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Abstract—The second-generation digital terrestrial television broad-
casting standard adopts the so-called P1 symbol as the preamble for
initial synchronization. The P1 symbol also carries a number of basic
transmission parameters, including the fast Fourier transform size and the
single-input/single-output as well as multiple-input/single-output mode,
to appropriately configure the receiver for carrying out the subsequent
processing. In this paper, an improved preamble design is proposed,
where a pair of training sequences is inserted in the frequency domain,
and their distance is used for transmission parameter signaling. At the
receiver, only a low-complexity correlator is required for the detection of
the signaling. Both the coarse carrier frequency offset and the signaling
can simultaneously be estimated by detecting the aforementioned correla-
tion. Compared with the standardized P1 symbol, the proposed preamble
design significantly reduces the complexity of the receiver while retaining
high robustness in frequency-selective fading channels. Furthermore, we
demonstrate that the proposed preamble design achieves better signaling
performance than the standardized P1 symbol despite reducing the num-
bers of multiplications and additions by about 40% and 20%, respectively.

Index Terms—Orthogonal frequency-division multiplexing (OFDM),
preamble, second-generation digital terrestrial television broadcasting
standard (DVB-T2), transmission parameter signaling (TPS).

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) [1] has found
its way into numerous recent standards operating in frequency-
selective fading channels. With the aid of inverse fast Fourier transform
(IFFT) and fast Fourier transform (FFT) operations, both modulation
and demodulation operations of an OFDM system facilitate convenient
hardware implementations. Hence, OFDM has widely been adopted
in the areas of digital TV [2]–[5], wireless local area networks [1],
[6], and next-generation mobile communications [7]–[9]. Multiservice
broadcast has become an important research topic in both industry and
academia. With the growing commercial demands for supporting mul-
tiservices, including HDTV, mobile TV, and data casting, broadcast
systems are expected to provide a wide choice of transmission param-
eters to accommodate different quality-of-service requirements. The
European Telecommunications Standards Institute (ETSI) recently
issued the second-generation digital terrestrial television broadcasting
standard (DVB-T2), which aims for providing multiple services in
different propagation scenarios [5].
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DVB-T2 [5] offers a total of six FFT sizes and seven diverse guard
interval modes to adapt to different applications. Furthermore, both
single-input/single-output (SISO) and multiple-input/single-output
(MISO) transmission modes are supported. Therefore, the efficient and
reliable detection of these basic system configuration parameters is
critical for the receiver to reliably perform its subsequent processing
steps. For this reason, DVB-T2 adopts a specifically designed P1
symbol as the preamble of the DVB-T2 frame. Unlike conventional
preambles, which are designed merely for supporting timing and
frequency synchronization [10], [11], the P1 symbol also supports the
basic transmission parameter signaling (TPS), including the FFT size
and the SISO/MISO mode [5]. In the time domain (TD), a novel cyclic
extension structure is adopted to improve the peak of the guard interval
correlation (GIC) for the sake of improved timing synchronization
[12]. In the frequency domain (FD), a length-384 sequence carrying
7-bit signaling is mapped to a distributed subcarrier pattern. To
transmit the 7-bit signaling, the standardized P1 symbol of DVB-T2
exploits two sets of orthogonal complementary sequences to represent
the different signaling fields, which are known as S1 and S2, respec-
tively. At the receiver, all possible sequences of both sets are correlated
with the received signaling sequence to find a matched case. The need
to perform such a large number of correlations, however, imposes a
high computational complexity on the signaling detection.

In this paper, an improved preamble design is proposed, which
carries out the same signaling task as the standardized P1 symbol-
based preamble at a lower complexity. Specifically, unlike in the
standardized P1 symbol, which incorporates different sequences to
convey the signaling information, the proposed preamble inserts a pair
of training sequences in the FD, and the signaling information is con-
veyed by the distance between the pair. At the receiver, only a single
correlator is required to simultaneously estimate both the TPS and the
coarse carrier frequency offset (CFO); therefore, the complexity of the
receiver is significantly reduced. Furthermore, our simulation results
show that the proposed preamble design achieves better signaling
performance than the standardized P1 symbol-based preamble of the
DVB-T2 for transmission over frequency-selective fading channels.

The rest of this paper is organized as follows: Section II briefly
describes the standardized P1 symbol in DVB-T2, whereas Section III
provides the detailed design of the proposed preamble. Section IV
presents our performance evaluation of the proposed preamble design
through both theoretical analysis and computer simulation. The com-
putational requirements of detecting both preambles are also compared
in this section. Finally, our conclusions are summarized in Section V.

II. P1 SYMBOL IN DVB-T2

In this section, we commence with the signal model of OFDM
systems and then focus our attention on the P1 symbol design of the
DVB-T2 system.

A. Signal Model

The transmitted TD signal of an OFDM system can be re-
presented as

xn =
1√
N

N−1∑
k=0

Xkej 2π
N

nk (1)

where N is the number of subcarriers, and Xk’s are the transmitted
FD data symbols. The received TD OFDM symbol is represented by

yn = xn−n0 ⊗ hnej2πfcn + νn (2)
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Fig. 1. Structure of the P1 symbol in DVB-T2.

where the operator ⊗ denotes linear convolution, n0 and fc denote
the time delay and CFO, respectively, whereas hn and νn denote
the channel impulse response and the additive white Gaussian noise
(AWGN), respectively. The channel’s signal-to-noise ratio (SNR) is
defined by ρ = σ2

s/σ2
n, where σ2

s = E[|xn|2] is the signal power, and
σ2

n = E[|νn|2] is the AWGN power, with E[•] denoting the statistical
expectation operator.

OFDM systems are known to be sensitive to the CFO, which may
be separated into two parts as follows:

fc = mint · 1

N
+ ffrc (3)

where 1/N is the subcarrier spacing, mint is an integer, and ffrc is the
fractional part of the CFO, which is restricted in the range of

− 1

2N
< ffrc ≤ 1

2N
. (4)

The integer part of the CFO will lead to a cyclic shift in the
FD, whereas the fractional CFO will impose intercarrier interference
(ICI), which may severely degrade the attainable performance [13]. In
OFDM systems, the training symbols are often transmitted before the
data blocks as preambles. The task of the preamble is to accomplish
both timing and frequency synchronization as well as to detect the
TPS, if it is present.

B. Standardized P1 Symbol

The P1 symbol defined in the DVB-T2 standard [5] is composed
of a 1K OFDM symbol “A” and its two cyclic extensions, which are
denoted as “C” and “B”, respectively. The C–A–B structure of the
P1 symbol is illustrated in Fig. 1. The TD baseband signal of the P1
symbol is defined by

xn =

{
pA(n)ej2πfSHn, 0 ≤ n < 542
pA(n − 542), 542 ≤ n < 1566
pA(n − 1024)ej2πfSHn, 1566 ≤ n < 2048

(5)

where pA(n) is the baseband representation of part “A,” and fSH

is the additional frequency shift applied to both parts “B” and “C”
to distinguish the P1 symbol from the common cyclic prefix of the
OFDM symbols.

Out of the 853 useful FD subcarriers of the 1K symbol in “A,”
only 384 subcarriers are used, whereas the others are set to zero. The
subcarrier distribution of the P1 symbol is also illustrated in Fig. 1. The
active carriers occupy roughly 6.83 MHz in the middle of the nominal
7.61-MHz bandwidth. Even a frequency shift of up to 500 kHz may
be estimated, since most of the useful subcarriers are still within the
bandwidth. Therefore, the P1 symbol is robust to large CFOs.

The embedded P1 signaling contains two fields, which are referred
to as the 3-bit signaling S1 and the 4-bit signaling S2, respectively.
Specifically, the 3-bit S1 is represented by one of the eight orthogo-
nal complementary sequences of length 64, whereas the 4-bit S2 is

represented by 1 of the 16 orthogonal complementary sequences of
length 256 [5]. The S1 sequence, the S2 sequence, and a repetition
of the S1 sequence are concatenated to compose a length-384 sig-
naling sequence, which is first differentially binary phase-shift keying
(DBPSK) modulated, then scrambled, and finally mapped to the active
subcarriers. It should be noted that a total of 8 × 16 = 128 different
signaling sequences correspond to the 7-bit signaling.

C. Detection of the P1 Symbol

At the receiver, both timing and fractional CFO estimation may be
achieved by the modified GIC method based on the C–A–B structure
[12]. After the fractional CFO is compensated, part “A” of the P1 sym-
bol is extracted and transformed to the FD for integer CFO estimation
and signaling detection. First, the energy-detection-based subcarrier
pattern matching is performed to locate the exact positions of the active
subcarriers by correlating the received signal with the expected carrier
distribution sequence (CDS) [14]. The CDS was specifically designed
to ensure that only a perfect match gives a sufficiently high power
correlation peak. The position of the correlation peak also gives an
estimate of the integer part of the CFO, which is inferred from the
peak’s shift from its original position.

Once the active subcarriers were identified, the receiver is ready to
detect the S1 and S2 signaling. The length-384 signaling sequence
is first extracted from the active carriers, then descrambled, and
differentially decoded. Finally, the 3-bit S1 and 4-bit S2 segments are
separated from the signaling sequence. Each legitimate sequence of
the S1 set is correlated with the received S1 signaling sequence one
by one, and the sequence with the largest correlation peak is used for
decoding the S1 signaling. Similarly, each legitimate sequence of the
S2 set is correlated with the received S2 signaling sequence one by one
to decode the S2 signaling. Since there are a total of eight sequences in
the S1 set and 16 sequences in the S2 set, a large number of correlations
are required. To reduce the complexity of computing such a large
number of correlations, DVB-T2 adopted a series of complementary
sets of sequences (CSS) [15]. These correlations may be determined
with the aid of efficient correlators specifically designed for CSS [16].
However, the total computational complexity of the signaling detection
remains high due to the specific design of the P1 symbol, which will
be further discussed in Section IV.

III. DESIGN OF THE PROPOSED PREAMBLE

In this section, we propose an improved preamble relying on a
different signaling design, which is significantly less complex to
decode.

A. Structure of the Proposed Preamble

The structure of the proposed preamble is shown in Fig. 2, which
inherits the structure of the standardized P1 symbol in the TD, whereas
in the FD, the TPS design is different from that of the P1 symbol.
Specifically, a pair of FD training sequences, which is denoted by
(a, b), is inserted into the subcarriers. The FD values {Xk}N−1

k=0 of
part “A” in the proposed preamble are represented by

Xk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ak−512+�ΔL
2 �+L, 512 − L − �ΔL

2
�

≤ k < 512 − �ΔL
2
�

bk−512−�ΔL
2 �, 512 + �ΔL

2
�

≤ k < 512 + L + �ΔL
2
�

0, others

(6)

where �•� and �•� denote the integer ceiling and floor operators,
respectively, L is the length of a and b, whereas ΔL denotes the FD
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Fig. 2. Structure of the proposed preamble.

distance between a and b, which varies according to the TPS require-
ments. The FD subcarrier symbols {Xk}N−1

k=0 are then converted to
the TD to create part “A” of the TD preamble by the N -point IFFT, as
defined in (1).

The proposed preamble varies the distance between the pair of
FD training sequences to create a signaling regime, where the FD
distance may be varied across a wide range of values to satisfy the
requirement of conveying 7-bit signaling. Taking a pair of length-255
training sequences, for example, the pair occupies two consecutive
255 subcarrier segments, which are allocated symmetrically from the
center of the nominal bandwidth, as shown in Fig. 2. The value of
ΔL is chosen to vary in the range of [128, 255] so that the required
7-bit signaling can be encoded into the 128 legitimate distance values.
Further referring to the FD part in Fig. 2, the subcarriers at both ends
are reserved so that the preamble can cope with large CFOs. The
subcarriers in the center of the bandwidth are also reserved to reduce
the impact of carrier leakage.

The performance associated with the proposed preamble depends
on the chosen pair of FD training sequences. There are three main
considerations in choosing these two training sequences: 1) good
autocorrelation property; 2) simple correlator implementation; and
3) low peak-to-average power ratio (PAPR) in the TD after the IFFT
operation. Pseudonoise (PN) sequences are widely used as training
sequences since they have beneficial correlation properties. The op-
timal PN sequence may be found by searching through the entire PN
sequence set [17] to ensure the lowest PAPR for the TD preamble. We
suggest the pair (a, b) to be the pair of identical DBPSK-modulated
PN sequences, which have the lowest PAPR in the TD after the IFFT
operation.

B. Detection of the Proposed Preamble

In the receiver, the GIC method in [12] is applied for timing and
fractional CFO estimation. Afterwards, the TD part “A” is extracted
from the preamble and converted to the FD by the N -point FFT
operation, yielding

Yk =
1√
N

N−1∑
n=0

(yne−j2πf̂frcn)e−j 2π
N

nk, 0 ≤ k < N (7)

where f̂frc is the estimated fractional CFO, which is compensated in
the TD before the FFT operation. The FFT result {Yk}N−1

k=0 is first
differentially detected in the FD, i.e., Yk · Y ∗

k−1, and then correlated
with the local PN sequence {Ck}L−1

k=0 to yield

Rl =

L−1∑
k=0

(
Yl+k · Y ∗

l+k−1

)
· Ck

1
2

N−1∑
k=0

|Yk|2
, 0 ≤ l < N − L (8)

where Ck is the sequence assigned to a and b before DBPSK modu-
lation, whereas ∗ denotes the complex conjugation. Since {Ck} is a
binary sequence, which assumes values from the set {−1,+1}, the

Fig. 3. Correlation results of the proposed preamble design in the AWGN
channel given SNR = 0 dB.

multiplications by Ck in the correlation (8) may be realized by a
series of adders instead of multipliers. This significantly reduces the
complexity of the proposed signaling detection algorithm.

Since there are two identical training sequences in {Yk}, two peaks
are expected in the correlation result in (8), and the distance between
the two peaks gives an estimate of ΔL as

ΔL̂ = k2 − k1 − L (9)

where k1 and k2 are the correlation peak positions in the first and
second half of {Rk}, respectively, namely

k1 = arg max
0≤l< N

2

|Rl| (10)

k2 = arg max
N
2 ≤l<N

|Rl|. (11)

The ΔL̂ value in (9) is then used to decode the 7-bit signaling
information. The two peak positions also yield an estimate of the
integer CFO, which is inferred from the peaks’ shifts with their
designed positions according to

m̂int =

{
k1 −

(
512 −

⌊
ΔL+L

2

⌋)
, if |Rk1 | ≥ |Rk2 |

k2 −
(
512 +

⌈
ΔL+L

2

⌉)
, if |Rk1 | < |Rk2 |.

(12)

In contrast with the standardized P1 symbol, which requires a
large number of correlations at the receiver for detecting the TPS,
the proposed preamble design only requires a single correlator for
detecting the TPS, hence yielding a considerable reduction in the
receiver’s complexity.

An example of the correlation function of (8) recorded for transmis-
sion over the AWGN channel at SNR = 0 dB is shown in Fig. 3. We
observe a shift of the correlation peak for CFO = 500 kHz from the
reference position of CFO = 0. This shift gives a fine estimate of the
integer CFO. It can also be seen from Fig. 3 that an accurate estimate
of ΔL may be inferred from the distance between the two correlation
peaks.

IV. PERFORMANCE EVALUATION

We first analyze the theoretical performance of the proposed pream-
ble design in the AWGN channel and then compare its signaling per-
formance for transmission over frequency-selective fading channels to
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Fig. 4. Expectations of the correlation metric for the proposed preamble
design in the AWGN channel given different SNR values, where the dashed
lines indicate the standard deviations from the expectation.

that of the standardized P1 preamble using simulations. A comparison
of the signaling detection complexity required by the two designs is
also given.

A. Theoretical Lower Bound Over AWGN Channel

Assuming an ideal fraction CFO compensation in (7), the cor-
relation peaks can be approximated by Rk1 = XR + Ṽk1 and
Rk2 = XR + Ṽk2 , where XR is real-valued, whereas Ṽk1 and Ṽk2

are complex-valued zero-mean random variables. Following a similar
approach to that given in [10], we can conclude that the real and
imaginary parts of both Rk1 and Rk2 have the Gaussian distributions
N(μR, σ2

R) and N(0, σ2
R), respectively, where μR and σ2

R are given
by [10]

μR =
ρ

ρ + 1
(13)

σ2
R =

(1 + μ2
R) ρ + (2L/N + μ2

R)

N(ρ + 1)2
. (14)

Hence, the peak metrics |Rk1 | and |Rk2 | follow the same Rician
distribution given by

fpeak(y) =
y

σ2
R

e
− y2+μ2

R
2σ2

R I0

(
μR · y
σ2

R

)
, y > 0 (15)

where I0(•) is the zero-order modified Bessel function of the first
kind [18].

Assuming that the correlation of the training sequences is unity for
perfect alignment and zero otherwise, both real and imaginary parts
of the sidelobes follow the Gaussian distribution N(0, σ2

R). Thus, the
sidelobe metric |Rk|k �=k1,k2 has a Rayleigh distribution given by

fside(y) =
y

σ2
R

e
− y2

2σ2
R , y > 0. (16)

The expectations of the correlation peak and sidelobes at different
SNRs are illustrated in Fig. 4, where the dashed lines indicate the
standard deviations from the expectation. We can observe that for
SNR ≥ −5 dB, the correlation metric can reliably separate the peak
and the sidelobes.

Fig. 5. False detection probabilities of the proposed signaling as well as the
DVB-T2 S1 and S2 signaling over the AWGN channel in comparison with the
theoretical bound.

Next, the probability of false detection is analyzed. Considering the
first half of {Rk}, the probability that the sidelobe |Rk|k �=k1 is higher
than |Rk1 | is given by

P (|Rk|k �=k1 > |Rk1 |)=
+∞∫
0

y

σ2
R

e
− 2y2+μ2

R
2σ2

R I0

(
μR · y
σ2

R

)
dy. (17)

The false peak detection probability is thus

Pf =P

({
max

0≤k< N
2 ,k �=k1

|Rk|
}

> |Rk1 |
)

=1 − (1 − P (|Rk|k �=k1 > |Rk1 |))
N
2 −1 . (18)

If both correlation peaks are detected, then the estimation of ΔL and
mint is deemed to be achieved. Thus, the false detection probability for
ΔL, which is denoted as PFD,ΔL, and the false detection probability
for mint, which is denoted as PFD,mint , are given by

PFD,ΔL = PFD,mint = 1 − (1 − Pf )2 (19)

both of which are a function of the SNR.
The theoretical lower bound (19) is depicted in Fig. 5 in comparison

with the performance of the proposed signaling detection obtained
by simulation, which exhibited about 0.4-dB degradation from the
theoretical bound. The degradation of the actual signaling detection
from the theoretical lower bound is mainly due to the following
two factors. First, having a realistic timing recovery imposes some
phase rotation after the FFT-based demodulation. Second, the residual
fractional CFO imposes some ICI, which also results in an SNR loss
(in decibels), quantified as [13]

SNRloss ≤ 10 · log

(
1 + 0.5947 · SNR · (sinπε)2

(sinπε/πε)2

)
(20)

where ε = ffrc − f̂frc is the normalized residual CFO after the frac-
tional CFO compensation.

The signaling detection performance of the standardized P1 symbol
over the AWGN channel obtained by simulation is also given in Fig. 5
for comparison. Note that the S1 and S2 fields of the standardized
P1 symbol have different priorities, whereas the 7-bit signaling of the
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Fig. 6. SER comparison of the S1 and S2 signaling in the P1 preamble as well
as the proposed signaling (Sp) over the Brazil-B and CDT-8 frequency-selective
static channels.

proposed preamble has the same priority. It can be seen from Fig. 5
that the detection performance of the S2 signaling is marginally better
than that of the proposed preamble, whereas the detection performance
of the proposed signaling is much better than that of the S1 signaling.
Thus, the signaling detection performance of the proposed preamble
design is better than the average signaling detection performance of
the standardized P1 symbol over the AWGN channel.

B. Simulations Over Frequency-Selective Channels

A simulation study was then carried out to compare the signaling
detection performance of the proposed preamble with that of the
standardized P1 symbol for transmission over frequency-selective
channels. The same DVB-T2 transmission parameters were adopted,
and the signal powers of both preambles were normalized in the simu-
lation to ensure a fair comparison. The duration of both preambles was
224 μs in the nominal 8-MHz system. The Brazil DTV field testing
second channel model (Brazil-B) [4] and the China DTV testing eight
channel model (CDT-8) [19] were adopted in the simulation. It should
be noted that an unattenuated echo occurs in the CDT-8 channel at
a delay of 30 μs, which results in severe frequency selectivity. The
signaling error rate (SER), which is defined as the false signaling
detection probability, was evaluated.

Fig. 6 depicts the SER results obtained for the S1 and S2 signaling
of the P1 preamble as well as for the proposed signaling (labeled
as Sp) over the Brazil-B and CDT-8 static channels, whereas Fig. 7
compares the results for the Brazil-B and CDT-8 fading channels with
50-Hz Doppler frequency. For the Brazil-B channel whose frequency
selectivity is not severe, it can be observed that the proposed signaling
achieved a similar SER as the S2 signaling while outperforming the
S1 signaling. It can also be seen from Figs. 6 and 7 that the proposed
signaling achieved the performance gains by about 2.5 and 1.5 dB,
respectively, at the SER level of 10−2 over the severely frequency-
selective CDT-8 static and fading channels. The reason for the much
better signaling performance of the proposed preamble for transmis-
sion over severely frequency-selective channels can be explained as
follows: Both the P1 symbol and the proposed design use differential
decoding to alleviate the impact of the channel phase. The larger the
phase difference for two adjacent subcarriers, the less effective this
differential decoding. The frequency response of the CDT-8 channel
significantly varies from subcarrier to subcarrier owing to the severe

Fig. 7. SER comparison of the S1 and S2 signaling in the P1 preamble as well
as the proposed signaling (Sp) over the Brazil-B and CDT-8 frequency-selective
fading channels with 50-Hz Doppler frequency.

channel frequency selectivity. The active subcarriers in the standard-
ized P1 symbol are randomly distributed in the FD, and the phases
of two adjacent active subcarriers can differ significantly. In contrast,
the phase difference of two adjacent subcarriers is much smaller
for the proposed preamble, whose subcarriers are closely adjacent.

C. Comparison of Computational Complexity

As detailed in Section II, the detection of the P1 signaling in
DVB-T2 includes four main steps: 1) the subcarrier pattern matching;
2) descrambling; 3) differential detection; and 4) correlation with the
local CSS. In contrast, the proposed detection of the 7-bit signaling
information only requires differential decoding and correlation with
the local PN sequence. The computational complexity of the signaling
detection algorithm may be quantified in terms of the number of
multiplications and additions required. Assuming that the system is
designed to cope with a maximum CFO of ±500 kHz, i.e., up to ±56
subcarriers, the total number of computations imposed by detecting the
standardized P1 signaling includes

384 + 56 × 2 + 384 × 2

= 1264 [complex-valued multiplications]

384 × 56 × 2 + 256 × 128 + 64 × 48

= 78 848 [complex-valued additions]. (21)

In contrast, the proposed signaling detection requires

255 × 2 + 56 × 2 + 128

= 750 [complex-valued multiplications]

255 × (56 × 2 + 128)

= 61 200 [complex-valued additions]. (22)

The proposed signaling detection method reduces the number of
multiplications by about 40% and the number of additions by 20%,
in comparison to the standardized P1 symbol design.
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V. CONCLUSION

An improved preamble has been designed for signaling in OFDM
broadcast systems, which exploits the presence of 128 possible dis-
tances between a pair of training sequences in the FD to infer the
7-bit signaling information. Only a single correlator is required at
the receiver for signaling detection. Compared with the standardized
P1 symbol of DVB-T2, the proposed design reduces the numbers of
multiplications and additions by about 40% and 20%, respectively.
The simulation results have also shown that the proposed preamble
achieves better signaling detection performance, in terms of false
detection probability, than the standardized P1 preamble.
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MIMO Precoding Using Rotating Codebooks

Chengling Jiang, Michael Mao Wang, Chunliang Yang, Feng Shu,
Jianxin Wang, Weixin Sheng, and Qian Chen

Abstract—Next-generation wireless communications rely on
multiple-input–multiple-output (MIMO) techniques to achieve high
data rates. Feedback of channel information can be used in MIMO
precoding to fully activate the strongest channel modes and improve
MIMO performance. Unfortunately, the bandwidth of the control channel
by which the feedback is conveyed is severely limited. An important
issue is how to improve the MIMO precoding performance with minimal
feedback. In this paper, we present a method that uses a rotating codebook
technique to effectively improve the precoding performance without
the need to increase feedback overhead. The basic idea of the rotating
codebook precoding is to expend the effective precoding codebook size via
rotating multiple codebooks so that the number of feedback bits remains
unchanged. Simulation results are presented to show the performance gain
of the proposed rotating codebook precoding over conventional precoding.

Index Terms—Multiple-input–multiple-output (MIMO) precoding,
quantized precoding.

I. INTRODUCTION

Multiple-input–multiple-output (MIMO) systems have become the
most promising candidates for the next generation of high-data-rate
wireless communications [1]. MIMO technology has been shown to
provide significant system performance improvement over conven-
tional systems by providing communication links with substantial
diversity and capacity. This is especially true when channel state
information (CSI) is available at the transmitter [2]. In fact, the closed-
loop capacity of a MIMO channel can be achieved by converting the
channel into a set of parallel spatial layers via precoding and water-
filling power allocation at the transmitter and a linear minimum-mean-
square-error (MMSE) filtering at the receiver wherein the optimal
precoding and MMSE filter are determined by the singular value
decomposition (SVD) of the MIMO channel matrix [3], [4].

For time-division-duplexing communication systems, where uplink
and downlink channels share the same frequency band at different
times, the downlink channel information can be estimated by the
transmitter using the uplink pilot (analog feedback) due to the channel
reciprocity property. For frequency-division-duplexing systems, where
different frequency bands are allocated for the downlink and uplink
channels, the channels are not reciprocal. Therefore, a CSI feedback
channel, via the uplink control channel (digital feedback), is necessary
to deliver the estimated channel knowledge back to the transmitter.
For a time-varying channel, the channel knowledge at the transmitter
should be regularly updated. The overhead, which linearly increases
in the product of the number of antennas, the channel frequency
selectivity, and the feedback frequency, can be large. Hence, the
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