different physical constraints on the covariance
matrix of the transmit signal, which equals X X™. These
constraints shape the positive semidefinite covariance matrix.
For the simplest sum power constraint model, the sum of the
eigenvalues of the covariance matrix has to be smaller than a
threshold. For the multiple weighted power constraint model,
the eigenvalues of the covariance matrices are constrained in
the polyhedron region constructed by the multiple weighting
matrices. In this case, except for the restrictions on the eigen-
values, the constraints also restrict the unitary matrix in the
eigenvalue decomposition of the covariance matrix. Moreover,
for the joint power constraint model the sum of the eigenvalues
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and the maximum eigenvalue are simultaneously smaller than
the predefined thresholds. The upper-bound on the maximum
eigenvalue significantly impacts the power allocations on the
eigenchannels. For example, some subchannels that are allo-
cated zero power for the sum power constraint will be assigned
non-zero powers for the joint power constraints.

Before turning our attention to the optimization problem (1),
two fundamental definitions are first introduced.

Definition 1: A constraintt)(X) < 0isaleftunitary invariant
constraint if we have

P (QrX) = ¥(X),
where @, is an arbitrary unitary matrix.
Definition 2: A constraint (X ) <0 is a right unitarily-
invariant constraint if we have

U (XQg) = P(X),
where Qp, is an arbitrary unitary matrix.
It is worth noting that all the constraints discussed above are
right unitarily-invariant. Specifically, in Constraints 1 to 7, after
replacing X by X Qy, it can be concluded that these constraints
do not change. Therefore, we can focus our attention on the
family of right unitarily-invariant constraints only. In particular,
we will focus our attention on the shaping constraint, joint power
constraints and multiple weighted power constraints.

an

(12)

C. Matrix-Monotonic Optimization

Based on the above discussions, with the objective functions
in Table I, the generic optimization problem of MIMO systems
can be formulated as

Opt. 1.1 :min f (XPIIX) ,s.t.9(X) <0, 1 <i < I
(13)
The function f(-) is matrix monotone decreasing function [27],
[41], [42]. Since the constraints are right unitarily-invariant,

we introduce the auxiliary matrix variable F' and express the
original matrix variable X as

X = FQy, (14)

where @ x is an arbitrary unitary matrix. Based on (14), the
optimization problem (13) can be reformulated as

i f (Q%FFIIFQx).
st (FQx) =i (F) <0, 1<i <1,

where the specific objective functions are given in the left col-
umn of Table II. Note that the constraints do not depend on @ x .
Therefore, the optimal @ x is independent of the constraints.
1) Optimization of Q x: Generally, there are two basic ap-
proaches to optimize @ x. The first one is based on the basic
matrix inequality and the other is based on majorization theory.

5)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Basic Matrix Inequalities Typically, the extreme values of
basic matrix operations e.g., trace, determinant, etc., are func-
tions of the eigenvalues of the matrices involved. Given the
positive semi-definite matrices C' € CN*N and D € CV*N,
we consider the following EVDs

C =UcAcUY with Ac \, (16)
D =UpApUY with Ap (17)
D =UpApUY with Ap 7, (18)

where Ap and Ap consist of the eigenvalues of I arranged
in descending order and ascending order, while Up and U p
contain the corresponding eigenvectors of D, respectively. Then
we have the four basic matrix inequalities, ranging from (19) to
(22), shown at the bottom of this page. Furthermore, in both
Matrix Inequality 1 [43, P340, P341] and Matrix Inequality
2 [26, Appendix A], the left equality holds when U¢c = U p,
and the right equality holds when U = U p; while in both
Matrix Inequality 3 [43, P333, P334] and Matrix Inequality
4, the left equality holds when U ¢ = U p, and the right equality
holds when U = U p [26].

Majorization Theory Majorization theory constitutes an im-
portant branch of matrix equality theory [27], [43]. We have the
following two important definitions.

Definition 3 ([43]): For two vectors x,y € RY, a is said
to be majorized by y, denoted as * < y, when the following
inequalities are satisfied: Of:l[alz]Z < szl[y]l for1<k<
N —1,and O [z]; = OX,[y]i, where O denotes a mathe-
matical operator.

In the following, we only consider the addition and product
operators of O = " and O =[].

Definition 4 ([43]): A real-valued function ¢ : RV — R is
additively or multiplicatively Schur-convex for any x, y in the
feasible set, ¢ < y — ¢(x) < ¢(y). On the other hand, ¢ is
additively or multiplicatively Schur-concave when < y —
o(x) > ¢(y).

Optimal Q@ x Based on the basic matrix inequalities and
majorization theory together with the following EVDs (23) to
(26) and the singular value decomposition (SVD) (27)

FHHF = UFHFAFHFUI;HF with AFHF \(, (23)
® =UgpAaUL with Agp N\, (24)

® =UgpAaUsy with Ap 7, (25)
Ai’ilAH = UA@AAA<I>AU§<1>A with Apaa \‘, (26)
A=UpAAVY with As N\, (27)

the optimal unitary matrices @ x corresponding to the various
objective functions can be derived and they are listed in the right

N N

Matrix Inequality 1 : Z_ﬂ Aic14n (C)N (D) < Tr(CD) < Z_il M (C)N\i(D),
N N

Matrix Inequality 2 : Z'—l Nic14n (C) + N(D)) < T (c+D)™") < Z
N N

Matrix Inequality 3 : H_f1 (M(C)+ X(D)) <|C+ D| < H_f1 (Aic14n (C) + \i(D)),

. . N N
Matrix Inequality 4 : Hi:1 Nician(CON(D) +1) < |[CD + 1] < Hi:l (A (C)N(D) +1).

19)

M(C)+XM(D) 7, (20)

i=1

21

(22)
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TABLE II
THE OBJECTIVE FUNCTIONS AND THE OPTIMAL UNITARY MATRICES Q x

|| Index | Objective function Optimum Q x ||
Obj.1 —log |Q% FHIIFQ x + ®| UrnrUY
obi.2 | T ((QEF'TIFQx +®) ) UpnpUY
Obj.3 | Tr (AH (QLFHTIFQx +aI) ' A) UpnpUY
Obj.4 | log|A™ (QLFIIIFQx +al) ' A+ | UrnirUY g 2
obj.51 | foue (d[ (QEFPTIFQx +aI) ' ]) UprnrULL,
obj.52 | fouse (d[ (Q FPTIFQx +al) ') Urnir
Obj.6.1 | foomex (q2[L]) with (QLFUIFQx +al) ' = LLY | UpnpUL,,
Obj.6.2 | fSomeae (G2(L]) with (QLFHIIFQx +oI) ' = LLY® | Upnr
Obj.7 | —log|AHQL FHIIFQx A + 3| UrnirUllg 4
Obj.8 | Tr ((AHQ§ FUTIFQx A + o) ‘1) UrnrUY (High SNR)
Obj.9 | Tr (AH (QLFINIFQx + &) ' A) UpnrUY (High SNR)
0bj.10 | —log|® ® X1 + (QRFIIIFQx) ® =2 UrnirUY
Obj.11 | —log |31 @ @ + 22 ® (Q FIIFQx)| UrnirUY
obj.12 | Tr (@@= + (QYFIIIFQx) ©X2) ) UpnrUL
0bj.13 | Tr ((Z1 0@+ T2 @ (QLFITIFQx)) ') UpnrUY
Obj.14 | Tr ((AAY) @ % (I + (Q4FIIIFQx) ® %) ') UpnpUY
0bj.15 | Tr (31 © (A4Y) (1+ 32 © (Q4 FITIFQx)) ") UrnrUY

column of Table 112, In the SVD (27), A 4 contains the singular
values of A, while U 4 and V 4 are the corresponding left and
right unitary matrices, respectively.

In Table II, the unitary Upgy for Obj. 5.1 is a discrete
Fourier transform (DFT) matrix, and U gvp for Obj. 6.1 is the
unitary matrix that makes the diagonal elements of L identical,
that is, Ugmp is the right unitary matrix of the geometric
mean decomposition (GMD) of (Q'% FITIFQx + oI) %>,
It is also worth highlighting that for Obj. 8 and Obj. 9, in
general, the closed-form optimal @ x cannot be derived, and
only the approximated optimal solutions can be obtained at high
signal-to-noise ratio (SNR) conditions.

2) Optimization of F': For Opt. 1.1, given the optimal Q x
in Table II, the objective functions in Table II are monotonically
decreasing functions with respect to the eigenvalues of FITIF.
Therefore, the optimal solutions of F' fall in the Pareto opti-
mal solution set of the following multi-objective optimization
problem [26]

Opt. 1.2 :max A (FPIIF) ,stp;(F) <0, 1 <j <1,
(28)

where \(FUIIF) = [\ (FUIIF) - - Ay (FUILF)]T. Clearly,
the optimal structure of F' depends on both the objective function
and on the constraints. As discussed in [26], deriving the optimal
structure of F' for Opt. 1.2 corresponds to deriving the optimal

2Note that the solutions of Obj. 8 and Obj. 9 are derived based on high SNR
approximation as the effects of a and @ are neglected.

structures of F' for Opt. 1.1 for various objectives functions,
including Obj. 1 to Obj. 15.

Since ¢; (F') is right unitarily-invariant, Opt. 1.2 is equivalent
to the following matrix-monotonic optimization problem

Opt. 1.3 : max FRTIF st.4p;(F) <0, 1 <j <1. (29)

Generally, matrix-monotonic optimization maximizes a posi-
tive semi-definite matrix under certain power constraints. The
fundamental idea of matrix-monotonic optimization is to extend
the objective functions and solution sets to get more freedoms in
return that can be exploited to simplify the analysis. The optimal
solutions of Opt. 1.1 for the objective functions Obj. 1 to Obj. 15
are all in the Pareto optimal solution set of Opt. 1.3. Since
matrix-monotonic optimization derives the common structure
of the Pareto optimal solution set of Opt. 1.3, the common
optimal structures derived are exactly the structures of the opti-
mal solutions of Opt. 1.1. By taking advantage of these optimal
structures, Opt. 1.1 can be substantially simplified.
Interestingly, FTIF can be interpreted as a matrix version
SNR [26]. Thus, based on Opt. 1.3 it can be concluded that
various MIMO transceiver optimization problems maximize this
matrix version SNR. When there are multiple data streams, max-
imizing the matrix version SNR inherently constitutes a multi-
objective optimization problem. In addition, each unitary matrix
Q@ x corresponds to a specific implementation scheme. The
focus of matrix-monotonic optimization is how to maximize the
positive semi-definite matrix F'TIF under certain constraints.
Different objective functions realize different tradeoffs among
the multiple data streams, and matrix-monotonic optimization is
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apowerful tool that unifies the different constrained optimization
problems with various objective functions. Specifically, based
on matrix-monotonic optimization, the common properties of
these objective functions are revealed, which are reflected on
the optimal diagonalizable structures.

These structures can transform complex optimization prob-
lems relying on matrix variables into much simpler ones with
only vector variables. Thus case-by-case investigations for dif-
ferent objective functions are avoided. Since the optimal struc-
ture of F' also depends on the specific form of the constraints,
in the following, three right unitary invariant constraints are
investigated, namely, the shaping constraint [36], joint power
constraint [36] and multiple weighted power constraints [34].

Shaping Constraint For the shaping constraint, i.e., Con-
straint 4, Opt. 1.3 becomes the following optimization problem
(36]

Opt.1.4:maxp FUIIF,st. FF! < R,. (30)

The following lemma reveals the optimal structure of F' for
Opt. 1.4 with the shaping constraint.

Lemma 1: When Ry is attainable, i.e. the rank of Ry is not
higher than the number of columns and the number of rows in
F, the optimal solution F',p¢ of Opt. 1.4 is a square root of R,
ie., FopFin = R,

Proof: Since the shaping constraint in Opt. 1.4 is right
unitarily-invariant for F', the objective is equivalent to maxi-
mizing )\(FHHF), which is in turn equivalent to maximizing
AMITY2FFUIIY2). As FF® < Ry, it can be concluded that
AMITY2FFEITY2) < A(ITY/2 RyIT'/?), in which the equality
holds when FF™ = R,. When the rank of Ry is not higher
than the number of columns and the number of rows in F',
the optimal solution F',,; is a square root of Ry. It is worth
noting that the square roots of Ry are not unique. There are
many square roots of Rg, however the different square roots
have the same performance. We can choose an arbitrary square
root of R without performance loss. |

Joint Power Constraint Under the joint power constraint,
Constraint 6, Opt. 1.3 can be rewritten as

Opt. 1.5 maxp FUIIF, s.t.Tr (FF") <P, FF" < 7I.
(3D
The optimal solution F,p¢ for Opt. 1.5 is given in Lemma 2.

Lemma 2: For Opt. 1.5 with the joint power constraint, the
Pareto optimal solutions satisfy the following structure

Fopi = UnArpUjy, (32)
where the unitary matrix Uy is specified by the EVD
IT = Un AU with A N\, (33)

every diagonal element of the rectangular diagonal matrix A g is
smaller than /7, and U Ay, is an arbitrary unitary matrix having
the appropriate dimension.

Proof: The proof is given in Appendix A. |

Remark 1: For the optimization problem only under the sum
power constraint, the optimal structure for F', is also specified
by (32), where the sum of the diagonal elements of Ag is no
larger than P.

Multiple Weighted Power Constraints Under the multiple
weighted power constraints, Opt. 1.3 becomes

Opt.1.6 s max FUIIF,st.Tr (Q, FF") <P, 1<i<I.
(34)
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Algorithm 1: The Sub-Gradient Algorithm for Finding the
Weighting Factors «;, Vi.

1: Initialization: set iteration index as ;i =0;
set the maximum iteration number /.
(0)

randomly set initial weighting parameters cv; ’,

Vi=1,...,I;

2: repeat
3: Solve the problem (34) to obtain Fie) given agl“e);
4: Define the step size tr,, = 77—, {a,b,c} > 0;
5: Update l

o D= [ai) g, (Tr(Q P e) (R 0) 1)
6: Update [iye = Iite + 1
7: until

allie ™D (Te(Q, U (FTe DY HY_p)y < e, Vi or
Live < Inax, where g; > 0, Vi is sufficiently small.
8: return o, Flite Vi=1,...,1.

Note that the weighted power constraints are convex [23] and
include both the sum power constraint and per-antenna power
constraints as its special cases. The optimal solution F',y; for
Opt. 1.6 is given in Lemma 3.

Lemma 3: The Pareto optimal solutions of Opt. 1.6 satisfy
the following structure

Fop = Q 2UA;UY (35)

where U, is an arbitrary unitary matrix of appropri-
ate dimension, 2 = Zle «;€Y;, the nonnegative scalars «;
are the weighting factors that ensure that the constraints
Tr(Q; FF") < P; hold and they can be computed by classic
sub-gradient methods, while the unitary matrix U g is specified
by the EVD

QIO = UgAgUR with Ag N, (36)

Proof: See Appendix B. |

Specific Applications Three specific applications are given
for each lemma. In wireline communications relying on the
ubiquitous digital subscriber lines (DSL), the shaping constraint,
i.e., spectral mask constraint, is the most important constraint
used for limiting the crosstalk by forcing the users/services to
have zero power outside their predefined spectral ranges [35]. In
order to impose a maximum transmit power limit in the different
transmit directions, the joint power constraint can be used [37].
For per-antenna power constraints, the most representative ap-
plication example is the beamforming design of C-RAN, where
the signals are transmitted from distributed antennas [34].

D. Advantages of Matrix-Monotonic Optimization

Matrix-monotonic optimization theory can simplify the op-
timization problem relying on matrix variables into a much
simpler one manipulating only vector variables. Using matrix-
monotonic optimization, for example, the optimal structure of
the matrix variable F' can be derived and the remaining opti-
mization problem becomes a much simpler one that optimizes
the diagonal matrix A g. For the various objective functions and
constraints discussed previously, the optimal solutions of the
diagonal elements of the diagonal matrix A g are in fact diverse
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variants of classic water-filling solutions [46], which can be read-
ily obtained based on the corresponding Karush-Kuhn-Tucker
(KKT) conditions [45, P244].

In the existing literature, MIMO transceiver optimization
problems are unified in the framework based on majorization
theory [10]. Our work is different from this existing frame-
work in two perspectives. Firstly, in [10], linear and nonlinear
transceiver optimization is considered separately. In our work,
they are considered in the same framework. Additionally, in our
work, more objective functions are considered. More impor-
tantly, the shaping constraint, joint power constraint and multiple
weighted power constraints are considered in our work instead
of merely the sum power constraint.

For the multiple weighted power constraints, to the best of our
knowledge, all the existing works are based on the KKT con-
ditions. There are several limitations for these existing works.
Firstly, this method is only applicable to mutual information
maximization and MSE minimization. It cannot be used for more
general objective functions. The method is not applicable for
example to more complex systems, such as multi-hop AF MIMO
relaying systems. Moreover, the KKT condition based methods
also suffer from serious weaknesses due to the fact that the
KKT conditions are only necessary conditions for the optimal
solutions. As discussed in [44], the so-called turning-off effect
and ambiguity effect usually perturb the KKT conditions based
methods when deriving the optimal solutions. To overcome this
problem, a widely used method is to consider the covariance
matrix as a new variable in order to exploit its hidden convex
nature. Unfortunately, the cost of adopting this approach is that
the rank constraint has to be relaxed first. By contrast, our
matrix-monotonic optimization framework does not suffer from
these problems and has much wider applications.

III. BAYES ROBUST MATRIX-MONOTONIC OPTIMIZATION

In wireless communication systems, the channel parameters
have to be estimated. However, due to the uncertainty introduced
both by noise and the time-varying nature of wireless channels,
channel estimation errors inevitably exist [17], where the true
channel matrix H can be expressed by the following Kronecker
formula [18], [20]

H=H+Hy?¥?, 37)
Here H is the estimated channel matrix and H W\Il% is the
channel estimation error, in which the elements of Hy obey
the independent and identical complex Gaussian distribution
CN(0,1) and the covariance matrix ¥ of the channel estimate
is a function of both the training sequence and of the channel es-
timator [18], [20]. It is worth noting that in this section we focus
our attention on the robust transceiver design for the scenario,
where both the source and destination have imperfect CSI. Based
on (37), for Bayes robust transceiver optimization, the matrix IT
in the matrix-monotonic optimization can be expressed as [26]
O=H (20+T(XX"0)1)'H, (%
where o2 is the additive white noise power in the data transmis-
sion.

As a result, the generic Bayes robust matrix-variable opti-

mization can be formulated as [26]

. H7 - 177
Opt.2.1: min f(X H K'HX),

st. Ky =021+ Tr (XX"W) I,
Pi(X) <0, 1< < I

As discussed in [26], after introducing the transformation X =
FQ x and recalling that the constraints v;(-) are right unitarily-
invariant, Opt. 2.1 is transferred equivalently to the following
matrix-monotonic optimization problem:

(39)

HE ! 157
Opt.2.2: max F"H K "HF,

st. K, =02I+Tr (FF'®)I,
Pi(F) <0,1<i <.

(40)

Here the matrix FHﬁHK n 'HF can be regarded as an ex-
tended SNR matrix in the presence of channel estimation errors,
and this kind of matrix-monotonic optimization is termed as
robust matrix-monotonic optimization in [26]. In the following,
we discuss the optimal solutions of this robust matrix-monotonic
optimization problem under specific power constraints.
1) Shaping Constraint: Consider the shaping constraint of
1 (F)=FF" - R,. (41)
As proved in Appendix C, for the general case of ¥ ¢ I, a sub-
optimal solution for Opt. 2.2 which maximizes a lower bound
of the objective of Opt. 2.2 is given by Lemma 1. When ¥ = 0,
the lower bound is tight and the solution given in Lemma 1 is
exactly the Pareto optimal solution of Opt. 2.2.

2) Joint Power Constraint: Next consider the joint power
constraint specified by

Y1 (F)=Tr (FF") — P, ¢o(F) = FF" —1I.  (42)
For the perfect CSI case associated with W = 0, the Pareto
optimal solutions of Opt. 2.2 are specified by Lemma 2. When
¥ o I and 11 (F) < 0 is active at the optimal solutions F'yp,
the Pareto optimal solutions of Opt. 2.2 also satisfy the structure
givenin Lemma 2, since in this case K, is constant. As proved in
Appendix C, for the general case ¥ I, the suboptimal solution
that maximizes a lower bound of the objective of Opt. 2.2
satisfies the following structure

T3 H
e on 0 VAU, ’ 43)

1
1 1 2

I 2ud 2 Hy-H
<1—IT<\II VAV ZVﬁAﬁAﬁVﬁ))

where ¥ = 021 + PW and the unitary matrix V 4 is defined
based on the following SVD

— 1
H (014 PW) * =UgAzVE with, A\, (44)
The diagonal elements of the rectangular diagonal matrix A 7y

are smaller than \/7(02 + PApin(¥))/(02 + PAmax(P)).
3) Multiple Weighted Power Constraints: When multiple
weighted power constraints are used, we have

V;(F) =Tr (QFF") — P, 1<i< I (45)

From Tr(QiFFH) < P,, it is readily seen that the following
inequality holds

Tr ((02Q; + P,®) FFY) = Tr (029, FF")
+ PTr (PFF")

< olP;+ PTr (WFFY). (46)
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Hence Tr(Q; FF™) < P, is equivalent to
Tr [(02€; + P,¥) FF"
[( - 12 ] < P;. 47)
o2+ Tr (FF \Il)
As a result, the robust matrix-monotonic optimization problem
(40) of Bayes is equivalent to the following problem

Opt.2.3: max FYH 'K 'HF,
st. K, =02l +Tr (FF'W) I,
Tr ((02€% + P;%) FF")

o2+ Tr (FF'W)

<P,1<i<I
(48)
By defining the auxiliary matrix variable
F = [0+ Tt (FF'W)] °F,
the optimization problem (48) can be simplified to:

o ~H —~ _
Opt. 2.4: max F'H HF,
F

(49)

st Tr ((agﬂi+Pi\11) FFH) <P, 1<i<I.
(50)

Similar to the proof of Lemma 3, specifically to (92) in Ap-
pendix B, the above optimization problem is equivalent to

I
_g—H—~ _ N
Opt. 2.5 maxpF H HF, st Tr (QFFH) <Y P,
=1

6D
where

1

i=1

(52)

According to Lemma 3, the Pareto optimal solutions Fopt of
Opt. 2.5 satisfy the following structure

Fop = Q P Va AU, (53)
where the unitary matrix V4 is specified by the SVD of:
HQ ? = UyAy VL. (54)

From (49), we have [02 + Tr(FF"®)]2 F = F and based on
this conclusion we have the following equation

[o2+Tr (FFP®)] Tr (WFF") 0% = Tr (RFFY) 402,
(55)

This yields
o2+ Tr (FFH®) =02/ (1 " (\IIFFH)) . (56)

Thus, given the Pareto optimal Fopt, the Pareto optimal F'y,; is
expressed as

S oH
Fop = \/ag/u —Tr (lIlFoptFopt)] Fop.

Given (57) and (53), we arrive at the following lemma.

Lemma 4: The Pareto optimal solutions F'op,; of Opt. 2.2
under the multiple weighted power constraints satisfy the fol-
lowing structure

(57)

o0 TV A-UY
n F~ Arb

Fopt = (58)

=T (R0 P VaA ALV :
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The robust optimal structure under the multiple weighted
power constraints given in Lemma 4 is significantly different
from the previous robust solutions under designed the sum-
power constraints [26] and for the transceiver designs relying
on perfect CSI under the per-antenna power constraints [34]. In
the traditional robust transceivers designed under the sum power
constraint, there is no restriction on the unitary matrix in the
eigenvalue decomposition of the covariance matrix FF™. For
the multiple weighted power constraints, there is a restriction on
the unitary matrix in the eigenvalue decomposition. Then a new

~—1 . .
rotation matrix €2 2 is needed, based on which the precoder
matrix can align the direction with the space constructed by the
multiple weighting matrices.

IV. STOCHASTICALLY ROBUST MATRIX-MONOTONIC
OPTIMIZATION

When the CSI knowledge at the receiver (CSIR) is perfect,
but only statistical CSI is available, at the transmitter (CSIT)
the corresponding stochastically robust matrix-monotonic opti-
mization can be formulated as [15]

Opt.3.1: min Ep {f (X"H"R'HX)},
st i(X) <0, 1<i<1,

where R, is the noise covariance matrix. For simplicity, we
mainly consider R,, = 21 as in Section III. For this kind of
optimization problems, the objective function is an average value
over the distribution of the channel matrix H modeled by

H=H+XHy¥?, (60)

where 3 and W are the row and column correlation matrices,
respectively. For MIMO systems, X is the spatial correlation
matrix of the receiver antenna array, while W is the spatial
correlation matrix of the transmitter antenna array. Since the con-
straints are right unitarily-invariant, Opt. 3.1 can be expressed
as

Opt.3.2: min By {f (Q%xF"H"R,'HFQx)}.
st. i (F)<0,1<i<I.

The stochastically robust matrix-monotonic optimization nat-
urally aims at optimizing the distribution of the random matrix
H F', based on the channel model (60). Therefore, Opt. 3.2 can
be rewritten as Opt. 3.3 of (63) shown at the bottom of the next
page, where p(H ) is the probability density function (PDF)
of Hy. As pointed out in [17], the analytical expression of the
average value of an arbitrary objective function f(-) in Opt. 3.3
is impossible to obtain, which thus makes Opt. 3.3 difficult to
address. An alternative scheme is to consider the average matrix
in the objective function f(-) and the corresponding optimization
problem is Opt. 3.4 given in (64) shown at the bottom of the next
page. Taking

(59

(61)

— 1 1 H -_ 1 1
m= E{(H n 2§HWqﬂ) R (H n ZﬁHW\IIE)}

(62)
the optimal solutions of @ x are given in Table II. Based
on the optimal solutions of @Qx, similar to Opt. 1.2,
the optimal solutions F' of Opt. 3.4 fall in the Pareto
optimal solution set of Opt. 3.5 in (65) shown at the
bottom of the next page. It is obvious that the key to the
optimization of Opt. 3.5 is to maximize the eigenvalues

of E[FY(THUSY + H )R \(SIHw¥? + H)F) =
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_~H —
FU(H R,'H + Tr(ZR,")¥)F. Hence, this stochastically
robust optimization problem Opt. 3.5 is equivalent to

Opt. 3.6 : max A (FH(ﬁHR;1ﬁ+Tr(2R;1)\p)F) ,
st Yi(F)<0,1<i<I.
(66)

As discussed previously in Section II-C, the above multi-
objective optimization problem is equivalent to the following
matrix-monotonic optimization problem

—~H o~
Opt. 3.7:max FY(H R'H+Tr(ZR,")¥)F,
st ¢ (F) <0,1<i<1T.

Again, we discuss the Pareto optimal solutions of this stochasti-
cally robust matrix-monotonic optimization problem under three
specific power constraints, respectively.

1) Shaping Constraint: Under the shaping constraint of
(F) = FF" — R, the optimal solution F,p; to Opt. 3.7 is
specified by Lemma 1. Specifically, when the rank of Ry is not
higher than the number of columns and the number of rows in
F, F, is a square root of R.

2) Joint Power Constraint: Clearly, under the joint power
constraint (42), Opt. 3.7 is identical to Opt. 1.5 with

(67)

T -1 -1
I=H R 'HiTi(SR)V. (68)

Therefore, the Pareto optimal solutions F',,¢ of Opt. 3.7 under
the joint power constraint are defined exactly in Lemma 2 by
simply replacing IT in (32) and (33) with (68).

3) Multiple Weighted Power Constraints: Obviously, under
the multiple weighted power constraints (45), the Pareto optimal
solutions F'op,¢ of Opt. 3.7 are specified by Lemma 3, where 11
should be replaced by (68).

V. WORST CASE ROBUST MATRIX-MONOTONIC OPTIMIZATION

In this section, we consider the norm-bounded CSI error, i.e.,
|AH]||; <~ with]| - ||2 denoting the matrix Spectral norm, and
adopt the worst-case (min-max) criterion as a figure-of-merit
for robust designs [19]. Hereafter, the spectral norm is adopted
since it can act as both lower and upper bounds of the widely
adopted Frobenius and Nuclear norms and is generally tractable
[19], [47]. For example, we have || - |2 <|| - ||r < +/rank(-)]| -
|l2, implying that the spectral norm constrained error can also
provide valuable insights for Frobenius norm constrained case.
Moreover, for the same error size, the spectral norm generally
covers the largest error region.

Let us denote the estimated channel matrix and channel error
matrix by H and AH. Given the norm-bounded CSI error

|AH]||2 <+, substituting H = H-AHandR, = 02T into

747

Opt. 1.3, the robust matrix-monotonic optimization problem
under Spectral norm bounded CSI error can be formulated as

— H
Opt. 4.1 : max ming, > F" (H—AH) (H—AH) F,
st Pi(F) <0,1<i < I, ||AH ||z < 7.
(69)
The Spectral norm is unitarily-invariant, which means that
for the arbitrary || E|2 < €5, it yields |[UEV]|2 <€, given

any unitary matrices U and V. Based on the following matrix
inequality [40, P471]

(04(B) = 01(C))" < 0y(B+C) (70)
we readily conclude that
o(H-AH) > (oi(H) - al(AH))+. (71)

Therefore, we have the following eigenvalue inequality

A ((EAH)H (EAH))
= A <(ﬁ—UﬁAAHV%)H (ﬁ—UﬁAAHV%)> (72)

where Uz and V 5 are derived from the following SVD

H=UgAzVE with Az . (73)
The diagonal matrix Az equals
[Aam]ii = min ([Aglii7) Vi (74)

Then there exists a unitary matrix @ for which the following
matrix inequality hold

Q" (ﬁ—AH)H (H-aH)Q
- (H-UghsnVh) (H-UghanVE). @5

Based on (75), when the constraint functions ;(F')’s in
Opt. 4.1 are left unitarily invariant, the worst-case AH for
Opt. 4.1 s

AH ot = UgAauVi. (76)

That is because when the ;(F')s in Opt. 4.1 are left unitarily
invariant, such as Constraint 6: the joint power constraint or
Constraint 5: the constraints on the eigenvalues of FFY for
any feasible F' and an arbitrary unitary matrix Q, QF' is also
feasible. Thus itis always possible to find Q the matrix inequality
in (75) holds. Furthermore, based on the worst-case AH st

Opt. 3.3 : min /f (QiFH(’fﬂE%HW@%)HR;l(ﬁ+2%HW\IJ%)FQX) p(Hw)dHyy, st.v; (F) <0,1<i<1,
1o X

(63)

— H o~
Opt. 3.4 min f (Q§ /FH (H+§J%HW@%> R (H+§J%HW@%> Fp (HW)dHWQX> st (F)<0,1<i<I.
) X

—H
Opt. 3.5 : min (E{FH(\P%H%E% +H

VRN (SEH WO + ﬁ)F}) sty (F)<0,1<i<I.
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in (76), Opt. 4.1 is rewritten as

. H
Opt.4.2: max o 2FH (HfAHWc,rSt)

X (ﬁ_AHworst) F7
st P (F) <0,1<i<1,

We would like to highlight that all the constraints ¢;(F") in
Opt. 4.1 are right unitarily invariant. The objective function in
Opt. 4.2 is an upper bound of the worst case of the objective
function of Opt. 4.1 and this bound is tight when v; (F")s are also
left unitarily invariant. Specifically, when ;(F')s in Opt. 4.1

are right unitarily invariant, the term (H —AH Worst)H(/ﬁ—

AH opst) is the worst case of (ﬁfAH)H(ﬁfAH) only
when A H is restricted to have the same SVD unitary matrices

as H.

1) Shaping Constraint: For the shaping constraint (41), the
optimal solution F'o,¢ of Opt. 4.2 is also specified by Lemma 1.
That is, when the rank of Ry is not larger than the number of
columns and the number of rows in F', F; of Opt. 4.2 is a
square root of Ry.

2) Joint Power Constraint: Under the joint power constraint
(42), Opt. 4.2 is identical to Opt. 1.5 with

(77

=02 (ﬁ—AHWO,St>H (ﬁ—Amet) . (8)

As aresult, the Pareto optimal solutions F'op,¢ of Opt. 4.2 under
the joint power constraint are defined exactly in Lemma 2 by
simply replacing IT in (32) and (33) with (78).

3) Multiple Weighted Power Constraints: Given the multiple
weighted power constraints of (45), the Pareto optimal solutions
of Opt. 4.2 are specified by Lemma 3, where II should be
replaced by (78).

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we take the MSE criterion (Obj. 2 in Table I)
of MIMO systems as a central figure-of-merit to demonstrate
the proposed robust designs in Section III with statistically
imperfect CSIT (ICSIT) and CSIR (ICSIR), Section IV with
statistically imperfect CSIT (ICSIT) and perfect CSIR (PCSIR),
and Section V with deterministically imperfect CSIT and CSIR.
Specifically, in Section Il and Section IV, the sum average
MSE is studied to illustrate the influence of imperfect CSIT
and/or CSIR on average symbol detection performance. Finally,
in Section V, the worst-case MSE is adopted to guarantee the
symbol detection performance for all the channel realizations
Notice that the proposed robust designs in above Sections all
have analytical solutions, and can be reduced to simple power
allocation problems with water-filling solutions.

Unless otherwise stated, numerical results are presented for
the point-to-point MIMO scenario with the transmitter and re-
ceiver equipped with V; = 4 and N,. = 4 antennas, respectively.
Moreover, the number of data streams is L = 2. According to
(37) adopted in Section III and Section IV, we assume that the
imperfect CSI consists of the estimated term H distributed as
CN(0,(1 — 02)Iy, ® I,) and the error term Hy W7, where
W is defined by the exponential model, i.e., [¥],, ,, = o2p™ "
with p; = 0.5 and 05 = 0.1, to realize the normalized channel
E{[H]m n[H]}, ,} = 1, ¥m,n. Finally, for the worst-case op-
timization in Section V, the relative error threshold subject to
Spectral norm is set as v = s||H ||z with s € [0, 1]. In addition,
for both Section III and Section IV, since the unknown weighting
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Fig.1. Sumaverage MSE versus the estimated channel error o2 for all studied
designs in Section III and Section I'V.

factors need to be determined via the sub-gradient method,
the per-antenna power constraints, Tr(ﬂiFFH )< P, Vi=
1, s Nt, where Ql = diag[lei,l, 1, leNt,i},Vi and Pi =
P,, Vi, are mainly studied in the simulations as a special case of
multiple weighted power constraints. Finally, for Section V, the
joint power constraints Tr(FF") < (L —1)P, and FFH <
P,Iy, are investigated due to their tractability. Particularly,
the per-antenna power limitation Tr(Q2; FF™) < P;,Vi can be
readily inferred from the shaping power constraint FF <
P.In,. We also define the SNR as %, where P; = 1W and

the noise power o2 is varied.

For a comprehensive comparison, we also consider three
baselines for the MIMO scenario as follows: For Section III and
Section IV, the naive design that simply regards H as a perfect
channel estimate of the instantaneous channel H is studied. The
optimal solution is derived by solving the problem (51)/(67) with
W =0, and the sum average MSE is obtained through Monte
Carlo experiments. By contrast, for Section V, the nonrobust
design is studied by firstly considering AH = 0 in the problem
(69), and then the optimal solution obtained is substituted into
the inner minimization of the problem (69) to find the worst-case
MSE. Moreover, the ideal case assuming both PCSIR and perfect
CSIT (PCSIT) is also considered for all above Sections.

Fig. 1 shows the sum average MSE of all designs studied in
Section I and Section IV as the function of the channel error 2.
Clearly, it is observed that when Ug decreases, the sum average
MSE performances of all studied designs improve. Also, the
performance gap between the native design and robust design
in Section III with ICSIT and ICSIR becomes narrowed. In
particular, as ag, is increased the performance loss of the robust
design in Section IV with PCSIR is reduced compared to that
in Section III with ICSIR, which further indicates that PCSIR is
crucial to realize acceptable average MSE performance.

Fig. 2 shows the worst-case MSE of the proposed robust
design in Section V and the other baselines as the function of
SNR. Naturally, the ideal design achieves the best worst-case
MSE performance, and the proposed robust design is the next.
The nonrobust design has the worst performance since the
robustness against channel error is not considered. Similarly to
the robust design in Section IV with ICSIT and PCSIR, we also
find that the slopes of all worst-case designs are nearly identical,
and the corresponding worst-case MSE performance is similar,

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on February 03,2021 at 11:01:52 UTC from IEEE Xplore. Restrictions apply.



XING et al.: MATRIX-MONOTONIC OPTIMIZATION — PART I: SINGLE-VARIABLE OPTIMIZATION 749

10!

—4—Nonrobust design
—Robust design
— — Ideal design

Worst-case MSE

-5 0 5 10 15 20 25
SNR (dB)

Fig. 2.  Worst-case MSE versus SNR for the proposed robust design in
Section V and all other baselines.
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Fig. 3. Worst-case MSE versus the relative error threshold s for the proposed
robust and nonrobust designs in Section V.

especially at high SNRs, because in this context the high transmit
power weakens the influence of deterministic channel errors on
the achievable MSE. The above conclusions can also be drawn
when increasing number of date streams to L = 3 is considered.
In this context, the performance gap among all studied designs
is further enlarged.

Fig. 3 shows the worst-case MSE of the proposed robust
design in Section V and the other baselines as the function of
the relative error threshold s. As expected, the robust design
outperforms the non-robust one, and the performance gain be-
comes more evident with the increase of both the number of date
streams to L = 3 and error threshold s.

In order to assess the performance of the proposed solutions
under general multiple weighted power constraints, without loss
of generality we first build an exponential correlation matrix €2
with [©2]; ; = 0.3/"77|. Based on €2, a pair of weighting matrices
i.e., 21 and €5 are constructed. Specifically, 2; corresponds to
the first two eigenchannels and €22 corresponds to the last two
eigenchannels. In addition, the power ratio between the two con-
straints is 0.6 and 0.4. Moreover, in the simulations the numbers
of antennas and data streams are equal to each other. Then both
the MSE minimization and sum-rate maximization are convex,
hence the problem can be solved by using CVX [48]. It can be
concluded from Fig. 4 and Fig. 5 that the proposed solutions

40 T T T T T

—8— Sum rate of the proposed solution
Sum rate of the solution

by CVX

Sum Rate (Bit/s/Hz)

5 0 5 10 15 20 25
SNR(dB)

Fig. 4. The performance comparisons between the proposed solution and the
solution computed by CVX in terms of sum rate under multiple weighted power
constraints.

10! : : : : :
—8— MSE of the proposed solution
MSE of the solution computed by CVX

% 10
2 10

5 0 5 10 15 20 25
SNR(dB)

Fig. 5. The performance comparisons between the proposed solution and the
solution computed by CVX in terms of sum MSE under multiple weighted power
constraints.

have the same performance as that computed by CVX for all
the settings investigated. We would like to point out that the
numerical algorithms based on CVX have no tangible physical
meanings and suffer from high computational complexity as well
as from limited scalability.

VII. CONCLUSION

In this paper, a comprehensive framework has been given
for matrix-monotonic optimization under various power con-
straints, including shaping constraints, joint power constraints
and multiple weighted power constraints. Matrix-monotonic
optimization problems of three different CSI scenarios have been
investigated in depth, which are: 1) both transmitter and receiver
have imperfect CSI; 2) perfect CSI is available at the receiver
but the transmitter has only channel statistics; and 3) perfect CSI
is available at the receiver, but the channel estimation error at
the transmitter is norm-bounded. In all three cases, the matrix-
monotonic optimization framework has been used to derive
closed-form structures of the optimal matrix variables, which
significantly simplifies the associated optimization problems
and reveals a range of underlying physical insights.
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APPENDIX A
PROOF OF LEMMA 2

The Pareto optimal solution set of (31) falls in the optimal
solution set of the following optimization problem for all the
possible F;, that are in the region of Tr(FF") < P and
FFY < 1T

max «
F.«

s.t. FUIIF = oFITIF;,
Tr (FF")<P,FF" < rI. (79)

This conclusion is obvious because for any Pareto optimal
solution of (31) Fp, for an oo < 1, Fy, = aFp¢ obviously
satisfies Tr(Fi, FI1) < P and Fy,, FI1 < 71. In the following,
we will prove that the optimal solutions of (79) own the same
structure.

Based on the matrix equality properties that when A and B
have the same dimensionality A" A = BY B is equivalent to
A = U A with U being an unitary matrix [40, P406], the first
constraint of (79) is equivalent to

n'/?F = JoaUII'?F,, (80)
based on which and defining the pseudo inverse of I/ as
(IT'/2)f, we have
(1—[1/2)1‘1—[1/217 _ \/a(Hl/Q)TUH1/2Fin.
Then we have:

Ty {((H1/2)TH1/2F)H (H1/2)TH1/2F}

1)

a= o :
Tr[((Hl/z)TUHI/ZFin) (Hl/Q)TUl'Il/QFin}
(82)

Based on Matrix Inequality 1, the numerator of the righthand
side of the above equation satisfies

Tr [((HW)*HWF)H(Hl/z)fnl/QF] < N (FFY)

(83)

and the denominator satisfies

H ,
Tr [((Hl/Q)TUnl/QFm> (H1/2)TUH1/2Fin]

A (2P, FRIT?)
>
. Aj (ID)
Based on (83) and (84), « is maximized when F satisfies the
following structure

(84)

F=UpApV, (85)

where the unitary matrices Uy and V'y,, are defined based on
the following EVDs

I1 = Un AU with A N\,
FUIIF;, = Vi, Ay Vi, with Ay, N\ (86)
It is worth noting that the final two constraints in the opti-

mization problem (79) only constrain the eigenvalues of FF*™.
In other words, the final two constraints in (79) only constrain
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the singular values of F'. Moreover, it is obvious that the final
two constraints in (79) are both right unitarily invariant and
left unitarily invariant. The derivations in (83) and (84) are
independent of the singular values of of F'. This means that
for any given A in (85) the optimal F' maximizing « satisfies
the structure in (85) without violating the final two constraints
in (79). Therefore, it is concluded that the optimal solutions
of (79) satisfy the structure in (85) and thus the Pareto optimal
solutions of (50) satisfy the structure given by (85). Furthermore,
substituting (85) into the objective function of (50), it can be seen
that for the Pareto optimal solutions, the value of the unitary
matrix Vi, in (85) does not affect the optimality of the Paremto
optimal solutions. Finally the Pareto optimal solutions of (50)
satisfy the following structure

Fop =UnArpUl,. (87)
APPENDIX B
PROOF OF LEMMA 3

Any Pareto optimal solution of Opt. 1.6, F'py.,, is also a
Pareto optimal solution of the following multi-objective opti-
mization problem

min {Tr (QFF") VL, st FRIIF = Fl T Fpe.
(83)
This transformation is built on the proof by contradiction.
Otherwise we can find a solution better than F'pyer, and this
contradicts to the fact that F'p,, is Pareto optimal.
Since the constraint of (88) is equivalent to UTI:F =

H%Fpmeto, where U is a suitable unitary matrix [40, P406],
the optimization problem (88) is equivalent to
min {Tr (Q, FF") ), SCUMEF = II3 Fppeo. (89)
In (89), the objective functions are quadratic functions and the
constraint is a linear function with respect to F', which means
that the multi-objective optimization problem (89) is convex [45,
P135]3. Therefore, for any Pareto optimal solution of (89), there
exist weights a;, 1 < ¢ < I, for ensuring that the Pareto optimal
solution can be computed via solving the following weighted
sum optimization problem [45, P179]
I
min > o;Tr (QFFY), st UTIEF = IT* Fpyeo. (90)
i
The above conclusion for computing Pareto optimal solution of
(89) using weights «;, 1 <4 < ['in (90) are feasible to any uni-
tary matrix U . Meanwhile, it is worth noting that FlljaremHFparem
is equivalent to UTI:F = H%Fpareto where U is a suitable
unitary matrix [40, P406]. Thus the whole Pareto optimal so-
lution set of (88) can be achieved via solving the following
optimization problem by changing the weights a;, 1 <7 < I,
I
min Z} o;Tr (U FFY) st. FITIF=F} T Fpyeco-

oD

3As Qs are positive semidefinite, this conclusion can be proved based on
the definition of convex function give in [45, P95].
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For the optimal solution of (91), Zf:pciTr(QiFFH):P. Then
F'pyreto 18 a Pareto optimal solution of the following optimization
problem

I
H H
max FUIIF, st Tr <§_; ;Y FF ) <P (92)
This is concluded based on the proof of contradiction.

If F'pyrero 1s not a Pareto optimal solution of (92), for (92) there
will exist F'; which satisfies FITIF>F} . TIFp,eo and
(Y, a: F FI) < P.For positive semidefinite matrices,
A > Bimplies A(A) = A\(B) [40, P471]. Meanwhile, for two
complex matrices C' and D, CD and DC have the same
nonzero eigenvalues. Therefore we have

AN(IT2 Fy FUII2 )= A(T17 Fpyeo FiL . JIZ),  (93)

based on which it can be concluded that we can find a matrix
F'5 which satisfies

FyFY < P P

A(TT2 Fo FYTI2) = A(TT2 Fpyeto FieoII2). (94)
As the weighted power constraint is right unitarily invariant,

there will exist a unitary matrix @, for which the following
equality holds:

QYFITIF,Q, = FF,  JTFpyeco. (95)

Taking F'2Q, = F'5 as a new variable, it is concluded that for
O1) FIIF3=F T Fpyeo and Y1 o, Tr(Q, F3FL) <
ZleoziTr(QiFgFg) < P. This contradicts to the previous
conclusion. In other words, F'pyo is a Pareto optimal solution
of (92).

In a nutshell, for any Pareto optimal solution of Opt. 1.6, there
exist the weights a;, 1 <4 < I, for ensuring that this Pareto
optimal solution of Opt. 1.6 is also the Pareto optimal solution
of (92). Therefore, it can be concluded that any Pareto optimal
solution of Opt. 1.6 satisfies the common structures of the Pareto
optimal solutions of (92).

Next, we show that the Pareto optimal solutions of (92) own
the same diagonalizable structure and thus this structure is also
the optimal structure of the Pareto optimal solutions of Opt. 1.6.
First we define the auxiliary variables

I I
F= (ZM)) F, Q= (ZM}) (96)
=1 i=1

Then the optimization (92) is transferred into:

1
2

~H 1 H 1~ ~ ~H

max F (Q ) 0 F, st Tr (FF ) <P (97
F

The Pareto optimal solution set of (97) consists of the optimal

solutions of the following optimization problem for all the
possible f’in that are in the sphere region of Tr(f‘f‘H) < P:
max «,
Fa
st B (Q’%)H O F=oF, (Q’%)H o 37,
Tx (FF') < P
(98)

The first constraint in (98) is equivalent to
M:Q :F = /aUIIQ 2 F;,.
Using pseudo inverse, we have
1 1 t 1 1= i 1 t _ 1=
(Hzn ) m:Q :F=J/a (Hzﬂ ) UTIQ 3 Fy,
(100)

99)

based on which we have

i 1 T 1 1~.2
| (mtat) ot
=1 (((miet) ot (o ) e )

1 1 T 1 = 1 1 T 1 =
= oTr Q(HQ) UHQ*EFHI]H(HEQ*E) UHQsz)

—a| (H%Q’%)TUHQ’%EHH; (101)
Therefore, « is expressed as:
| (o) mia iR
o= (102)

= : — )
| (mba-t) uned Bl
Based on Matrix Inequality 1, the numerator of (102) satisfies

| (me-t) mbaF < S u (FFY).  ao3)
J

while its denominator satisfies
1 i\ T 1~ 2 0—32‘ (Hﬂiéﬁ‘in>
| (meet) vne dFullp = 30—
9 (rrley_ 2
j o 3 (H 2Q)7 2 )
(104)

where O'?(A) denotes the jth the both equalities in (103) and
(104) hold. For the optimal FandU together with the fact that
for Opt. 1.6, the optimal F' is right unitary invariant, the optimal
F satisfies the following structure

F=U;A;UY,, (105)
where the unitary matrix U g is defined based on the following
EVD

QN = UgAzUL with Ag . (106)
Based on (105) and the definition of Fin (96)
F=Q U;A;UY,. (107)

APPENDIX C
BAYES ROBUST MATRIX-MONOTONIC OPTIMIZATION

A. Shaping Constraint
With the shaping constraint, Opt. 2.2 becomes
max FHﬁHKI:lﬁF,
st. K,=02I+Tr(FF'®)I, FF" <R,

Note that Tr(FFT®) < Tr(R,¥) and then we have the fol-
lowing matrix inequality

(108)

FUH HF

FUE K HF - - 2 2F
n = F Tr(R.®)

(109)
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Replacing the objective in (108) by its lower bound in (109), the
following optimization problem is formulated:

HpH 77
F'H HF
e o2+ Tr(R, )’
whose Pareto optimal solution is given by Lemma 1. It is
obvious that when ¥ = 0 or ¥ I and Tr(FF") = Tr(R,)
is achievable then the lower bound is tight.

st. FFH < R.. (110)

B. Joint Power Constraints

Under the joint power constraints, Opt. 2.2 is written in the
following formula

HE 177
max F'"H K "HF,
st. Ky=021+Tr (FF'9)I,
Tr (FF") < P, FF" < rIL.

(111)

The sum power constraint Tr(FFY) < P is equivalent to the
following equality [26]

(02 + Tr (FFUW)) ' Tr [(021 + P®) FFY) < P. (112)
Based on (112), the optimization problem (111) is equivalent to
the following one

_~H —
mlngHH K. 'HF,
st. K, =02l +Tr (FF'W)I,
Tr [(02I + P¥) FF"]
o2+ Tr (FFR)

By defining the following matrix variable

(113)

<P, FF"<rI.

~ _1 1

F = |02+ Tr (FFUW)]| 2 (621 + PT)* F, (114)
the optimization problem (113) can be transferred into the
following equivalent one

~H-~H —~ ~
max FF H HF,
F
o o 2
st. T (FF')<p, FF" <+ It PP
o2+ Tr (FFW)

(115)
For the final matrix inequality, we have the following lower
bound of the righthand side term, i.e.,

02 + PApin (P) o2l + PV

T T y

02 + Plnax(®) "~ 02 + Tr (FFU®)

where the equality holds when W o I. Based on the lower

bound in (116), for the Pareto optimal solutions of the following

optimization problem, the corresponding objective is a lower
bound of that in (113)

(116)

—~H —~ ~

max F' (021 + P®) > H H (02 + P¥) > F
F

02 + PAyax (9)

0'121 + P)\Hlin(‘ll)

N|=

9

~

~~H ~ ~H
st Tr (FF )gp, FF <7
(117)

Itis obvious that based on Lemma 2 the Pareto optimal solutions
of (117) satisfy the following structure

F=VzA;UL, (118)
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where the unitary matrix V' is defined based on the SVD

1

H (021 + P®) ? =UgAg VL with Az \,. (119)
The diagonal elements of the rectangular diagonal matrix A 7,

are smaller than /7(02 + PApnin(¥))/(02 + PAmax(®)).
Based on the definition in (114), F' equals

OH‘FIV’7§V’I‘_I'A1~,UErb

F= . (120)

N

1 1
AR | Hy H
(1—Tr (‘I’ A ZVﬁAﬁ.Al;Vﬁ)>
where ¥ = 021 + PW.
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