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Multiple-Antenna-Aided OFDM Employing
Genetic-Algorithm-Assisted Minimum Bit Error Rate
Multiuser Detection
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Abstract—The family of minimum bit error rate (MBER) mul-
tiuser detectors (MUD) is capable of outperforming the classic min-
imum mean-squared error (MMSE) MUD in terms of the achiev-
able bit-error rate (BER) owing to directly minimizing the BER
cost function. In this paper, we will invoke genetic algorithms (GAs)
for finding the optimum weight vectors of the MBER MUD in the
context of multiple-antenna-aided multiuser orthogonal frequency
division multiplexing (OFDM) . We will also show that the MBER
MUD is capable of supporting more users than the number of re-
ceiver antennas available, while outperforming the MMSE MUD.

Index Terms—Algorithm, genetic, minimum bit error rate,
multiuser detector, orthogonal frequency division multiplexing
(OFDM), space division multiple-access (SDMA).

1. INTRODUCTION

N AN EFFORT to increase the achievable system capacity
I of an orthogonal frequency division multiplexing (OFDM)
system, antenna arrays can be employed for supporting multiple
users in a space division multiple-access (SDMA) communica-
tions scenario [1], [2]. A variety of linear multiuser detectors
(MUDs) have been proposed for performing the separation of
OFDM users based on their unique, user-specific, spatial sig-
nature, provided that their channel impulse response (CIR) was
accurately estimated [1], [2]. The most popular SDMA-receiver
design strategy is constituted by the minimum mean-squared er-
ror (MMSE) MUD, which was extensively characterized in [1]
along with numerous other MUDs.

However, as recognized in [3]-[5] in a code division multiple-
access (CDMA) context, a better strategy is to choose the
linear detector’s coefficients so as to directly minimize the
error-probability or bit-error ratio (BER), rather than the mean-
squared error (MSE). This is because minimizing the MSE does
not necessarily guarantee that the BER of the system is also
minimized. The family of detectors that directly minimizes the
BER is referred to as the minimum bit-error rate (MBER) de-
tector class [3]-[6]. The MBER criterion has been successfully
applied in the linear equalization of binary signaling [4], for
decision feedback equalization (DFE) [7], and in linear MIMO
receivers [6]. It has also been shown that the MBER detector
can be used effectively for linear multiuser detection in CDMA
systems [3], [5].
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In a CDMA system, each user is separated by a unique user-
specific spreading code. However, given a certain bandwidth,
the effective data rate is determined by the ratio of the chip rate
and the spreading factor. As opposed to a CDMA system, an
SDMA system differentiates each user by the associated unique,
user-specific CIR encountered at the receiver antenna. Therefore
each user will be able to transmit in a multiuser environment
without reducing the data rate by the spreading factor (SF).
Hence, the combination of SDMA and OFDM is attractive, es-
pecially for high-rate transmission. In a rather simplistic, but
conceptually appealing interpretation, one could argue that the
unique user-specific CIR plays the role of a user-specific CDMA
signature, without reducing the data rate according to the SF of
a hypothetical CDMA system. In this analogy the CIR signa-
tures are not orthogonal to each other, but this is not a serious
impediment, because even orthogonal spreading codes become
nonorthogonal upon convolution by the CIR. However, owing
to the nonorthogonal nature of the CIRs an efficient multiuser
receiver is required for separating the users.

In [8] we have provided a formula for the exact MBER MUD
weight calculation of an uplink SDMA OFDM system. We have
also shown that the MBER MUD may significantly outperform
the MMSE MUD in terms of the achievable BER in a two-
user OFDM scenario. The novelty of this contribution is that we
propose a new genetic algorithm (GA)-assisted MBER MUD-
aided OFDM system, as a design alternative to the simplified
conjugate gradient (CG) algorithm of [8]. Our complexity com-
parisons show that the GA-based MBER MUD is capable of
achieving the MBER performance at a lower complexity than
that of the CG MBER MUD. We will also show that, unlike the
MMSE MUD, the MBER MUD has the capability of supporting
more users than the number of receivers at the base station.

The outline of the paper is as follows. Section II describes
our system model, and Section III proposes a new GA-aided
SDMA MUD. Section IV characterizes the achievable perfor-
mance, whereas Section V quantifies the attainable complexity
reduction. Finally, Section VI offers our conclusions.

II. SYSTEM MODEL
A. Space Division Multiple Access

Fig. 1 portrays the antenna array-aided uplink transmission
scenario considered. In this figure, each of the L simultaneous
users is equipped with a single transmission antenna, whereas
the base station’s receiver capitalizes on a P-element antenna
front end. The set of complex signals, z,[n, k|, p€1,..., P
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Fig. 1.
is assisted by a P-element antenna front-end.

received by the P-element antenna array in the kth subcarrier
of the nth OFDM symbol is constituted by the superposition
of the independently faded signals associated with the L users
sharing the same space-frequency resource [1]. The received
signal was corrupted by the Gaussian noise at the array elements.
The indices [n, k] have been omitted for notational convenience
during our forthcoming discourse, yielding [1]

x=Hs+n=xXx+n €))
where x is the (P x 1)-dimensional vector of the received sig-
nals, s is the (L x 1)-dimensional vector of transmitted signals,
n is the (P x 1)-dimensional noise vector, and X represents
the noiseless component of x. The complex data signal, s,
transmitted by the [th user, [ € 1,..., L and the additive white
Gaussian noise (AWGN) process, n,,, at any antenna array ele-
ment p,p € 1,..., P are assumed to exhibit a zero mean and a
variance of 012 and 202 for the data signal and AWGN process,
respectively. The frequency domain channel transfer function
(FDCHTF) matrix H of dimension P x L is constituted by the
set of channel transfer function vectors of the L users, each of
which describes the FDCHTF between the single-transmitter
antenna associated with a particular user [ and the reception
array elements p € 1,..., P. The FDCHTFs, H),; of the dif-
ferent array elements p € 1,..., P forusers [ € 1,...,L are
independent, stationary, and complex Gaussian distributed pro-
cesses with zero-mean and unit variance. The users are assumed
to be at a sufficiently high distance from each other, namely at
a distance of more than a typical spacing of 10 [9], so that the
transmitted signals of the different antennas experience inde-
pendent fading, when they reach the receiver. By contrast, in the
scenario, where the users are in each other’s proximity, methods
like beam forming [10] exploiting the difference in the angle of
arrival among the users may be applied for differentiating the
users.
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Schematic of an antenna-array-aided OFDM uplink scenario, where each of the L users is equipped with a single transmit antenna and the BS’s receiver

The estimate § of the transmitted signal vector s of the L si-
multaneous users is generated by the MUD upon linearly com-
bining the signals received by the P different antenna elements
at the BS with the aid of the array weight matrix W, resulting
in

§=Wlx. ()

By substituting x from (1) into (2) and considering the [th user’s
associated vector component, we will arrive at

g=wlx=wlHs+w/n
:§1+w{{n (3)

where the weight vector w; is the /th column of the weight ma-
trix W. At the current state-of-the-art, the most popular MUD
strategy is the MMSE design, where w; is chosen as the unique
vector minimizing the MSE expressed as MSE = E[|3; — s|%],
namely as [1]

wivvse) = (HHY + 2031)_1 H, 4)

where H; is the [th column of the FDCHTF matrix H.

B. Error Probability of a BPSK System

In this treatise, the terms BER and probability of error
Pr are used interchangeably. In a BPSK system we have
b, € {+1, —1}, the BER encountered at the output of the SDMA
MUD characterized by the combiner weight vector w; of user [
may be expressed as [5]

P(W[) = Pr[sgn(bl) . %{51 (Wz)} < 0},
= Pr(z; < 0] Q)
where z; is the signed decision variable given by

2z =sgn(by) - ®{5(w;)} (6)
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while, as before, b; represents the transmitted bit of user [, 5; is
the noiseless signal at the output of the MUD related to the [th
user, and R{x} is the real part of the complex-valued z.

The probability density function (PDF) of the decision vari-
able z; is constituted by a mixture of the Gaussian distributions
associated with each possible combination of the transmitted
data symbols of all users. Under the assumption that all the
noise-free signal states are equiprobable, the PDF of z; is given
by [5]

N, s bgn(bu)),(/))z

(_
-, (ZHWZ) Ze 202 wl wy
Nb\/Qﬂ'UM/wl W) j=1

(7
where [V, is the number of equiprobable combinations of the
binary vectors of the L users, i.e., we have N, = 2L | Further-

more, 31(] ) ,J €1,..., Ny, denotes the real part of the noiseless

signal at the output of the MUD related to the Ith user, whereas

bl(j),j € 1,..., Ny, is the transmitted bit of user .

The erroneous decision events are associated with the area
under the PDF curve in the interval (—oo, 0), which is quantified
as

0
Pg(w;) :/ P2, (215 W;) d. ®)

Upon using the integration by substitution technique and intro-
ducing the shorthand of

(zl — sgn (bg”) §l(j)) 0
o/ whwy )

the probability of error in (8) becomes

Pg(w;) = Nbx/ﬂi/ eXP(— (y;)2> dy;

yj =

Ny
1
= & 2 Qlei(wi)] (10)
j=1
where ¢; (w;) is given by
sgn (bl(j)) . §l(j) B sgn (bl(j)) . %{wﬁi]—} an

¢j(wi) = =
On WZHW O'”\/WZHW

and X;,j € 1,..., N, constitutes a possible value of X defined
in the context of (1).

C. Exact MBER Multiuser Detection

In our initial discourse we assumed the explicit knowledge of
the FDCHTF matrix H defined in (1). However, in practice H
has to be determined on the basis of the channel-impaired noisy
value of x and, hence, several adaptive techniques have been
proposed in [4], [5] to this effect. The FDCHTF can also be
estimated by using various channel estimation methods as out-
lined in great detail in [1], which will hence not be investigated
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MMSE solution
(w, BER) = (~0.885-j2, 0.0759)
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Fig. 2. An example of the BER cost function surface for subcarrier 62 in the

P =2, L = 2 OFDM SDMA system employing 128-subcarrier in the symbol-
invariant dispersive Gaussian channel given in Table I at SNR = 10 dB.

in this treatise. The MBER solution is defined as [5]

W{(MBER) = arg Hvlviln Pg(wp). (12)
However, the complex, irregular shape of the BER cost func-
tion, for example, as shown in Fig. 2, prevents us from deriving
a closed-form solution for the MBER MUD weights. Therefore,
in practice an iterative strategy based on the steepest descent gra-
dient method may be used for finding the MBER solution [5].
According to this method, the linear SDMA MUD’s weight vec-
tor w; is iteratively updated, commencing for example from the
MMSE weights, until the specific SDMA MUD weight vec-
tor that exhibits the lowest BER is arrived at. In each step, the
weight vector is updated according to a specific step size p in
the vectorial direction in which the BER cost function decreases
most rapidly, namely in the direction opposite to the gradient of
the BER cost function, which is given by

1 wywi — wi w1
le Pg (Wl) = : ls
Ny 2mo, (WZH Wl) 2
Ny (- )2 )
e T ggn (b}”) % (13)
j=1
where s =R{wf'x,}.

The BER is 1ndependent of the magnitude of the MUD’s
weight vector [8], and hence the knowledge of the orientation
of the detector’s weight vector is sufficient for defining the
decision boundary of the linear MBER OFDM/SDMA detector.
Therefore, the MBER detector has an infinite number of MUD
weight solutions, although with the aid of appropriate weight-
vector normalization, it is possible to reduce the infinite number
of MBER solutions to a single solution.

In [8], we employed the simplified conjugate gradient (CG)
algorithm for arriving at the minimum solution of the BER cost
function, and the step size p is fixed for every iteration.
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III. GENETIC ALGORITHM

Even though the MBER detector of [8] is capable of main-
taining a good performance, the convergence of the algorithm
is sensitive to the choice of the algorithm’s parameters. For ex-
ample, the choice of the initial condition for the MBER MUD is
critical for the solution to converge to the minimum of the BER
surface seen in Fig. 2. In [8], the MMSE SDMA MUD weight
solution has been used for initializing the CG algorithm-based
MUD, which is also exemplified in Fig. 2. However, this choice
of initial conditions does not necessarily guide the algorithm’s
convergence to the required MBER solution, if the BER surface
exhibits local minima, although this is not the case in Fig. 2.
Another parameter that affects the performance of the MBER
detector is the step size p used for updating the array weights
in the direction opposite to the BER gradient. The choice of
this step size must be based on a compromise, since a step-size
that is too high might not allow convergence to the minimum
BER point, whereas the opposite scenario will require a high
number of iterations for attaining convergence to the MBER
solution. An attractive method that might be able to assist the
MBER MUD in circumventing the above-mentioned problems
is constituted by the family of genetic algorithms [11], which
were extensively used in various CDMA and MC-CDMA MUD
problems in [12].

A. Overview of GAs

The philosophy of GA-based search methods is reminiscent of
the rules of evolution and survival in nature, where a group of the
fittest individuals in a population will survive. These individuals
will then “mate” and “mutate” for the sake of developing a new
set of individuals for the next generation. GAs were proposed
by John Holland at the University of Michigan in the early
1970s [13]. His original target was to study the adaptive process
of a natural system and later to adapt this natural system in
the context of an artificial system software. Holland’s research
was further developed by one of his students, Goldberg [11].
Since then, GAs have been employed in numerous applications,
such as in machine learning [14]-[16] and in modeling adaptive
processes [17], [18], but the most frequent application of GAs
may be found in the domain of function optimization [11], [13],
[19]. GAs have also been successfully applied in CDMA [12],
[20]-[27], beam forming [28], and space-time block coding
(STBC) [29] aided multiuser detection scenarios.

GAs are different from traditional optimization algorithms,
because they do not directly attempt to optimize the desired de-
cision variable [11]. Instead, they encode the decision variables
to be optimized, such as, for example, the SDMA MUD’s weight
vectors, into finite-length strings or GA individuals, which are
then optimized. In the case of SDMA-MUDs, both the real and
imaginary part of a complex-valued weight has to be represented
by a single GA string to create an individual. A GA does not
commence its optimization process from a single point in the
search space, but rather from an entire set of individuals, which
form the initial population. In other words, GAs may be invoked
in robust global search and optimization procedures that do not
require the knowledge of the objective function’s derivatives or

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 5, SEPTEMBER 2005

Use the probability of error
equation as the objective
function

Start GA
Initialisation

Is termination

No criterion met? Yes
Decision
taken
Finish GA
Mutation
Convert binary
A string to weight
Evaluation values

Fig. 3. Flowchart for the probability error optimization using GA.

any gradient-related information concerning the search space.
Hence, nondifferentiable functions and functions with multi-
ple local minima, like the BER surface of the SDMA-MUD,
represent classes of problems, where GAs can be efficiently
applied. For further details on the origin of GAs and their ap-
plication, readers are referred to the impressive compilation of
ideas in [11], [13], [30]. The most detailed portrayal of the
GA-aided CDMA MUDs may be found in [12].

B. Employing GAs in the MBER MUD-Aided SDMA OFDM
System

In this contribution, a GA is used for finding the best SDMA-
MUD weight vectors that will minimize the probability of error
in (10). Fig. 3 shows the flow chart of a GA invoked for the
optimization of the MBER MUD’s weights. The basic approach
of a GA system is quite simple. First, the probability of error is
used as the objective function to be solved by the GA. To begin
the GA process, an initial population consisting of Y number
of so-called individuals is created in the “Initialization” block,
where Y is known as the population size. Each individual rep-
resents a legitimate solution to the given optimization problem.
An individual can be considered as a vector consisting of the
decision variables to be optimized. Traditionally, the individ-
uals in a GA population take the form of binary bit vectors,
but they can also be represented by real values. In our specific
problem, each individual in a population is represented by the
two-dimensional binary arrays, which store the real and imagi-
nary part of the SDMA-MUD’s weight values. An example of
the GA’s individual is shown in Fig. 4. The initial population
may be generated randomly, optionally including as one of the
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WIR|1001110101001101
w;r |[1100110011001100
Wor|0111111100001010

W,y |0001100101011100

Wpgp|1001000111101101
Wpy [0100111101001101

Fig. 4. Anexample of an individual in the GA system represented by the two-
dimensional binary arrays where P is the number of antennas at the receiver, R
is the real part of the weight, and I is the imaginary part of the weight.

individuals the MMSE solution for the sake of expediting the
search as well as for reducing the complexity of the search.

Each individual in the population is evaluated according to
the so-called fitness value associated with it. This fitness value
is calculated by substituting the individual into the objective
function in the “Evaluation” block seen in Fig. 3. Following
the fitness evaluation process, the termination criterion will be
checked, which may be either a certain convergence accuracy,
a certain number of generations, or various other criteria. We
opted for terminating the evaluations after G number of genera-
tions. If the stopping criterion is not met, a group of the highest
fitness individuals is selected for creating a generation in the
“selection” block of Fig. 3. This group of individuals, referred
to as parents, will be subjected to various genetically inspired
operators, such as the so-called crossover and mutation, for the
sake of creating new individuals. The fitness of these new indi-
viduals will then be reevaluated and the termination criterion is
examined again.

This process will continue until the termination criterion is
finally met. After this stage, the best individual having the high-
est fitness encountered will be chosen as the solution to the
optimization problem.

IV. SIMULATION RESULTS

A. Performance of a Four-User and Four-Receiver
Antenna Scenario

The parameters used in our simulations are outlined in Table I.
The channel that we used in these investigations was the unfaded
dispersive Gaussian channel, where the z-domain transfer func-
tion associated with the CIR of all four users and four antennas
are summarized in Table II. Since the different users experi-
enced different CIR taps at each receiver antennas, we also had
unique FDCHTFs for the various users. As a starting point, we
used binary-type genomes [11] to represent the individual GAs.
Therefore, each real and imaginary part of each of the SDMA
MUD weights is represented by a 16-bit binary string. The GA’s
termination criterion is constituted by the maximum affordable
number of generations. After the termination of the optimization
process, the best individual encountered is deemed to be the best
MBER MUD weight solution, and hence it is converted to the
corresponding real and imaginary values of the weight vectors.
Our results derived for four different users employing the pa-

TABLE I
PARAMETERS FOR THE GA SIMULATIONS
Parameter Value or Type
OFDM
Number of subcarriers 128
Length of cyclic prefix 32
GA
GA type nonoverlapping
Population size 100
Number of generations 100

Mutation type

flip mutator

Probability of mutation

0.01

Crossover type

single-point crossover

Probability of crossover

0.6

Scaling

sigma truncation

Genome type

binary string
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Initialization uniform
Comparison bit comparator
Encoding/decoding binary encoding and decoding
Selection roulette wheel
Elitism on
Others
Receiver antennas 4
MBER detector algorithm Exact MBER

Channel impulse response dispersive Gaussian channel [1],

which is specified for each user in Table II

rameters summarized in Table I are presented in Fig. 5. In these
investigations we imposed the same complexity, as quantified
explicitly in Section V for both the CG and GA aided MBER
MUDs. The figure shows that the GA-aided MBER MUD and
the CG MBER MUD perform similarly for the same complex-
ity. We can also see from the figure that the MMSE MUD’s
BER performance is different for each user because of the dif-
ferent CIRs experienced at the base-station antennas. On the
other hand, the results of both types of MBER MUDs differs
only slightly for the different users, and the achievable BER
of the different users is close to that of the single-user single-
antenna scenario recorded for a nondispersive AWGN channel.
We have also derived the average of the achievable BER of all
the users determined for the CIRs summarized in Table II and
the corresponding results are portrayed in Fig. 6.

B. Performance of the Four-Antenna Scenario Versus
the Number of Users

So far, we have been supporting the same number of users as
the number of receiver antennas in our simulations. By contrast,
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Fig. 5. The BER performance of the four different users in an SDMA system employing four receiver antennas and 128-subcarrier OFDM for communicating
over the OFDM symbol-invariant dispersive Gaussian channel given in Table II. The other parameters are summarized in Table I. (a) User 1. (b) User 2. (c) User
3. (d) User 4.

TABLE II
CIR OF THE DIFFERENT USERS AT THE DIFFERENT ANTENNAS FOR THE 0 0 —— MMSE Detector
P — 4. [ — 4 SYSTEM 10 O —— CG MBER Detector
A A —— GA MBER Detector
10-1 ——— 1-user 1-antenna AWGN
User | Antenna | CIR
-2
Antenna 1 | (—0.097 — j0.062) — (0.56 + j0.40)z~% — (0.30 — 50.014)z~1! 5 10
User 1 Antenna 2 | (—0.50 — j0.51) — (0.116334 + j0.50)2~% + (0.37 — j0.12)z~ 11 Cg 10°
ser
)
Antenna 3 | (—0.13 — j0.20) + (0.19 + j0.31)z~% 4 (0.21 — j0.16)z~ S 10°
[
Antenna 4 | (—1.41 + j0.17) — (0.8 — j0.13)270 + (0.71 + j0.25)2~ 1! é S
Antenna 1 | (—0.24 — j0.32) + (0.24 + j0.18)276 + (0.25 + 50.38)z11 10
User 2 | Antenna 2| (0.48 — j0.27) — (0.16 + j0.27)2=5 — (0.041 + 50.24)2~1 10°
ser
Antenna 3 | (0.84 + j0.57) + (0.10 — 0.15)z75 + (0.61 + j0.018)z~"" 107 5
Antenna 4 | (—0.57 — j0.43) — (0.17 + j0.090) == + (0.11 + 50.15)2~11 0 5 10 15 20 25 30 35 40
Antenna 1 | (=0.79 + 51.43) + (0.082 + j0.35)276 + (0.16 — j0.59)z~11 Average SNR (dB)
—_j 37 4+ 70.11)2-5 -+ (0. 10.29)2—11 ) ) )
User 3 Antenna 2 | (0.53 - j0.52) + (0.87 + j0.11)27" + (0.29 + j0.29) Fig. 6. The average BER performance of the four different users characterized
Antenna 3 | (0.76 — j0.070) — (0.032 — 50.62)27% + (0.43 — j0.11)2~"! in Fig. 5 and ecountering the CIRs of Table II in an SDMA system employing
. . . four receiver antennas and 128-subcarrier OFDM for communicating over the
Antenna 4 | (0.85 4 50.104) — (0.068 — j0.42)z~% + (0.080 — 50.46)z 11 . . . . . . .
(085+7 )¢ 90.42)2 ( 7046) OFDM symbol-invariant dispersive Gaussian channel given in Table I.
Antenna 1 | (1.92 + 70.12) — (0.10 + 0.60)2~% — (0.17 + 50.0049)z~*!
User 4 | Antenna 2 | (0.42 JO.AT) + (0.0095 + 50.097)2=% — (0.21 + 50.23)z~""
ser
Antenna 3 | (—0.022 + 50.21) + (0.059 — j0.069)z 5 + (0.21 — j0.11)z~1* . .
( J0-21) + (0059 - 70.069) ¢ 010z Fig. 7 shows the BER results for user 1, when supporting a
Antenna 4 | (0.45 — 50.12) — (0.12 — j0.57)2~% — (0.30 + j0.21)z~"*

different number of users in the four receiver antenna scenario.
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Fig.7. The BER performance of user 1 employing both the MMSE and MBER
MUD in an SDMA system equipped with four receiver antennas for differ-
ent numbers of users employing 128-subcarrier OFDM communicating over
the OFDM symbol-invariant dispersive Gaussian channel given in Table I. (a)
MMSE MUD. (b) MBER MUD.

For the MBER MUD, we have used the GA-aided system in-
troduced in Section III.B, employing the simulation parameters
specified in Table I. We can see from the figure that as the num-
ber of users increases, the BER performance degrades owing
to the increased multiuser interference imposed. In the absence
of multiuser interference when only one user is communicat-
ing, both MUDs have similar BER curves. As expected, this
is because no multiuser interference is inflicted and hence the
MMSE MUD is also capable of minimizing the BER. However,
the MMSE MUDs characterized in Fig. 7(a) can only support
a maximum number of users that is equal to the number of re-
ceiver antennas, which is four in this case. Once the number
of users exceeds the number of receiver antennas, the MMSE
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MUD becomes incapable of differentiating the users, resulting
in the high residual BER seen in Fig. 7(a). By contrast, we ob-
served in Fig. 7(b) that the MBER MUD performs significantly
better. Furthermore, by comparing Fig. 7(a) and (b) we may
conclude that the MBER MUD is capable of supporting more
users than the number of receiver antennas employed.

These performance trends may be more explicitly interpreted
with the aid of Fig. 8, where the composition of user 1’s noise-
less received phasors are illustrated when transmitting s; = +1
in the six-user scenario employing four receiver antennas. In
this figure, the different processing stages are defined in Fig.
1. In short, stage I represents the composite multiuser received
signals, 1, . .., xp at the different antennas. The MUD stage II
outputs the product of the Hermitian of the MUD’s weight value,
wy,p € 1,..., P, of the individual antenna elements and the
corresponding x,,,p € 1,..., P, value, i.e., wl x. Finally, stage
IIT represents the combination of the outputs of each antenna.
Explicitly, the MMSE MUD attempts to minimize the Euclidean
distance between the estimated received symbol §; and the orig-
inal transmitted symbol s;. However, as can be observed at stage
III of Fig. 8, some of the 51 yvsk points are either on the wrong
half-plane of the BPSK phasor constellation or exactly on the
decision boundary, at yp = 0. As a consequence, the associated
residual BER experienced in the absence of noise can be cal-
culated by taking into account the relative frequency of these
points. On the other hand, since the MBER MUD is directly
minimizing the BER, the MUD’s weight values are adjusted for
the sake of ensuring that the estimated phasors are as far away
from the decision boundary as possible. Therefore, we can see
from Fig. 8 that the estimated received phasors 51 MBER are sig-
nificantly further from the BPSK decision boundary of yr = 0,
than for the MMSE MUD hence avoiding the MMSE-specific
residual BER.

V. COMPLEXITY COMPARISON

The advantage of using GAs for determining the MBER
MUD’s weight values compared with the CG method [8] is
that the GA does not necessarily require a good initial MUD
weight guess for exhibiting a rapid convergence. In this section,
we will estimate the complexity of these two methods. In this
paper, the complexity refers to the number objective function
evaluations or the gradient evaluations for the GA and the CG
methods, respectively.

The complexity of the CG algorithm is proportional to the
number of iterations used for finding the MBER solution on the
BER surface. In each iteration the gradient expression of (13)
will have to be calculated and the SDMA-MUD weight values
will be updated accordingly. Therefore the complexity of the
CG method may be estimated as:

Compl{CG} ~ Maximum number of iterations. (14)

On the other hand, if we used the maximum number of genera-
tions as the termination criterion in the GA, each generation of
the population contains a certain number of individuals, thus the
complexity of the GA-aided MUD is proportional to the product
of the population size and to the number of generations used,
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depicted in Fig. 1. Other parameters are given in Table 1.
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Fig. 9. The BER performance of user 1 versus complexity for the GA and CG
MBER MUD invoked in the OFDM/SDMA system employing P = 4, L, = 4,
and 128-subcarrier OFDM for communicating over the OFDM-symbol invariant
dispersive Gaussian channel given in Table I at SNR = 15 dB. The complexity
calculations were described in Section V.

which is given by

Compl{GA} ~ Population size X number of generations
=Y xG. (15)

By using (14) and (15), we can compare the complexity of the
two methods. Fig. 9 shows the probability of error for user 1 at
SNR = 15 dB for the P = 4 and L = 4 system configuration.
We can see from the figure that the GA-aided SDMA-MUD will
reach the minimum BER at a lower complexity compared to the
CG method.

VI. CONCLUSION

In this contribution, we have shown that GAs may be applied
in the context of an SDMA OFDM system for determining the
MBER MUD’s weight vectors. The GA-aided system has an
edge over the CG-based system, because it does not require an
initial weight solution. Unlike the MMSE MUD, the MBER
MUD is capable of supporting more users than the number of
receiver antennas. It was also shown that the GA is capable
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of approaching the MBER solution at a lower complexity than
the CG algorithm. Our future work will aim for finding more
efficient adaptive weight optimization algorithms in the context
of LDPC-coded SDMA OFDM systems.
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