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Abstract—The design of high-efficiency low-complexity
detection schemes for ultrawide bandwidth (UWB) systems is
highly challenging. This paper proposes a reduced-rank adaptive
multiuser detection (MUD) scheme that is operated in least
bit-error-rate (LBER) principles for hybrid direct-sequence
time-hopping UWB (DS-TH UWB) systems. The principal
component analysis (PCA)-assisted rank-reduction technique is
employed to obtain a detection subspace, where the reduced-rank
adaptive LBER-MUD is carried out. The reduced-rank adaptive
LBER-MUD is free from channel estimation and does not require
knowledge about the number of resolvable multipaths and the
multipaths’ strength. In this paper, the BER performance of the
hybrid DS-TH UWB systems using the proposed detection scheme
is investigated, assuming communications over UWB channels
modeled by the Saleh–Valenzuela channel model. Our studies and
performance results show that, given a reasonable rank of the
detection subspace, the reduced-rank adaptive LBER-MUD can
efficiently mitigate both multiuser and intersymbol interference
(ISI) and achieve the diversity gain promised by the UWB systems.

Index Terms—Adaptive detection, direct sequence, least
bit error rate (LBER), principal component analysis (PCA),
reduced-rank detection, time hopping, ultrawide bandwidth
(UWB).

I. INTRODUCTION

PULSE-BASED ultrawide bandwidth (UWB) communica-
tions schemes constitute a range of promising alterna-

tives that may be deployed for home, personal area, sensor
network, and other applications, where the communication
devices are required to have low complexity, high reliability,
and minimum power consumption [1], [2]. However, in pulse-
based UWB systems, the spreading factor is usually very high.
The UWB channels are usually very sparse, which results
in a large number of low-power resolvable multipaths [2],
[3]. The large number of resolvable multipaths can provide
significant diversity gain if they are efficiently exploited but
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generates severe multiuser interference (MUI) and intersymbol
interference (ISI) as well. Hence, to attain the promised diver-
sity gain, an UWB receiver has to efficiently deal with the low-
power resolvable multipath signals and mitigate the MUI and
ISI that they generated. As demonstrated in [1] and [3], in pulse-
based UWB communications, the large number of resolvable
multipaths generally consist of a few relatively strong paths and
many other weak paths. Unlike in the conventional wideband
channels, where strong paths usually arrive at the receiver
before weak paths, in UWB channels, the strong paths are not
necessarily the paths that arrive at the receiver the earliest.
In fact, the times of arrival (ToAs) of the strong paths are
random variables that are distributed within a certain range.
Due to the aforementioned issues, therefore, in pulse-based
UWB systems, it is normally difficult to implement coherent
detection, depending on accurate channel estimation. In fact,
it has been recognized that, in pulse-based UWB systems, the
complexity of the conventional single-user matched-filter (MF)
detector [4] might still be very high. This case is because the
single-user MF detector is a coherent detector, which needs
to estimate a large number of multipath component channels.
The complexity of the single-user MF detector is, at least,
proportional to the sum of the spreading factor and the number
of resolvable multipaths [5].

In this paper, we consider the low-complexity detection in
hybrid direct-sequence time-hopping UWB (DS-TH UWB)
systems [6], [7], because the hybrid DS-TH UWB scheme
represents a generalized pulse-based UWB communication
scheme, including both the pure direct-sequence UWB (DS-
UWB) and pure time-hopping UWB (TH-UWB) as its special
examples [1], [6], [7]. The detector proposed is an adaptive
multiuser detection (MUD) based on the principles of least
bit error rate (LBER) [9], [10] operated in a reduced-rank
detection subspace. Hence, for convenience, it is referred to
as the reduced-rank adaptive LBER-MUD. The reduced-rank
subspace, which is also referred to as the detection subspace,
is obtained based on the principal component analysis (PCA)
[12]. It has a rank that is usually significantly lower than
the original observation space. As our forthcoming discourse
shows, the reduced-rank adaptive LBER-MUD does not re-
quire channel estimation. At the start of communication, the
reduced-rank adaptive LBER-MUD achieves its near-optimum
detection through a training sequence. During communication,
it maintains its near-optimum detection based on the decision-
directed (DD) principles [11]. Furthermore, the reduced-rank
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adaptive LBER-MUD requires no knowledge about the number
of resolvable multipaths and the locations of the strong resolv-
able multipaths. It only requires the knowledge, which is still
not necessarily very accurate, about the maximum delay spread
of the UWB channels. In this paper, the bit-error-rate (BER)
performance of the hybrid DS-TH UWB systems using the
proposed reduced-rank adaptive LBER-MUD is investigated,
assuming communications over UWB channels modeled by
the Saleh–Valenzuela (S–V) channel model. Our simulation
results show that the reduced-rank adaptive LBER-MUD can
efficiently suppress both the MUI and ISI and attain the diver-
sity promised by the UWB channels.

Note that, in this paper, the LBER algorithm is preferred
instead of the conventional least mean square (LMS) algorithm
[13], [14], because of the following observations. First, in
terms of the BER performance, the LBER algorithm works
under the principles of minimum bit error rate (MBER), which
may outperform the LMS algorithm operated in the principles
of the minimum mean square error (MMSE) [9], [10]. This
observation is also verified by our simulation results shown in
Section IV. Second, the LBER algorithm has a complexity sim-
ilar to the LMS algorithm [9], [10]. Furthermore, as analyzed
in [9], [10], the LBER algorithm can provide higher flexibility
for system design compared with the nLMS algorithm. Further-
more, note that, in [15] and [16], the performance of hybrid DS-
TH UWB systems that employ reduced-rank adaptive detection
has been investigated, where the reduced-rank adaptive detec-
tors are operated in the principles of normalized least mean
square (NLMS) [15] or recursive least square (RLS) [16]. Those
interested in the details of these reduced-rank adaptive detectors
are referred to the aforementioned references.

The remainder of this paper is organized as follows.
Section II describes the system model of the hybrid DS-TH
UWB system, which includes the transmitted signal, channel
model, and receiver. In Section III, the detection of hybrid DS-
TH UWB system is addressed. Simulation results are provided
in Section IV, and finally, in Section V, conclusions of this
paper are presented.

II. DESCRIPTION OF THE HYBRID DIRECT-SEQUENCE

TIME-HOPPING ULTRAWIDE BANDWIDTH SYSTEM

The hybrid DS-TH UWB scheme considered in this paper
is the same as in [6], [7], [14], and [15]. In particular, in
[6], the BER performance of the hybrid DS-TH UWB system
using single-user MF detector and MMSE-MUD has been
investigated. In [7] and [14], the full-rank adaptive detection has
been considered, where the adaptive detector is operated based
on the NLMS [7] or LMS [14] algorithm. Furthermore, in [15]
and [16], the reduced-rank adaptive detection in hybrid DS-TH
UWB systems has been investigated, where the reduced-rank
adaptive detectors are operated in the principles of NLMS [15]
or RLS [16]. In the following discussion, we provide a brief
description of the hybrid DS-TH UWB system model.

A. Transmitted Signal

The transmitter schematic for the hybrid DS-TH UWB sys-
tem is shown in Fig. 1. We assume, for simplicity, that the

Fig. 1. Transmitter schematic of the hybrid DS-TH UWB systems.

hybrid DS-TH UWB system employs the binary phase-shift
keying (BPSK) baseband modulation. As shown in Fig. 1, a
data bit of the kth user is first modulated by an Nc-length direct-
sequence (DS) spreading sequence, which generates Nc chips.
The Nc chips are then transmitted by Nc time-domain pulses
within one symbol duration, where the positions of the Nc time-
domain pulses are determined by the time-hopping (TH) pattern
assigned to the kth user. As shown in Fig. 1, the hybrid DS-TH
UWB baseband signal that was transmitted by the kth user can
be written as [6]

s(k)(t) =

√
Eb

NcTψ

∞∑
j=0

b
(k)

� j
Nc

�d
(k)
j ψ

[
t − jTc − c

(k)
j Tψ

]
(1)

where �x� represents the largest integer that is less than or equal
to x, and ψ(t) is the basic time-domain pulse of width Tψ ,

which satisfies
∫ Tψ

0 ψ2(t)dt = Tψ . Note that the bandwidth of
the hybrid DS-TH UWB system is approximately equal to the
reciprocal of Tψ . The other parameters used in (1) and some
other related parameters are listed as follows.

• Eb: energy per bit;
• Nc: Number of chips per bit, which is the DS spreading

factor.
• Nψ: number of time-slots per chip, which is the TH

spreading factor;
• NcNψ: total spreading factor of the hybrid DS-TH UWB

system;
• Tb and Tc: bit and chip duration, respectively, which

satisfy Tb = NcTc.
• Tψ: width of the time-domain pulse or the time slot, which

satisfies Tc = NψTψ;

• b
(k)
i ∈ {+1,−1}: ith data bit that was transmitted by

user k;
• {d(k)

j }: random binary DS spreading sequence that was
assigned to the kth user;

• {c(k)
j ∈ {0, 1, . . . , Nψ − 1}}: random TH pattern that was

assigned to the kth user.

Note that the pure DS-UWB and TH-UWB schemes are
two special examples of the hybrid DS-TH UWB scheme. In
particular, if Nc > 1 and Nψ = 1, then Tψ and Tc are equal,
and in this case, the hybrid DS-TH UWB scheme is reduced
to the pure DS-UWB scheme. By contrast, when Nc = 1 and
Nψ > 1, the hybrid DS-TH UWB scheme is reduced to the pure
TH-UWB scheme.
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B. Channel Model

In this paper, the S–V channel model is considered. Under
this channel model, the kth user’s channel impulse response
(CIR) can be represented as [17]

hk(t) =
V −1∑
v=0

P−1∑
p=0

h(k)
p,vδ(t − Tv − Tp,v − τk)

=
V −1∑
v=0

P−1∑
p=0

h(k)
p,vδ(t − Tv − pTψ − τk)

k = 1, 2, . . . , K (2)

where τk takes into account the lack of synchronization among
the user signals and the transmission delay, V represents the
number of clusters, and P denotes the number of resolvable
multipaths per cluster. Hence, the total number of resolvable
multipaths of the UWB channel can be as high as L = PV . For
simplicity, we assume that P and V are common for all the K

users. In (2), h
(k)
p,v = |h(k)

p,v|ejθ
(k)
p,v represents the fading gain of

the pth multipath in the vth cluster, where |h(k)
p,v| and θ

(k)
p,v are

assumed to obey the Rayleigh [17] and uniform distributions in
[0, 2π), respectively, and Tv denotes the ToA of the vth cluster,
whereas Tp,v = pTψ is the ToA of the pth multipath in the vth
cluster. Furthermore, we assume that the average power of a
multipath component at a given delay, e.g., at Tv + Tp,v , is
related to the power of the first resolvable multipath of the first
cluster through the relation of [17]

Ωp,v = Ω0,0 exp
(
−Tv

Γ

)
exp

(
−Tp,v

γ

)
V = 0, 1, . . . , V 1 p = 0, 1, . . . , P − 1 (3)

where Ωp,v = E[|h(k)
p,v|2] represents the power of the pth resolv-

able multipath in the vth cluster, and Γ and γ are the cluster and
ray power decay constants, respectively.

Based on (2), we can know that the maximum delay spread
of the UWB channels considered is (TV + TP,V ) and the
total number of resolvable multipaths is about L = �(TV +
TP,V )/Tψ� + 1. To make our channel model sufficiently gen-
eral, in this paper, we assume that the maximum delay
spread (TV + TP,V ) spans g ≥ 1 data bits, yielding severe ISI.
This condition also implies that (g − 1)NcNψ ≤ (L − 1) <
gNcNψ , because the bit duration is Tb = NcNψTψ .

C. Receiver Structure

When the K number of DS-TH UWB signals in the form
of (1) are transmitted over UWB channels with the CIR as
shown in (2), the received signal at the base station (BS) can
be expressed as

r(t) =

√
Eb

NcTψ

K∑
k=1

MNc∑
j=0

V −1∑
v=0

P−1∑
p=0

h(k)
p,vb

(k)

� j
Nc

�d
(k)
j

× ψrec

[
t − jTc − c

(k)
j Tψ − T (k)

v − T (k)
p,v − τk

]
+ n(t) (4)

where n(t) represents an additive white Gaussian noise
(AWGN) process, which has zero mean and a single-sided
power spectral density of N0 per dimension, and ψrec(t) is
the received time-domain pulse, which is usually the second
derivative of the transmitted pulse ψ(t) [18].

The receiver schematic for the hybrid DS-TH UWB systems
using the considered reduced-rank adaptive LBER-MUD is
shown in Fig. 2. As shown in Fig. 2, the received signal is
first filtered by a MF with an impulse response of ψ∗

rec(−t).
The output of the MF is then sampled at a rate of 1/Tψ .
The observation samples are first stored in a buffer and then
projected onto the reduced-rank detection subspace P U once
it is obtained. Finally, the adaptive LBER-MUD is carried out
based on the observations in the detection subspace P U , as
detailed in the following discussion.

Let us assume that a block of data per user that contains M
number of data bits is transmitted. Then, the receiver can collect
a total (MNcNψ + L − 1) number of samples, where (L − 1)
is due to the L number of resolvable multipaths. In more detail,
the λth sample can be obtained by sampling the MF’s output
at the time instant of t = T0 + (λ + 1)Tψ , which can be ex-
pressed as

yλ =

(√
EbTψ

Nc

)−1 T0+(λ+1)Tψ∫
T0+λTψ

r(t)ψ∗
rec(t)dt (5)

where T0 denotes the ToA of the first multipath in the first
cluster.

To reduce the detection complexity of the hybrid DS-TH
UWB system, in this paper, we consider only the bit-by-bit-
based detection. Let the observation vector yi and the noise
vector ni related to the detection of the ith data bit of the
first user, which is referred to as the reference user, be repre-
sented by

yi =
[
yiNcNψ

, yiNcNψ+1, . . . , y(i+1)NcNψ+L−2

]T
(6)

ni =
[
niNcNψ

, niNcNψ+1, . . . , n(i+1)NcNψ+L−2

]T
(7)

where the elements of ni are Gaussian random variables with
zero mean and a variance of σ2

n = N0/2Eb per dimension.
Then, according to [7] and [14], yi can be expressed as

yi =
K∑

k=1

i−1∑
j=max(0,i−g)

i�=0

C
(k)
j hkb

(k)
j

︸ ︷︷ ︸
ISI fromthepreviousbits of K users

+ C
(1)
i h1b

(1)
i︸ ︷︷ ︸

Desired signal

+
K∑

k=2

C
(k)
i hkb

(k)
i︸ ︷︷ ︸

Multiuser interference

+
K∑

k=1

min(M−1,i+g)∑
j=i+1

i�=M−1

C̄
(k)
j hkb

(k)
j

︸ ︷︷ ︸
ISI fromthe latter bits of K users

+ ni (8)

where the matrices and vectors have been defined in detail in
[6] and [14]. Based on (8), it is implied that the ith data bit
of the reference user conflicts both severe ISI and MUI, in
addition to the Gaussian background noise. Without efficiently
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Fig. 2. Receiver schematic for the hybrid DS-TH UWB systems using reduced-rank adaptive detection.

mitigating the ISI and MUI, the diversity gain promised by
UWB channels may be overwhelmed by the ISI and MUI. Let
us now consider the reduced-rank adaptive LBER-MUD in the
following section.

III. DETECTION OF HYBRID DIRECT-SEQUENCE

TIME-HOPPING ULTRAWIDE BANDWIDTH SIGNALS

First, we note that, when the conventional linear detectors
without invoking reduced-rank techniques are considered, the
decision variable for b

(1)
i of the reference user can be formed as

z
(1)
i = wH

1 yi, i = 0, 1, . . . , M − 1 (9)

where w1 is an (NcNψ + L − 1)-length weight vector. As
aforementioned, in hybrid DS-TH UWB systems, the total
spreading factor NcNψ may be very high, and the number
of resolvable multipaths L of UWB channels is usually very
big. Hence, the length of the weight vector w1 or the linear
filter’s length may be very large. In this case, the complexity
of the corresponding detectors might be extreme, even when
linear detection schemes are considered. Furthermore, using a
very long filter for detection in UWB systems may significantly
degrade the performance of the UWB systems. For example,
using a longer traversal filter results in lower convergence
speed, and hence, a longer sequence is required to train the
filter [13]. Consequently, the data rate or spectral efficiency
of the corresponding communications systems decreases. The
robustness of an adaptive filter also degrades as the filter
length increases, because in this case, more channel-dependent
variables need to be estimated for the filter [19]. Furthermore,
when a longer adaptive filter is employed, the computational
complexity is also higher, because more operations are required
for the corresponding detection and estimation. Therefore, in
this paper, we consider the reduced-rank adaptive MUD, which
is operated in the LBER principles, i.e., the reduced-rank
adaptive LBER-MUD.

The reduced-rank adaptive LBER-MUD starts with pro-
jecting the observation vector yi onto a lower dimensional
subspace that is referred to as the detection subspace, as
shown in Fig. 2. In particular, let P U be an ((NcNψ + L −
1) × U) processing matrix, with its U columns determining a
U -dimensional detection subspace, where U < (NcNψ + L −
1). Then, given an observation vector yi, the U -length vector in
the detection subspace can be expressed as

ȳi = P H
U yi (10)

where an overbar is used to indicate that the argument is in the
reduced-rank detection subspace.

In this paper, we consider the PCA-assisted reduced-rank
technique [12], [20], which derives the processing matrix P U

as follows. First, the autocorrelation matrix Ryi
of yi is esti-

mated based on some training data as

Ryi
= E

[
yiy

H
i

]
≈ 1

N

N∑
i=1

yiy
H
i (11)

where N denotes the number of data bits invoked to estimate
Ryi

. Then, the autocorrelation matrix Ryi
is represented using

eigenanalysis as

Ryi
= ΦΛΦH (12)

where Λ is a diagonal matrix that contains the eigenvalues of
Ryi

, which can be written as

Λ = diag{λ1, λ2, . . . , λNcNψ+L−1} (13)

whereas Φ is a unitary matrix that consists of the eigenvectors
of Ryi

, which is expressed as

Φ = [φ1,φ2, . . . ,φNcNψ+L−1] (14)

where φi is the eigenvector that corresponds to the eigenvalue
λi. Finally, let us assume that the eigenvalues are arranged in
descent order, satisfying λ1 ≥ λ2 ≥ · · · ≥ λNcNψ+L−1. Then,
the processing matrix P U in the context of the PCA-assisted
reduced-rank technique is constructed by the first U columns
of Φ, i.e., we have

P U = [φ1,φ2, . . . ,φU ]. (15)

Given the observation vector ȳi as shown in (10), the linear
detection of b

(1)
i can now be carried out by forming the decision

variable, i.e.,

z
(1)
i = w̄H

1 ȳi (16)

as shown in Fig. 2. In (16), w̄1 is now a U -length weight
vector instead of an (NcNψ + L − 1)-length vector in (9) for
the conventional linear detectors. According to the properties
of the PCA-based reduced-rank detection [12], the full-rank
BER performance can be attained, provided that the rank U
of the detection subspace is not lower than the rank of the
signal subspace, which, for our hybrid DS-TH UWB system,
is K(g + 1). However, if the rank of the detection subspace
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is lower than the signal subspace’s rank, the reduced-rank
detection may then conflict MUI. Consequently, the BER per-
formance of the hybrid DS-TH UWB system using the PCA-
based reduced-rank detection deteriorates compared with the
BER performance achieved by the corresponding full-rank
detectors. Therefore, in the PCA-based reduced-rank detection,
it is desirable to have knowledge about the signal subspace’s
rank. Note that, in our simulations considered in Section IV, the
signal subspace’s rank was estimated through the eigenanalysis
of the autocorrelation matrix Ryi

, which was estimated based
on (11) through a block of training data.

As shown in Fig. 2, the weight vector w̄1 in (16) is ob-
tained through the sample-by-sample adaptive LBER algorithm
proposed in [9], [10]. In particular, the reduced-rank adaptive
LBER-MUD is operated in the following two modes: 1) the
training mode and 2) the DD mode. When operated in the
training mode, the weight vector w̄1 is adapted through a train-
ing sequence that is known to the receiver. Correspondingly,
the update equation in the LBER principle can be formu-
lated as [9]

w̄1(i + 1) = w̄1(i) + μ
sgn

(
b
(1)
i

)
2
√

2πρn

exp

⎛
⎜⎝−

∣∣∣�(
z
(1)
i

)∣∣∣2
2ρ2

n

⎞
⎟⎠ ȳi

i = 0, 1, 2, . . . (17)

where sgn(x) is a sign function, μ is the step size, and ρn is the
so-called kernel width [9]. In the adaptive LBER algorithm, the
step size μ and the kernel width ρn are required to appropriately
be set to obtain a high convergence rate and a small steady BER
misadjustment. Furthermore, it has been observed [9] that the
aforementioned two parameters can provide higher flexibility
for system design compared with the adaptive LMS algorithm,
which employs only a single adjustable parameter of the step
size [13].

After the training stage is completed, the normal data trans-
mission is started. At this stage, the reduced-rank adaptive
LBER-MUD is switched to the DD mode. Under the DD mode,
the data bits that were detected by the receiver are fed back
to the reduced-rank adaptive LBER-MUD to update the weight
vector w̄1. To be more specific, during the DD mode, the update
equation for the weight vector w̄1 can be formulated as

w̄1(i + 1) = w̄1(i) + μ
sgn

(
b̂
(1)
i

)
2
√

2πρn

exp

⎛
⎜⎝−

∣∣∣�(
z
(1)
i

)∣∣∣2
2ρ2

n

⎞
⎟⎠ ȳi

i = 0, 1, 2, . . . (18)

where b̂
(1)
i denotes the estimate to b

(1)
i .

The convergence behavior of the LBER-MUD is jointly de-
termined by the step size μ and the kernel width ρn, as implied
in (17) and (18). In general, if the step size μ is increased,
the LBER-MUD converges faster, as shown, for example, in
Fig. 4. However, using a bigger step size usually leads to higher
misadjustment after the final convergence. By contrast, as our
results in Fig. 5 show, when the other related parameters of

the LBER-MUD are fixed, that there exists an optimum value
for the kernel width ρn, which results in the lowest BER for
a given number of training symbols. In addition, when the
communication environment changes, e.g., when the number
of users supported changes, the step size μ and the kernel
width ρn should correspondingly be adjusted to attain the best
performance.

Note that, compared with the ideal MMSE-MUD as shown
in [6], the reduced-rank adaptive LBER-MUD considered in
this paper employs the following advantages. First, it is free
from channel estimation and does not require knowledge about
the user signatures. By contrast, the ideal MMSE-MUD re-
quires channel estimation and all the aforementioned knowl-
edge. Second, operated in the principles of adaptive LBER, the
reduced-rank adaptive LBER-MUD does not need to compute
the inverse of the autocorrelation matrix Ryi

. Hence, it may
be argued that the reduced-rank adaptive LBER-MUD has a
substantially lower complexity and is also more feasible to
implement in practice, compared with the ideal MMSE-MUD,
when UWB communications are considered. In addition, the
reduced-rank adaptive LBER-MUD works under the minimum
BER principles, which may outperform the MMSE detector in
terms of the attainable BER performance.

Compared with the PCA-assisted reduced-rank adaptive
RLS-MUD in [16], the reduced-rank adaptive LBER-MUD
has a significantly lower complexity. This case is because the
adaptive LBER-MUD has a complexity similar to the adaptive
LMS-MUD [9], [10]. It is well known that the complexity of
the LMS algorithm is much lower than the RLS algorithm
[13]. Let us now provide our simulation results in the following
section.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, the learning and BER performance of the
reduced-rank adaptive LBER-MUD is investigated by simula-
tions. We also compare the performance of the reduced-rank
adaptive LBER-MUD with the reduced-rank adaptive LMS-
MUD, because both approaches have similar complexity. In
our simulations, the total spreading factor was assumed to be a
constant of NcNψ = 64, where the DS-spreading factor was set
to Nc = 16, and the TH-spreading factor was, hence, Nψ = 4.
The normalized Doppler frequency shift of the UWB channels
was fixed to fdTb = 0.0001. The S–V channel model used in
[17] was considered, and the channel gains were assumed to
obey the Rayleigh distribution. In more detail, the parameters of
the S–V channel model in our simulations are 1/Λ = 14.11 ns,
Γ = 2.63 ns, and γ = 4.58 ns, where Γ and γ have been defined
to be associated with (3), whereas Λ is the cluster arrival rate
[17]. Note that, in the aforementioned UWB channel model,
both the number of clusters V and the number of resolvable
paths per cluster P are variables, given the total number of
resolvable paths L = V P . In our simulations, the values of V
and P are fixed for one frame duration but are independent from
one frame to the next.

Fig. 3 shows the learning curve of the reduced-rank adaptive
LBER-MUD for the hybrid DS-TH UWB system that supports
K = 5 users, where the detection subspace has different ranks
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Fig. 3. Learning curves of the reduced-rank adaptive LBER-MUD with
respect to different ranks of detection subspaces for the hybrid DS-TH UWB
systems that support K = 5 users. The other parameters in the simulations
were Eb/N0 = 10 dB, Doppler frequency shift of fdTb = 0.0001, ρn = σn,
μ = 0.5, g = 1, Nc = 16, Nψ = 4, and L = 15.

of U = 1, 5, 10, 30 or 78. Note that the BER in Fig. 3 was
evaluated by the following formula:

BER =
1

TL

TL∑
n=1

Q

⎛
⎝ sgn

(
b
(1)
i (n)

)
�

(
z
(1)
i (n)

)
σ2

n

√
w̄H

1 w̄1

⎞
⎠ (19)

where TL stands for the training length, and Q(x) is the
Gaussian Q-function defined as

Q(x) =
1√
2π

∞∫
x

exp
(
−u2

2

)
du. (20)

In our simulations, the average signal-to-noise ratio (SNR)
per bit was set to Eb/N0 = 10 dB, the BER was obtained from
the average over TL = 100 000 independent realizations of the
UWB channel specified by the parameters 1/Λ = 14.11 ns,
Γ = 2.63 ns, and γ = 4.58 ns. The weight vector was initialized
to w̄1(0) = 1 of an all-one vector. Furthermore, we assumed
that g = 1, implying that the desired bit conflicts ISI from one
bit that was transmitted before the desired bit, as well as from
one bit that was transmitted after the desired bit. Note that,
given the parameters as shown in Fig. 3, the rank of the signal
subspace is K(g + 1) = 10. Based on the results in Fig. 3, we
observe that, when the rank of the detection subspace is lower
than the rank of the signal subspace, i.e., when U ≤ 10, the
BER performance of the hybrid DS-TH UWB system improves
as the rank of the detection subspace increases. The best BER
performance is attained when the detection subspace reaches
the rank of the signal subspace, i.e., when U = 10. When the
detection subspace uses a rank that is higher than the rank of
the signal subspace, higher BER is observed. This loss in BER
performance is because, in this case, more undesired signals,
including MUI, ISI, and noise, are collected by the adaptive
LBER-MUD.

Figs. 4 and 5 illustrate, respectively, the impact of the step
size μ and the kernel width ρn on the learning performance of

Fig. 4. Learning curves of the reduced-rank adaptive LBER-MUD with
respect to different step-size values for the hybrid DS-TH UWB systems that
support K = 5 users. The other parameters in the simulations were Eb/N0 =
10 dB, fdTb = 0.0001, U = 10, ρn = σn, g = 1, Nc = 16, Nψ = 4, and
L = 15.

Fig. 5. Learning curves of the reduced-rank adaptive LBER-MUD with re-
spect to different kernel width values for the hybrid DS-TH UWB systems that
support K = 5 users. The other parameters in the simulations were Eb/N0 =
10 dB, fdTb = 0.0001, U = 10, μ = 1.0, g = 1, Nc = 16, Nψ = 4, and
L = 15.

the reduced-rank adaptive LBER-MUDs for the hybrid DS-TH
UWB systems that support K = 5 users when operated at an
average SNR of Eb/N0 = 10 dB. In our simulations for both
figures, the BER was obtained by averaging over 100 000 in-
dependent realizations of the channel. Again, the weight vector
was initialized to w̄(0) = 1. Based on the results in Figs. 4 and
5, it can be observed that, for a given length of training symbols,
an appropriate step size μ and an appropriate kernel width ρn

are usually required for the reduced-rank adaptive LBER-MUD
to achieve the lowest BER. In particular, for the step-size values
considered in Fig. 4, the reduced-rank adaptive LBER-MUD
scheme with a step size of μ = 0.125 converges the fastest and
also achieves the lowest BER. If the step size is very low, e.g.,
μ = 0.05, or very high, e.g., μ = 1, the reduced-rank adaptive
LBER-MUD may converge with a lower convergence rate but a
higher BER. In the context of the impact from the kernel width
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Fig. 6. Learning curves of the reduced-rank adaptive LBER-MUD and LMS-
MUD with respect to different ranks of detection subspaces for the hybrid
DS-TH UWB systems that support K = 5 users. The other parameters in
the simulations were Eb/N0 = 10 dB, fdTb = 0.0001, μLMS = 0.001,
μLBER = 0.125, ρn =

√
10σn,g = 1, Nc = 16, Nψ = 4, and L = 15.

ρn, the results in Fig. 5 imply that there is an optimum kernel
width for a given number of training systems. For example,
when 100–150 training symbols are used, the attainable BER
first decreases as the value of the kernel width increases and
then increases as the value of the kernel width further increases.
Furthermore, for the kernel width values considered in Fig. 5,
the reduced-rank adaptive LBER-MUD with ρ2

n = 10σ2
n con-

verges with the highest speed. However, when a long training
sequence is used, the reduced-rank adaptive LBER-MUD with
ρ2

n = 100σ2
n may converge to a lower BER.

In Fig. 6, we compare the learning performance of the
reduced-rank adaptive LBER-MUD with the reduced-rank
adaptive LMS-MUD when the hybrid DS-TH UWB systems
operated at an average SNR of Eb/N0 = 10 dB support K =
5 users. In our simulations, we set the normalized Doppler
frequency shift to be fdTb = 0.0001. Furthermore, we assumed
that g = 1; hence, the desired bit conflicts ISI from one bit
that was transmitted before the desired bit, as well as from
one bit transmitted that was after the desired bit. Furthermore,
note that, as shown in Fig. 3, the rank of the signal subspace
is K(g + 1) = 10. Based on the results in Fig. 6, we can see
that, for a given rank U , LMS-MUD usually converges faster
than LBER-MUD. However, LBER-MUD can reach a lower
BER than LMS-MUD. Hence, with a sufficient number of train-
ing symbols, which may be obtained through the techniques
such as DD [11], the reduced-rank adaptive LBER-MUD can
attain a lower BER than the reduced-rank adaptive LMS-MUD.
Furthermore, the results in Fig. 6 show that, as the rank of
the detection subspace is increased from U = 5 to U = 10,
equating the signal subspace’s rank, the BER performance of
both the detectors is significantly improved.

Fig. 7 shows the BER versus the average SNR per bit per-
formance of the hybrid DS-TH UWB systems using either the
reduced-rank adaptive LBER-MUD or the reduced-rank adap-
tive LMS-MUD when communicating over the UWB channels
specified by the parameters 1/Λ = 14.11 ns, Γ = 2.63 ns, and
γ = 4.58 ns. The hybrid DS-TH UWB systems considered

Fig. 7. BER performance of the hybrid DS-TH UWB systems using reduced-
rank adaptive LBER- and LMS-MUD, where communicating over the UWB
channels modeled by the S–V channel model is associated with the param-
eters 1/Λ = 14.11 ns, Γ = 2.63 ns, and γ = 4.58 ns. The parameters in
the simulations were K = 5, fdTb = 0.0001, μLMS = 0.001, μLBER =
0.125 ρn =

√
10σn, g = 1, Nc = 16, Nψ = 4, and L = 15. The frame

length was fixed to 1000 b, where the first 400 b were used for training.

supported K = 5 users, and the normalized Doppler frequency
shift was assumed to be fdTb = 0.0001. Furthermore, we as-
sumed that the UWB channels had L = 15 resolvable paths,
resulting in g = 1. Hence, a desired data bit conflicts ISI from
one bit that was transmitted, respectively, before and after the
desired bit. Note that, given the parameters as shown in Fig. 7,
the rank of the signal subspace is K(g + 1) = 10. Based on
the results in Fig. 7, we can observe that, when the rank of the
detection subspace is lower than the rank of the signal subspace,
i.e., when U ≤ 10, the BER performance of the hybrid DS-
TH UWB system using either the LBER-MUD or the LMS-
MUD improves as the rank of the detection subspace increases.
The best BER performance is attained when the rank of the
detection subspace reaches the rank of the signal subspace, i.e.,
when U = 10. When the rank of the detection subspace is lower
than the rank of the signal subspace, error floors are observed,
explaining that the MUI cannot fully be suppressed by the
reduced-rank adaptive LBER- and LMS-MUD. Furthermore,
for a given rank of the detection subspace, the reduced-rank
adaptive LBER-MUD outperforms the reduced-rank adaptive
LMS-MUD in terms of their attainable BER.

Finally, in Fig. 8, we compare the BER versus the average
SNR per bit performance of the hybrid DS-TH UWB systems
using either the reduced-rank adaptive LBER-MUD or reduced-
rank adaptive LMS-MUD when communicating over the UWB
channels specified by the parameters 1/Λ = 14.11 ns, Γ =
2.63 ns, and γ = 4.58 ns. In our simulations, we assumed that
the UWB channel had L = 150 resolvable paths, which hence
resulted in severe ISI. In particular, in contrast to Fig. 7, where
the number of resolvable multipaths was L = 15, resulting in
g = 1, the L = 150 resolvable paths in Fig. 8 resulted in g = 3.
The other parameters used in Fig. 8 were the same as the
parameters in Fig. 7. Note that, for the parameters considered
in Fig. 8, the rank of the signal subspace is K(g + 1) = 20.
Again, as shown in the results in Fig. 8, the BER performance
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Fig. 8. BER performance of the hybrid DS-TH UWB systems using reduced-
rank adaptive LBER- and LMS-MUD, where communicating over the UWB
channels modeled by the S–V channel model is associated with the parameters
1/Λ = 14.11 ns, Γ = 2.63 ns, and γ = 4.58 ns. The parameters in the
simulations were K = 5, fdTb = 0.0001, μLMS = 0.5, μLBER = 0.5,
ρn =

√
100σn, g = 3, Nc = 16, Nψ = 4, and L = 150. The frame length

was fixed to 1000 b, where the first 400 b were used for training.

TABLE I
BER PERFORMANCE AND THE NUMBER OF OPERATIONS

REQUIRED TO DETECT ONE BIT

improves as the rank of the detection subspace increases until it
reaches the rank of the signal subspace. Compared with Fig. 7,
we can see that, for a given Eb/N0 value, the full-rank BER in
Fig. 8 is lower than the corresponding full-rank BER in Fig. 7.
This case is because the UWB channel considered associated
with Fig. 8 has L = 150 resolvable multipaths, which results
in a higher diversity gain than the UWB channel considered
associated with Fig. 7, which has L = 15 resolvable multipaths.
Furthermore, as observed in Fig. 7, for a given rank of detection
subspaces, the reduced-rank adaptive LBER-MUD outperforms
the reduced-rank adaptive LMS-MUD in terms of their attain-
able BER.

Finally, as an example, in Table I, we compare the per-
formance and complexity of the proposed algorithm with the
correlation detector, MMSE detector, full-rank LMS adaptive
detector, full-rank RLS adaptive detector, and reduced-rank
RLS adaptive detector when K = 5, Nc = 16, Nψ = 4, g = 1,
L = 15, and Eb/N0 = 10 dB. The principles of these related
detectors can be found in [6], [7], and [14]–[16].

Based on the table, we can have the following observations.
First, the BER performance of the correlation detector is worse

than all the other detectors, whereas the complexity of the
correlation detector is lower than all the other detectors, ex-
cept the LMS-adaptive MMSE-MUD. Second, the best BER
performance is achieved by the ideal MMSE-MUD. However,
the number of operations required by the ideal MMSE-MUD is
extremely higher than the other schemes. Furthermore, for the
ideal MMSE-MUD, knowledge about the signature sequences
and channel-state information (CSI) of all the users is required.
Because the exact CSI is usually extremely hard to acquire in
UWB communications, the ideal MMSE-MUD is therefore not
a desired detector for achieving low-complexity detection in
UWB systems. Third, the full-rank LMS-adaptive detector has
the lowest complexity. However, its BER performance is only
better than the correlation detector but is far worse than the ideal
MMSE-MUD. Fourth, the BER performance of the full-rank
RLS-adaptive detector is better than the full-rank LMS-adaptive
detector and also better than the correlation detector. However,
the BER performance is still much worse than the ideal MMSE-
MUD. Furthermore, the number of operations required by the
full-rank RLS-adaptive detector for detecting a bit is very
high compared with the full-rank LMS adaptive detector and
correlation detector, although it is much lower than the ideal
MMSE-MUD. Fifth, the BER performance of the reduced-rank
adaptive detector is better than the full-rank adaptive detector.
Moreover, the complexity of the reduced-rank LMS-adaptive
detector is higher than the full-rank LMS adaptive detector.
By contrast, the complexity of the reduced-rank RLS-adaptive
detector is lower than the full-rank RLS-adaptive detector.
Finally, the BER performance of the reduced-rank adaptive
LBER-MUD is better than all the other reduced- and full-rank
adaptive detectors. It can also be observed that the reduced-
rank RLS-adaptive MMSE-MUD has approximately the same
BER performance as the reduced-rank adaptive LBER-MUD.
However, the complexity of the reduced-rank RLS-adaptive de-
tector is slightly higher than the reduced-rank adaptive LBER-
MUD. Furthermore, the reduced-rank adaptive LBER-MUD’s
BER performance is not far from the ideal MMSE-MUD, but it
is far less complex than the ideal MMSE-MUD.

V. CONCLUSION

In this paper, we have investigated the learning and achiev-
able BER performance of the hybrid DS-TH UWB systems that
use the reduced-rank adaptive LBER-MUD when communi-
cating over the UWB channels that experience both MUI and
ISI, in addition to multipath fading. Furthermore, comparisons
have been made between the reduced-rank adaptive LBER-
MUD and the reduced-rank adaptive LMS-MUD in terms of
their learning and achievable BER performance. Our studies
and simulation results show that the reduced-rank adaptive
LBER-MUD constitutes one of the efficient detectors for the
hybrid DS-TH UWB systems. The reduced-rank technique
can be employed to achieve low-complexity detection in the
DS-TH UWB systems, as well as to improve their efficiency.
The reduced-rank adaptive LBER-MUD can achieve the full-
rank BER performance with the detection subspace with a rank
that is significantly lower than (NcNψ + L − 1) the original
observation space. Given a rank of the detection subspace, the



AHMED et al.: REDUCED-RANK ADAPTIVE LEAST BIT-ERROR-RATE DETECTION IN HYBRID DS-TH UWB SYSTEM 857

reduced-rank adaptive LBER-MUD outperforms the reduced-
rank adaptive LMS-MUD in terms of their attainable BER
performance. Furthermore, the reduced-rank adaptive LBER-
MUD can provide us more degrees of freedom for design
compared with the reduced-rank adaptive LMS-MUD with the
same level of complexity.
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