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Abstract—High-order constellations are commonly used for
achieving high bandwidth efficiency in most communication sys-
tems. However, the complexity of the multiplication operations
associated with the standard max-sum approximation of the max-
imum a posteriori probability in the log-domain (Max-Log-MAP)
symbol-to-bit demapper is very high. In this contribution, we
conceive a low-complexity universal soft demapper, which reduces
the demapper’s complexity considerably for the binary-reflected
Gray-labeled pulse amplitude modulation (PAM), phase shift key-
ing (PSK), quadrature amplitude modulation (QAM), and ampli-
tude phase-shift keying (APSK) relying on product constellation
labeling (product-APSK). Our theoretical analysis demonstrates
that the proposed demapper has exactly the same performance as
the Max-Log-MAP demapper for the Gray-labeled PAM, PSK,
and QAM. Our theoretical analysis and simulation results also
demonstrate that for the Gray-labeled product-APSK, the per-
formance degradation of the proposed simplified soft demapper
is negligible for both 64-ary and 256-ary constellations compared
with the Max-Log-MAP demapper.

Index Terms—Amplitude phase-shift keying (APSK),
Max-Log-MAP, phase-shift keying (PSK), pulse amplitude
modulation (PAM), quadrature amplitude modulation (QAM),
soft demapper.

I. INTRODUCTION

H IGH-ORDER constellations are preferred in many trans-
mission systems, as they are capable of achieving high

bandwidth efficiency. For example, 256-ary quadrature ampli-
tude modulation (256QAM) and 4096QAM are employed by
the second-generation digital terrestrial television broadcasting
standard (DVB-T2) [1] and the second-generation digital cable
television broadcasting standard (DVB-C2) [2], respectively.
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Furthermore, 128QAM is recommended by the long-term evo-
lution advanced (LTE-Advanced) standards [3], which supports
reception even for high-velocity vehicular communications.
However, for these high-order modulation schemes, a high-
complexity symbol-to-bit demapper is required when using the
conventional maximum a posteriori probability based in the
log-domain (Log-MAP) demapping algorithm [4]. Albeit
the max-sum-approximation-based version of the Log-MAP
(Max-Log-MAP) demapper [5] eliminates the high-complexity
exponential and logarithmic operations in the Log-MAP al-
gorithm, the number of multiplications remains high, and the
complexity of the Max-Log-MAP algorithm is on the order
of O(2m), where 2m denotes the constellation size with m
representing the number of bits per symbol.

Numerous simplified demapper algorithms have been pro-
posed for specific constellations. In [6], a bit-metric-generation
approach is proposed for phase-shift keying (PSK) using Gray
labeling, which recursively generates bit metrics based on a
simplified function. This recursive demapper achieves the same
performance as the Max-Log-MAP demapper, while reducing
the number of multiplications by 59% for 32PSK. By decom-
posing the 2m-ary QAM constellation into two independent (in-
phase and quadrature) 2m/2-ary pulse amplitude modulation
(PAM) constellations, the complexity of the associated Max-
Log-MAP demapper is reduced from O(2m) to O(2m/2) [7],
[8]. The complexity of the QAM demapper can be further
reduced to the order of O(m) by invoking a piecewise linear ap-
proximation, but this inevitably imposes performance degrada-
tion [9]. A similar soft demapper is proposed for amplitude PSK
(APSK) in [10], where the constellation is partitioned with the
aid of simplified hard-decision threshold (HDT)-based bound-
ary lines, and soft information is calculated as the distances be-
tween the received signal and the HDT lines. This approximate
demapper reduces the number of multiplications to 4 and 11
for 16APSK and 32APSK, respectively. A simplified demapper
is also proposed for multilevel coding followed by multistage
decoding, which focuses on the APSK signal [11], and the
complexity of this APSK demapper is reduced to a constant
(neglecting comparison operations) at the cost of exponentially
increasing the memory required and necessitating an additional
division [11]. In [12], the complexity of the demapper is
reduced by reusing the multipliers, and only 16 multipliers
are used for all the four modulation modes (QPSK, 8PSK,
16APSK, and 32APSK) in the second-generation digital video
broadcasting over satellite (DVB-S2) system. For the constel-
lation rotation and cyclic Q delay modulation of DVB-T2,
several simplified demappers are proposed for reducing
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complexity by decreasing the number of the constellation points
required for calculating the minimum squared distances [13]–
[15]. For APSK using product constellation labeling (product-
APSK), it is shown [16] that a (2m1 × 2m2 = 2m)-ary APSK
constellation can be regarded as the product of 2m1 -ary PSK
and pseudo 2m2 -ary PAM, and a simplified demapper is pro-
posed in [17], which reduces the complexity of the demapper
from O(2m) to O(2m1) + O(2m2).

All the previously mentioned Gray labeling functions de-
signed for the various constellations are the classic binary-
reflected Gray labeling schemes proposed by Gray in 1953
as a means of reducing the number of bit errors, where two
adjacent constellation points differ in only one bit [18]. In [19],
Agrell et al. showed that the binary-reflected Gray labeling is
the optimal labeling for PAM, PSK, and QAM, which achieves
the lowest possible bit error probability among all possible la-
beling functions for the additive white Gaussian noise (AWGN)
channel.

Against this background, in this contribution, a univer-
sal low-complexity soft demapper is proposed for various
binary-reflected Gray-labeled constellations. By exploiting the
symmetry of Gray-labeled constellations, we show that the
complexity of a 2m-ary demapper can be reduced from O(2m)
to O(m). Moreover, our proposed low-complexity soft demap-
per attains the same performance as the Max-Log-MAP demap-
per for PAM, PSK, and QAM, whereas the performance
degradation of our low-complexity soft demapper is negligible
for product-APSK, in comparison with the Max-Log-MAP
solution.

The rest of this paper is organized as follows. In Section II,
the standard Max-Log-MAP demapper is highlighted. In
Section III, our simplified soft demapper is proposed, and
its performance and complexity are analyzed in detail. In
Section IV, the performance of both the proposed low-
complexity demapper and the conventional Max-Log-MAP
demapper is quantified for Gray-labeled QAM and product-
APSK for transmission over both AWGN and Rayleigh fading
channels. Our conclusions are drawn in Section V.

The following notations are employed throughout this con-
tribution. Uppercase calligraphic letters denote sets, e.g., X .
Boldface lowercase letters represent vectors, e.g., b, whose
ith element is written as bi. Uppercase letters denote random
variables (RVs), e.g., X , whereas the corresponding lowercase
letters represent their realizations, e.g., x. P (x) is used for the
probability mass function (pmf) of a discrete RV X , and p(x)
denotes the probability density function (pdf) of a continuous
RV X . P (y|x) represents the conditional pmf of Y = y given
X = x, whereas p(y|x) represents the conditional pdf of Y = y
given X = x. The magnitude operator is denoted by | · |.

II. SYSTEM MODEL WITH MAX-LOG-MAXIMUM

A POSTERIORI DEMAPPER

At the transmitter of a coded system, the coded bits are
grouped into bit vectors, each with the length of m and de-
noted by b = (b0 b1 . . . bm−1). Bit vector b is then mapped
onto constellation point x ∈ X for transmission, where X =
{xk, 0 ≤ k < 2m} denotes the signal set of size 2m.

At the receiver, the soft information for each coded bit is
calculated based on received signal y, which is then passed to
the decoder. For the Log-MAP demapper, the soft information
on the ith bit is expressed in the form of the log-likelihood ratio
(LLR) Li according to [17]

Li = log
P (bi = 0|y)
P (bi = 1|y) = log

∑
x∈X (0)

i

P (x|y)∑
x∈X (1)

i

P (x|y)

= log

∑
x∈X (0)

i

p(y|x)∑
x∈X (1)

i

p(y|x) (1)

for 0 ≤ i < m, where X (b)
i denotes the signal subset of X with

the ith bit being b ∈ {0, 1}. The last equality in (1) follows from
Bayes’ rule and the assumption that signals xk, 0 ≤ k < 2m are
equiprobable.

A flat-fading channel is modeled as y = hx+ n, where h
denotes the complex-valued channel state information (CSI),
and n stands for the complex-valued AWGN with zero mean
and variance N0/2 per dimension. When the perfect CSI h is
available at the receiver, the conditional pdf p(y|x) in (1) can be
written as p(y|x) = (1/πN0) exp(−|y − hx|2/N0). Observe
that given the availability of perfect CSI, the received signal
can be phase equalized, after which only the amplitude of CSI
h is required. Thus, we simply assume that h is nonnegative
real valued. By using the well-known max-sum approximation
of

∑
j zj ≈ maxj zj for nonnegative zj , where the summation

is dominated by the largest term, the conventional Max-Log-
MAP demapper is readily formulated as

Li ≈ log

max
x∈X (0)

i

p(y|x)

max
x∈X (1)

i

p(y|x)

= − 1
N0

(
min

x∈X (0)
i

|y − hx|2 − min
x∈X (1)

i

|y − hx|2
)
. (2)

The Max-Log-MAP of (2) is a fairly accurate approximation
of the Log-MAP of (1) in the high signal-to-noise ratio (SNR)
region, and it avoids the complex exponential and logarith-
mic operations. For each received signal, the Max-Log-MAP
demapper calculates all the 2m squared Euclidean distances,
i.e., |y − hx|2 for every x ∈ X , to find the two minimum terms
described in (2). Therefore, its complexity quantified in terms
of multiplications is on the order of O(2m).

III. PROPOSED SIMPLIFIED SOFT DEMAPPER

After carefully examining (2), it is interesting to note that
item minx∈X |y−hx|2, i.e., the squared Euclidean distance
from received signal y to the nearest constellation point x∗,
always appears in (2), and it is equal to either min

x∈X (0)
i

|y−
hx|2 or min

x∈X (1)
i

|y−hx|2, depending on the ith bit of x∗

being 0 or 1. In other words, |y−hx∗|2 is always one of the
two terms in (2). By denoting the bit vector that maps to signal
x∗ as b∗=(b∗0 b

∗
1 . . . b∗m−1), the other item in (2) represents the

squared Euclidean distance from y to the nearest constellation
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point in subset X (b∗
i
)

i , which is denoted by x∗
i,b∗

i

, where we have

b=1−b.
For Gray-labeled constellations, we will show that x∗ and

x∗
i,b∗

i

, 0 ≤ i < m, can be determined by using simple compar-

ison and addition operations. Afterward, we only have to cal-
culate the m+ 1 squared Euclidean distances, i.e., |y − hx∗|2
and |y − hx∗

i,b∗
i

|2 for 0 ≤ i < m. Therefore, the complexity of

our proposed demapper is on the order of O(m).
Accordingly, we divide the demapping procedure into three

steps: 1) finding x∗ and b∗; 2) determining x∗
i,b∗

i

; and

3) calculating Li according to (2). For binary-reflected Gray-
labeled constellations, we have the following lemma from [20],
describing how to obtain b∗.

Lemma 1: For binary-reflected Gray labeling b → xk, by
denoting ck = (ck0 ck1 . . . ckm−1) as the binary representation
of index k with the least significant bit (LSB) as the rightmost
bit, b can be calculated as

b =
(
ck0 ck1 . . . ckm−1

)
⊕
(
0 ck0 . . . ckm−2

)
(3)

where ⊕ represents the bitwise XOR operation.
The expressions generated for determining x∗ and x∗

i,b∗
i

are

slightly different for various constellations. In the following, the
simplified soft demappers designed for the Gray-labeled PAM,
QAM, PSK, and product-APSK are presented in detail.

A. PAM Demapper

Without loss of generality, we assume that all the signals as-
sociated with PAM are real valued. For the 2m-ary Gray-labeled
PAM, we denote the constellation points as x0, x1, . . . , x2m−1

with the kth constellation point xk given by xk = δ(−(2m −
1) + 2k)/2, where δ denotes the distance between each pair
of adjacent constellation points. The detailed PAM demapping
procedure is given as follows.

1) Find x∗ and b∗. For 2m-PAM, signal space can be di-
vided into 2m intervals separated by amplitude thresholds
−(2m−1 − 1)δ, −(2m−1 − 2)δ, . . . , (2m−1 − 1)δ. Mul-
tiplying h with the thresholds can be implemented by
SHIFT-ADD operations, since the thresholds are constants.
Additionally, we can use the binary-search algorithm to
find the specific interval in which y is located. Therefore,
only m comparison operations are required for obtaining
x∗ = xk∗ . The corresponding bit vector b∗ can then be
calculated according to Lemma 1. An example for the
Gray-labeled 8PAM (Gray-8PAM) constellation is shown
in Fig. 1, where we have k∗ = 2 and b∗ = (0 1 1).

2) Determine x∗
i,b∗

i

. Considering the symmetric structure

of Gray-labeled PAM constellations, we have the fol-
lowing lemma for computing x∗

i,b∗
i

, which only requires

the binary representation of k∗ and addition operations,
instead of the need to calculate all the squared Euclidean
distances from y to the constellation points in subset

X (b∗
i
)

i and compare all the resultant 2m−1 metrics.

Fig. 1. Gray-8PAM constellation and illustration of demapping for the 0th bit
over the AWGN channel.

Lemma 2: For the binary-reflected Gray PAM b∗ → xk∗ ,
where xk∗ is the nearest constellation point to received signal
y, let ck

∗
= (ck

∗
0 ck

∗
1 . . . ck

∗
m−1) be the binary representation

of k∗ with the LSB as the rightmost bit. Then, the nearest

constellation point to y in subset X (b∗
i
)

i , namely, x∗
i,b∗

i

, can be

determined according to

x∗
i,b∗

i

= xk∗
i

(4)

where

k∗i = 2m−i−1 − ck
∗

i +
i−1∑
j=0

ck
∗

j 2m−j−1. (5)

Proof: See Appendix A. �
Calculate Li according to (2). After obtaining x∗, b∗, and x∗

i,b∗
i

,

we can rewrite Li as

Li = − 1
N0

(1 − 2b∗i )

(
|y − hx∗|2 −

∣∣∣y − hx∗
i,b∗

i

∣∣∣2) . (6)

It is clear that (6) is equivalent to (2) for the Gray-labeled
PAM. Hence, the performance of the proposed simplified soft
demapper is exactly the same as that of the standard Max-Log-
MAP demapper, while its complexity is reduced from O(2m)
to O(m).

B. QAM Demapper

The 2m-ary square Gray-labeled QAM can be decomposed
into two independent (in-phase and quadrature phase) 2m/2-ary
Gray-labeled PAMs, and we can apply our proposed simplified
PAM demapper to each of these two Gray-labeled PAMs. Thus,
the complexity of our simplified Gray-labeled QAM demapper
is reduced from O(2m) to O(m) without suffering any per-
formance loss, in comparison to the standard Max-Log-MAP
demapper.

C. PSK Demapper

By applying the same idea to PSK demapping, we can
also reduce the complexity from O(2m) to O(m) without any
performance loss, compared with the Max-Log-MAP solution.
For 2m-ary Gray-labeled PSK, the signal set can be written
in the polar coordinate format as X = {xk =

√
Es exp(j(2k +

1)π/2m), 0 ≤ k < 2m}, where Es denotes the energy of the
transmitted signals, and j =

√
−1. An example of the Gray-

8PSK constellation is shown in Fig. 2.
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Fig. 2. Gray-8PSK constellation and illustration of demapping for the zeroth
bit over the AWGN channel.

Let us express the phase-equalized received signal y in the
polar coordinate format as y = ρy exp(jϕy), where ρy and ϕy

denote the amplitude and phase of y, respectively, and 0 ≤
ϕy < 2π. Then, the squared Euclidean distance |y − hx|2 can
be written as

|y − hx|2 =
∣∣∣ρy exp(jϕy)− h

√
Es exp(jϕx)

∣∣∣2
= ρ2y + h2Es − 2ρyh

√
Es cos(ϕx − ϕy)

= ρ2y + h2Es − 2ρyh
√
Es cos (φ(x, y)) (7)

where ϕx is the phase of x, and φ(x, y) is defined as

φ(x, y) =

{
|ϕx − ϕy|, 0 ≤ |ϕx − ϕy| ≤ π
2π − |ϕx − ϕy|, π < |ϕx − ϕy| < 2π

. (8)

It is obvious that φ(x, y) ∈ [0, π] and is commutative, i.e.,
φ(x, y) = φ(y, x). The mapping defined in (8) also satisfies the
triangle inequality, that is, ∀x, y, z ∈ C, we have

φ(x, z) � φ(x, y) + φ(y, z) (9)

where C denotes the complex-valued space. The proof is given
in Appendix B. Therefore, φ(x, y) defines a distance over C,
which is referred to as the phase distance of x and y in this
paper.

Furthermore, multiplying x ∈ C with a positive value does
not change the phase of x, i.e., ϕhx = ϕx, ∀h > 0. Hence, we
have φ(hx, y) = φ(x, y), ∀h > 0. Since the cosine function is a
decreasing function in [0, π], minimizing the squared Euclidean
distance |y − hx|2 of (7) is equivalent to minimizing phase
distance φ(x, y). Therefore, we can simply use the phase of
the signal in the search process of the PSK demapper, and the
resultant PSK demapping procedure is detailed as follows.

1) Find x∗ and b∗. The signal space of the 2m-ary Gray-
labeled PSK can be divided into 2m phase intervals
separated by phase thresholds 0, π/2m−1, . . . , (2m −
1)π/2m−1, as shown in Fig. 2. Signal x∗ can be obtained
by comparing ϕy with the phase thresholds, which only
needs m comparisons using the binary-search algorithm.

Similar to the PAM demapper, after finding x∗ = xk∗ ,
the corresponding bit vector b∗ is calculated according to
Lemma 1. For the case shown in Fig. 2, we have k∗ = 1
and b∗ = (0 0 1).

2) Determine x∗
i,b∗

i

. Unlike the PAM constellation, the PSK

constellation is circularly symmetric, and the phase dis-
tance function we used for comparisons is defined in
a piecewise fashion. Therefore, calculating x∗

i,b∗
i

for the

PSK demapper is slightly different from that of the PAM
demapper. We have the following lemma for computing
x∗
i,b∗

i

of Gray-labeled PSK.

Lemma 3: For the binary-reflected Gray PSK b∗ → xk∗ ,
where xk∗ is the constellation point nearest to received signal
y, let ck

∗
= (ck

∗
0 ck

∗
1 . . . ck

∗
m−1) be the binary representation

of k∗ with the LSB as the rightmost bit. Then, the point

nearest to y in subset X (b∗
i
)

i , namely, x∗
i,b∗

i

, can be determined

according to

x∗
i,b∗

i

= xk∗
i

(10)

where

k∗i =

⎧⎪⎨
⎪⎩

ck
∗

0 2m−1 + ck
∗

1 (2m−1 − 1), i = 0

2m−i−1 − ck
∗

i +
i−1∑
j=0

ck
∗

j 2m−j−1, i > 0
. (11)

Proof: See Appendix C. �
3) Calculate Li according to (2). After obtaining x∗, b∗,

and x∗
i,b∗

i

, the soft information on the ith bit, i.e., Li, is

calculated according to (6), which is the same result as
that in (2) for the Max-Log-MAP demapper, as is the case
for the PAM demapper. Clearly, the performance of this
simplified soft demapper is identical to that of the Max-
Log-MAP demapper, while only imposing a complexity
on the order of O(m).

D. Gray-APSK Demapper

1) Review of Gray-APSK: A generic M -ary APSK con-
stellation is composed of R concentric rings, each having
uniformly spaced PSK points. More specifically, the M -APSK
constellation set is given by X = {rl exp(j(2πi/nl + θl)), 0 ≤
i < nl, 0 ≤ l < R}, in which nl, rl, and θl denote the number
of PSK points, the radius, and the phase shift of the lth ring,
respectively, while we have

∑R−1
l=0 nl = M [21].

In [16], a special APSK constellation was proposed, which
consists of R = 2m2 rings and nl = 2m1 PSK points on each
ring for the (M = 2m)-ary APSK, where we have m1 +
m2 = m. This kind of APSK is known as the product-
APSK and is denoted by (M = 2m1 × 2m2)-APSK. The lth
radius of the product-APSK constellation, where 0 ≤ l < R,
is determined by

rl =
√

− ln
(
1 − (l + 1/2)2−m2

)
. (12)

The (2m = 2m1 × 2m2)-APSK can be regarded as the prod-
uct of 2m1 -ary PSK and 2m2 -ary pseudo PAM, where the
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Fig. 3. Gray-labeled (64 = 16 × 4)-APSK constellation, where the labels
are in the decimal form with the binary representation having the LSB as the
rightmost bit.

pseudo PAM and PSK sets are given, respectively, by A =
{rl, 0 ≤ l < 2m2} and P = {pk = exp(jϕk) with ϕk = (2k +
1)π/2m1 , 0 ≤ k < 2m1} [17]. We divide the m-bit vector
b into two subvectors bP and bA of lengths m1 and m2,
respectively. Specifically, bP consists of the leftmost m1 bits
of b, whereas bA contains the rest rightmost m2 bits of b.
Without loss of generality, bP is mapped to the equivalent 2m1 -
PSK point, and bA is mapped to the equivalent pseudo 2m2 -
PAM point. Gray labeling can be used for mapping the bits to
the equivalent constellation signals. This Gray-labeled APSK
(Gray-APSK) is a special product-APSK [16], [17]. The Gray-
labeled (64 = 16 × 4)-APSK is shown in Fig. 3.

2) Proposed Demapping Algorithm for Gray-APSK: Like
the other constellations previously discussed, the standard Max-
Log-MAP demapping designed for Gray-APSK also uses (2).
By writing transmitted signal x and received signal y in the
polar-coordinate format, the squared Euclidean distance |y −
hx|2 for Gray-APSK can be readily expressed as

|y − hx|2 = ρ2y + h2ρ2x − 2hρxρy cos (φ(x, y))

= (ρy cos (φ(x, y))− hρx)
2 + ρ2y sin

2 (φ(x, y)) (13)

where ρx and ρy represent the amplitudes of x and y, respec-
tively, and φ(x, y) is the phase distance between x and y, as
defined in (8).

Due to the circular symmetry of the Gray-APSK constella-
tion, it is clear that the nearest constellation point x∗ from y
has the smallest phase distance, i.e., φ(x∗, y) is the smallest
one in set {φ(x, y), ϕx ∈ P}, and it is no larger than π/2m1 ,
as exemplified in Fig. 3. Furthermore, according to (13), the
amplitude of x∗, which is denoted by ρx∗ , satisfies

ρx∗ = arg min
ρx∈A

|ρy cos (φ(x∗, y))− hρx| . (14)

After determining the phase and the amplitude of x∗, it is easy
to find the corresponding bit label b∗. As for finding x∗

i,b∗
i

, this

depends on whether the ith bit is related to the phase or the
amplitude.

For the bits related to the phase of the Gray-APSK signal,
i.e., for 0 ≤ i < m1, the phase of x∗

i,b∗
i

, which is denoted by

ϕx∗
i,b∗

i

, can be readily determined based on Lemma 3 owing to

the uniform distribution of the phases, whereas the amplitude
of x∗

i,b∗
i

, which is denoted by ρx∗
i,b∗

i

, obeys

ρx∗
i,b∗

i

= arg min
ρx∈A

∣∣∣ρy cos(φ(
x∗
i,b∗

i

, y
))

− hρx

∣∣∣ . (15)

For the bits mapped to the amplitude of the Gray-APSK
signal, i.e., for m1 ≤ i < m, it is clear that the phase of x∗

i,b∗
i

is exactly the same as that of x∗, and we may approximately
obtain the amplitude of x∗

i,b∗
i

via Lemma 2. However, due to the

nonuniformly spaced amplitudes of A, such an approximation
may cause some errors, albeit the performance loss is fortu-
nately negligible, as will be detailed later in Section III-D4.

Upon obtaining x∗, b∗, and x∗
i,b∗

i

, we can readily determine

the demapping output of the ith bit based on (6). This simplified
Gray-APSK demapping procedure is summarized as follows.

1) Find x∗ and b∗. The phase of x∗ is determined by
minimizing the phase difference from y to x with phase
ϕx ∈ P , and its amplitude is determined according to
(14). Having obtained ϕx∗ = ϕkP∗ and ρx∗ = rkA∗ , sub-
bit vectors bP∗

and bA∗
are calculated according to

Lemma 1, yielding b∗ = (bP∗
bA∗

).
2) Determine x∗

i,b∗
i

. For the leftmost m1 bits that are related

to the phases of the Gray-APSK signals, we can obtain
the phase of x∗

i,b∗
i

according to Lemma 3 and its amplitude

according to (15). For the rightmost m2 bits, i.e., m1 ≤
i < m, the phase of x∗

i,b∗
i

is exactly the same as ϕx∗ , and

its amplitude is approximately determined according to
Lemma 2.

3) Calculate Li according to (2). After obtaining x∗, b∗, and
x∗
i,b∗

i

, the soft information on the ith bit, i.e., Li, is given

by (6), as for the other demappers.

3) Complexity Analysis: Step 1) determines x∗ and b∗. The
phase of x∗ can be readily obtained by simple comparison
operations, and its amplitude is determined according to (14),
which requires one multiplication for ρy cos(φ(x

∗, y)) and
m2 comparison operations. Having determined x∗, calculating
b∗ only requires some low-complexity XOR operations. The
complexity of step 2) is mainly associated with determining the
amplitude of x∗

i,b∗
i

according to (15), for 0 ≤ i < m1, which

requires one multiplication operation for ρy cos(φ(x
∗
i,b∗

i

, y))

and m2 comparison operations. It is therefore clear that the
complexity of the proposed simplified Gray-APSK demapper
is O(2 ×m1 +m2) ≈ O(m), which is dramatically lower than
the complexity of O(2m) required by the standard Max-Log-
MAP solution.
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Fig. 4. Pseudo 4PAM decomposed from the (64=16×4)-APSK constellation.

An alternative complexity analysis, which is “easier” to
follow is outlined below. The demapper proposed for (2m =
2m1 × 2m2)-APSK is equivalent to the demapper conceived
for 2m1 -ary PSK implemented with the aid of the simplified
PSK demapping procedure in Section III-C at the complexity
of O(m1) and the demapper for the 2m2 -ary pseudo PAM
implemented with the aid of the simplified PAM demapping
procedure in Section III-A at the complexity of O(m2). There-
fore, the complexity of the proposed simplified Gray-APSK
demapper is approximately O(m1) + O(m2) ≈ O(m). It is
worth emphasizing again that the complexity of our proposed
simplified Gray-APSK demapper is also much lower than that
of the simplified soft demapper for product-APSK given in [17],
which is on the order of O(2m1) + O(2m2).

4) Performance Analysis: Owing to the fact that the phase
of the APSK constellation is uniformly spaced, Lemma 3
always holds when demapping the leftmost m1 bits, and the
results of the proposed demapper are exactly the same as those
of the Max-Log-MAP demapper. However, unlike in the con-
ventional PAM, the distances between pairs of adjacent points
in the corresponding pseudo PAM part of the Gray-APSK
constellation are not constant, which means that Lemma 2 does
not always hold. Therefore, when demapping the rightmost
m2 bits with the aid of Lemma 2, the resultant x∗

i,b∗
i

may

not always be the point nearest to y in subset X (b∗
i
)

i , which
may slightly increase the absolute value of the LLR in (2)
and, consequently, results in some performance degradation.
Fortunately, this degradation is negligible. In the following, we
present the detailed analysis of this performance loss with the
aid of Gray-labeled 64-APSK and 256-APSK.

a) (64 = 16 × 4)-APSK: As shown in Fig. 4, to demap
the rightmost 2 bits related to the amplitudes in the (64 = 16 ×
4)-APSK, we have the scalar projection of y in the direction of
ϕx∗ and the pseudo Gray 4PAM constellation set A. We denote
the projection as ρ̂y = ρy cos(φ(x

∗, y)) and the thresholds as
d1 = (r1 + r2)/2 and d2 = (r0 + r3)/2. If ρ̂y is smaller than
d1, we have r∗ = r0 or r1, and the zeroth bit of bA∗

must
be 0. The constellation subset with the zeroth bit being 1 is
A(1)

0 = {r2, r3}, and obviously, the nearest point to ρ̂y in A(1)
0

is r∗0,1 = r2, which is identical to the result given by Lemma 2.
If ρ̂y is larger than d1, we have bA∗

0 = 1 and r∗0,0 = r1, which
is also the same result given by Lemma 2. Therefore, the
proposed demapper achieves the same result as the Max-Log-
MAP demapper for the zeroth bit of the pseudo 4PAM, and no
error is introduced.

However, for the first bit of the pseudo 4PAM, when ρ̂y
falls in the interval of (d1, d2) known as the error interval,1

1Here, we have d1 < d2 according to (12).

Fig. 5. LLR of the first bit of the pseudo 4PAM decomposed from
(64 = 16 × 4)-APSK over the AWGN channel with Es/N0 = 10 dB.

the nearest constellation point to ρ̂y in A is r∗ = r2, and we

have bA∗
= (1 1) and A(0)

1 = {r0, r3}. The point nearest to

ρ̂y in A(0)
1 is supposed to be r∗1,0 = r3 according to Lemma 2,

but in fact, ρ̂y is closer to r0 because of the asymmetry of the
pseudo PAM. The proposed demapper uses a farther point that
increases the absolute value of the LLR in (2). The increment of
the absolute value of the LLR caused by the proposed demapper
is bounded by

ΔL =
(
|ρ̂y − r3|2 − |ρ̂y − r0|2

)
/N0

=(r3 − r0)(r0 + r3 − 2ρ̂y)/N0

< (r3 − r0)(r0 + r3 − r1 − r2)/N0. (16)

The exact and correct absolute LLR value is

|L1| =
(
|ρ̂y − r0|2 − |ρ̂y − r2|2

)
/N0

=(r2 − r0)(2ρ̂y − r0 − r2)/N0

> (r2 − r0)(r1 − r0)/N0. (17)

Therefore, the ratio of ΔL over |L1| is bounded by

ΔL

|L1|
<

(r3 − r0)(r3 + r0 − r1 − r2)

(r2 − r0)(r1 − r0)
≈ 0.708. (18)

The LLRs of the first bit of the pseudo 4PAM calculated
by the Log-MAP, Max-Log-MAP, and our proposed demapper
are shown in Fig. 5. The LLR calculated by our proposed
demapper is exactly the same as that of the Max-Log-MAP
demapper when ρ̂y is outside the interval (d1, d2). When d1 <
ρ̂y < d2, the absolute value of the LLR calculated by our
proposed demapper is slightly larger than that of the Max-
Log-MAP demapper. It is interesting to note that the absolute
value of the LLR calculated by the Log-MAP demapper is also
slightly larger than that of the Max-Log-MAP demapper in
some regions, and it is worth remembering that the Max-Log-
MAP solution itself is an approximation of the optimal Log-
MAP solution.
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Fig. 6. LLRs of the first and second bits of the pseudo 8PAM decomposed
from (256 = 32 × 8)-APSK over the AWGN channel with Es/N0 = 14 dB.

The ratio (18) associated with the error is an upper bound.
Furthermore, this error only exists when ρ̂y ∈ (d1, d2), which
does not frequently happen, as will be detailed later. Before
analyzing the probability of ρ̂y falling into an error interval,
we further examine the larger constellation of (256 = 32 × 8)-
APSK.

b) (256 = 32 × 8)-APSK: Similar to (64 = 16 × 4)-
APSK, for (256 = 32 × 8)-APSK, the error also occurs when
demapping the rightmost 3 bits, since we use the pseudo
Gray 8PAM constellation. More specifically, if ρ̂y is smaller
than (r3 + r4)/2, the zeroth bit of bA∗

must be 0. The
constellation subset associated with the zeroth bit being 1 is
A(1)

0 = {r4, r5, r6, r7}, and obviously, the point closest to ρ̂y

in A(1)
0 is r∗0,1 = r4, which is the same result as that given by

Lemma 2. If ρ̂y is larger than (r3 + r4)/2, we have bA
∗

0 = 1 and
r∗0,0 = r3, which is also identical to the result given by
Lemma 2. Therefore, no error occurs when demapping the
zeroth bit using Lemma 2. Demapping the first bit using
Lemma 2 has one error interval ((r3 + r4)/2, (r1 + r6)/2),
whereas demapping the second bit using Lemma 2 has three
error intervals ((r0 + r3)/2, (r1 + r2)/2), ((r3 + r4)/2,
(r2 + r5)/2), and ((r5 + r6)/2, (r4 + r7)/2). The LLRs of
the first and second bits related to the pseudo 8PAM calculated
by the Log-MAP, Max-Log-MAP, and our proposed demapper
are shown in Fig. 6. The LLR calculated by our proposed
demapper is exactly the same as the Max-Log-MAP demapper
when ρ̂y is outside the error intervals. When ρ̂y falls within one
of the error intervals, the absolute value of the LLR calculated
by our proposed demapper is slightly larger than that of the
Max-Log-MAP demapper.

3) Error distribution: Since φ(x∗, y) represents the mini-
mum phase distance between received signal y and the constel-
lation points, we have φ(x∗, y) ≤ π/2m1 . As the constellation
order increases, φ(x∗, y) tends to 0, and cos(φ(x∗, y)) tends
to 1. For example, in the case of (64 = 16 × 4)-APSK, we
have m1 = 4, φ(x∗, y) ≤ π/16 = 0.1963, and cos(φ(x∗, y)) ≥
0.9808, whereas in the case of (256 = 32 × 8)-APSK, we
have m1 = 5, φ(x∗, y) ≤ π/32 = 0.0982, and cos(φ(x∗, y)) ≥

0.9952. Then, ρ̂y can be approximated by ρy , which obeys a
Rician distribution. Specifically

p(ρ̂y|r) ≈
2ρ̂y
N0

exp

(
−
ρ̂2y + r2

N0

)
I0

(
2rρ̂y
N0

)
(19)

where r denotes the amplitude of transmitted signal x, and I0(·)
is the modified Bessel function of the first kind with order zero.

The error intervals for the 2m2 -ary pseudo PAM can be
determined in the following recursive way.

i) For the zeroth bit and m2 ≥ 1, there is no error interval.
ii) For the first bit and m2 = 2, the error interval is ((r1 +

r2)/2, (r0 + r3)/2).
iii) For the kth bit, where 1 ≤ k < m2 and m2 ≥ 2, there are

2k − 1 error intervals. We denote the ith error interval as
(dm2,k

i,1 , dm2,k
i,2 ), where

dm2,k
i,1 =min

{(
r
e
m2,k

i,1

+r
e
m2,k

i,2

)/
2,
(
r
e
m2,k

i,3

+r
e
m2,k

i,4

)/
2
}

(20)

dm2,k
i,2 =max

{(
r
e
m2,k

i,1

+r
e
m2,k

i,2

)/
2,
(
r
e
m2,k

i,3

+r
e
m2,k

i,4

)/
2
}

(21)

and em2,k
i,j denotes the index of the corresponding radius

calculated by (12). For example, for case ii), we have
e2,11,1 = 1, e2,11,2 = 2, e2,11,3 = 0, and e2,11,4 = 3. In general, in-

dex em2,k
i,j can be recursively determined from em2−1,k−1

i,j

according to

em2,k
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

em2−1,k−1
i,j , 1≤ i≤2k−1−1

1≤j≤4
2m2−1−em2−1,k−1

i,j , 2k−1≤ i<2k−1
1≤j≤4

2m2−1−1, i=2k−1; j=1
2m2−1, i=2k−1; j=2
2m2−1−2m2−k−1−1, i=2k−1; j=3
2m2−1+2m2−k−1, i=2k−1; j=4.

(22)

For the product-APSK constellation set X , each ring has the
same number of points, and radius r is uniformly distributed
over set A. Therefore, the probability of ρ̂y falling into the error
interval (dm2,k

i,1 , dm2,k
i,2 ) is readily shown to be

P
(
dm2,k
i,1 < ρ̂y < dm2,k

i,2

)
=

2m2−1∑
s=0

P (rs)P
(
dm2,k
i,1 < ρ̂y < dm2,k

i,2 |rs
)

=
1

2m2

2m2−1∑
s=0

d
m2,k

i,2∫
d
m2,k

i,1

p(ρ̂y|rs)dρ̂y. (23)

It is clear that (23) does not have a closed-form expression.
Fortunately, since the Rician distribution can be approximated
by the Gaussian distribution at a high SNR, we have

P
(
dm2,k
i,1 < ρ̂y < dm2,k

i,2

)
≈ 1

2m2

2m2−1∑
s=0

(
Q

(
dm2,k
i,1 − rs√

N0/2

)
−Q

(
dm2,k
i,2 − rs√

N0/2

))

(24)
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Fig. 7. Probability of ρ̂y falling into the error interval(s) for (64 = 16 × 4)-
APSK and (256 = 32 × 8)-APSK, for the AWGN channel.

and the probability of ρ̂y falling into the error intervals can be
obtained by

Pe ≈
1

2m2

×
2m2−1∑
s=0

m2−1∑
k=1

2k−1∑
i=1

(
Q

(
dm2,k
i,1 − rs√

N0/2

)
−Q

(
dm2,k
i,2 − rs√

N0/2

))

(25)

where Q(x) = (1/
√

2π)
∫∞
x exp(−u2/2)du represents the

standard tail probability function of the Gaussian distribution
with zero mean and unity variance.

For the case of (64 = 16 × 4)-APSK, the probability of ρ̂y
falling into the error interval is shown in Fig. 7, as the function
of the SNR = Es/N0 over the AWGN channel. Three Pe’s are
shown in Fig. 7, namely, the two theoretical Pe’s derived by
the Rician and Gaussian approximations and the probability Pe

obtained by simulation. It can be observed that the probability
of ρ̂y falling into the error interval is quite small even at low
SNRs. At high SNRs, the Gaussian approximation matches well
with the simulation result, and probability Pe tends to zero with
the increase in the SNR. This is due to the fact that received
signal y is likely to be very close to transmitted signal x at a
high SNR, and consequently, the probability of ρ̂y falling into
the error interval becomes extremely small.

Fig. 7 also shows the probability of ρ̂y falling into the error
intervals for (256 = 32 × 8)-APSK for transmission over the
AWGN channel at different SNR values. Probability Pe is
much higher than that of 64-APSK, since 256-APSK has more
error intervals, but it is no more than 12% at low SNRs. At
high SNRs, the Gaussian approximation matches well with
the simulation result, and the probability decreases with the
increase in the SNR. Probability Pe tends to zero, given a
sufficiently high SNR value, which is outside the SNR region
shown in Fig. 7.

Our theoretical analysis of (64 = 16 × 4)-APSK and (256 =
32 × 8)-APSK, therefore, shows that the error caused by the
proposed simplified demapper is relatively small compared

with the accurate LLR, and the probability of ρ̂y falling into
the error intervals is also small (less than 6% for 64-APSK
and less than 12% for 256-APSK). Moreover, probability Pe

tends to zero at a sufficiently high SNR value. We can conclude
that the performance degradation associated with the proposed
demapper is negligible for (64 = 16 × 4)-APSK and (256 =
32 × 8)-APSK, in comparison with that of the Max-Log-MAP
demapper. This will be further demonstrated by the bit error
rate (BER) simulation results in Section IV.

It should be noted that Lemma 2 and 3 can be implemented
with the aid of a lookup table that defines the interval of y and
identifies which particular k∗i is used for each of the intervals
specified by a set of thresholds. For nonuniform constellations
such as product-APSK, we can use a larger lookup table, which
contains the additional error intervals required for maintaining
the performance, albeit this requires more comparison opera-
tions and an increased storage capacity.

IV. SIMULATION RESULTS

The BER performance of the proposed soft demapper was
evaluated by simulation. According to our analysis presented
in the previous sections, the proposed soft demapper achieves
exactly the same performance as the standard Max-Log-MAP
demapper for Gray-labeled PAM, PSK, and QAM. By contrast,
it suffers from a slight performance loss for the Gray-labeled
product-APSK because of the nonuniformly spaced pseudo
PAM constellation embedded in the product-APSK. We there-
fore carried out simulations for the QAM and product-APSK
constellations. The simulation parameters are listed as follows.

• Constellation Labeling: gray-labeled 64QAM, (64 =
16 × 4)-APSK, 256QAM and (256 = 32 × 8)-APSK;

• Demapper: the standard Max-Log-MAP demapper and the
proposed simplified soft demapper;

• Decoder: the 1/2-rate 64 800-bit long low-density parity-
check (LDPC) code of DVB-T2 was employed, whereby
the normalized Min-Sum decoding algorithm with a nor-
malization factor of α = 1/0.875 was selected [22]. The
maximum number of LDPC iterations was set to 50;

• Channel: AWGN and independent identically distributed
Rayleigh fading channels.

The achievable BER performance is shown in Figs. 8 and
9 for the AWGN and Rayleigh fading channels, respectively.
It can be observed that the BER curves obtained by the Max-
Log-MAP and our simplified demappers are overlapped for
the Gray-labeled 64QAM and 256QAM over both the AWGN
and Rayleigh fading channels. This confirms that the soft
information calculated by our proposed demapper is exactly
the same as that of the Max-Log-MAP demapper. The results
shown in Figs. 8 and 9 also confirm that for the Gray-labeled
product-APSK, the performance degradation caused by the
proposed demapper is negligible compared with the Max-Log-
MAP demapper. Specifically, at the BER of 10−5, the perfor-
mance loss is below 0.05 dB for the Gray-labeled 64APSK and
256APSK over both AWGN and Rayleigh channels, as shown
in Figs. 8 and 9. As expected, the performance degradation in
the case of (256 = 32 × 8)-APSK is slightly higher than that
of the (64 = 16 × 4)-APSK, owing to the fact that 256APSK
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Fig. 8. BER performance comparison over the AWGN channel.

Fig. 9. BER performance comparison over the Rayleigh fading channel.

has one more bit related to the pseudo PAM. However, the
performance loss still remains below 0.05 dB for 256APSK.

V. CONCLUSION

In this paper, a universal simplified soft demapper has been
proposed for various binary-reflected Gray-labeled constella-
tions. For the constellation of size 2m, our proposed demap-
per imposes a low-complexity order of O(m), instead of the
complexity order of O(2m) imposed by the standard Max-Log-
MAP demapper. Our theoretical analysis and simulation results
have shown that the proposed simplified demapper achieves
exactly the same performance as that of the Max-Log-MAP
solution for Gray-labeled PAM, PSK, and QAM, whereas for
the Gray-labeled product-APSK, the performance degradation
caused by our simplified demapper remains negligible com-
pared with that of the Max-Log-MAP demapper. More particu-
larly, we have verified that this performance loss is less than
0.05 dB for both (64 = 16 × 4)-APSK and (256 = 32 × 8)-
APSK for transmission over both the AWGN and Rayleigh
fading channels.

APPENDIX A
PROOF OF LEMMA 2

Once x∗ and b∗ are determined, constellation subset X (b∗
i
)

i

can be written as

X (b∗
i
)

i =
{
xk|xk ∈ X , cki−1 ⊕ cki = b∗i

}
(26)

where ck = (ck0 c
k
1 . . . ckm−1) denotes the binary representation

of k, and we have ck−1 = 0. By denoting the nearest constella-

tion point to x∗ in subset X (b∗
i
)

i as the k∗i th constellation point
xk∗

i
, we have

xk∗
i
= arg min

x∈X
(b∗

i
)

i

|x∗ − x| (27)

k∗i = arg min

k∈K
(b∗

i
)

i

|k∗ − k| (28)

where K(b∗
i
)

i = {k|0 ≤ k < 2m, cki−1 ⊕ cki = b∗i} denotes the

index set corresponding to X (b∗
i
)

i .

For k ∈ K(b∗
i
)

i , we can express k as k =
∑m−1

j=0 ckj 2m−j−1,

where we have cki−1 ⊕ cki = bk
∗

i = ck
∗

i−1 ⊕ ck
∗

i . Therefore,
we have

cki−1 = ck
∗

i−1 and cki = ck
∗

i or cki−1 = ck
∗

i−1 and cki = ck
∗

i . (29)

We now discuss the two situations.

i) The case of cki−1 = ck
∗

i−1 and cki = ck
∗

i . We have ck
∗

i−1 −
cki−1 = ±1, and∣∣∣∣∣∣
i−2∑
j1=0

(
ck

∗

j1
− ckj1

)
2m−j1−1 +

(
ck

∗

i−1 − cki−1

)
2m−i

∣∣∣∣∣∣
= 2m−i

∣∣∣∣∣∣
i−2∑
j1=0

(
ck

∗

j1
− ckj1

)
2i−j1−1 +

(
ck

∗

i−1 − cki−1

)∣∣∣∣∣∣
≥ 2m−i (30)

where the inequality follows from the fact that∑i−2
j1=0(c

k∗
j1

− ckj1)2
i−j1−1 must be even and that

ck
∗

i−1 − cki−1 is odd. We also have∣∣∣∣∣∣
m−1∑

j2=i+1

(
ck

∗

j2
− ckj2

)
2m−j2−1

∣∣∣∣∣∣ ≤
m−1∑

j2=i+1

∣∣ck∗

j2
− ckj2

∣∣ 2m−j2−1

≤
m−1∑

j2=i+1

2m−j2−1 = 2m−i−1 − 1. (31)

Then, we can find the lower bound of |k∗ − k| as

|k∗ − k| =

∣∣∣∣∣∣
i−2∑
j1=0

(
ck

∗

j1
− ckj1

)
2m−j1−1 +

(
ck

∗

i−1 − cki−1

)
2m−i

+
m−1∑

j2=i+1

(
ck

∗

j2
− ckj2

)
2m−j2−1

∣∣∣∣∣∣
≥

∣∣2m−i − (2m−i−1 − 1)
∣∣ = 2m−i−1 + 1. (32)
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ii) The case of cki−1 = ck
∗

i−1 and cki = ck
∗

i . If ∃ j1 ∈
{0, 1, . . . , i− 2}, which makes ckj1 = ck

∗
j1

, then we have

|k∗ − k| =

∣∣∣∣∣∣
i−2∑
j1=0

(
ck

∗

j1
− ckj1

)
2m−j1−1

+

m−1∑
j2=i

(
ck

∗

j2
− ckj2

)
2m−j2−1

∣∣∣∣∣∣

≥

∣∣∣∣∣∣
∣∣∣∣∣∣
i−2∑
j1=0

(
ck

∗

j1
− ckj1

)
2m−j1−1

∣∣∣∣∣∣

−

∣∣∣∣∣∣
m−1∑
j2=i

(
ck

∗

j2
− ckj2

)
2m−j2−1

∣∣∣∣∣∣
∣∣∣∣∣∣

≥
∣∣2m−i+1 − (2m−i − 1)

∣∣ = 2m−i + 1. (33)

On the other hand, if ckj1 = ck
∗

j1
for 0 ≤ j1 ≤ i− 2,

we have

|k∗ − k|

=

∣∣∣∣∣∣
(
ck

∗

i − ck
∗

i

)
2m−i−1 +

m−1∑
j2=i+1

(
ck

∗

j2
− ckj2

)
2m−j2−1

∣∣∣∣∣∣
= 2m−i−1 − (−1)c

k∗
i

m−1∑
j2=i+1

ck
∗

j2
2m−j2−1

+ (−1)c
k∗
i

m−1∑
j2=i+1

ckj22m−j2−1. (34)

Apparently, the minimum of (34) is smaller than 2m−i−1 and,
thus, smaller than both the lower bounds given in (32) and (33).
Since the first two items in (34) are fixed, minimizing |k∗ −
k| is equivalent to minimizing (−1)c

k∗
i

∑m−1
j2=i+1 c

k
j2

2m−j2−1.

Therefore, we have c
k∗
i

j = ck
∗

i , i+ 1 ≤ j ≤ m− 1, and

k∗i =
i−2∑
j1=0

ck
∗

j1
2m−j1−1 + ck

∗
i 2m−i−1 +

m−1∑
j2=i+1

ck
∗

i 2m−j2−1

= 2m−i−1 − ck
∗

i +
i−1∑
j=0

ck
∗

j 2m−j−1. (35)

It is clear that k∗i is the unique solution of (28). Hence, ∀ k ∈
K(b∗

i
)

i \ {k∗i}, we have |k∗ − k| ≥ |k∗ − k∗i |+ 1, and

|x∗ − xk| ≥ |x∗ − xk∗
i
|+ δ. (36)

Since x∗ is the nearest constellation point to y, we obtain

|y − hx∗| ≤ |h|δ/2 (37)

for y ∈ [−2m−1|h|δ, 2m−1|h|δ]. In this case, for k ∈ K(b∗
i
)

i \
{k∗i}, we have

|y − hxk| ≥ |h(x∗ − xk)| − |y − hx∗|
≥ |h|

(
|x∗ − xk∗

i
|+ δ

)
− |h|δ/2

≥
∣∣h(x∗ − xk∗

i
)
∣∣+ |y − hx∗| ≥ |y − hxk∗

i
|. (38)

It is easy to find that this inequality still holds when y is outside
the interval [−2m−1|h|δ, 2m−1|h|δ]. Therefore, xk∗

i
is not only

the nearest constellation point to x∗ in X (b∗
i
)

i but the nearest

constellation point to y in X (b∗
i
)

i as well. This completes the
proof of Lemma 2. �

APPENDIX B
PROOF OF THE TRIANGLE INEQUALITY

OF THE PHASE DISTANCE

From (8), φ(x, y) can be rewritten as φ(x, y) = min{|ϕx −
ϕy|, 2π − |ϕx − ϕy|}. The proof is divided into three parts
according to the values of |ϕx − ϕy| and |ϕy − ϕz|.

i) If |ϕx − ϕy| ≤ π and |ϕy − ϕz| ≤ π, we have

φ(x, y)+φ(y, z)= |ϕx−ϕy|+|ϕy−ϕz|≥|ϕx−ϕz|≥φ(x, z).
(39)

ii) For |ϕx − ϕy| > π and |ϕy − ϕz| ≤ π or |ϕx − ϕy| ≤ π
and |ϕy − ϕz| > π, without loss of generality, we assume
|ϕx − ϕy| > π and |ϕy − ϕz| ≤ π. Then, we have

φ(x, y) + φ(y, z) = 2π − |ϕx − ϕy|+ |ϕy − ϕz|
≥ 2π − |ϕx − ϕz| ≥ φ(x, z). (40)

iii) For |ϕx − ϕy| > π and |ϕy − ϕz| > π, without loss of
generality, we assume ϕx ≥ ϕz . Since ϕx, ϕy , and ϕz are
all inside the interval [0, 2π], we have ϕx ≥ ϕz > ϕy + π
or ϕz ≤ ϕx < ϕy − π. If ϕx ≥ ϕz > ϕy + π, we have

|ϕx−ϕy|+|ϕy−ϕz|+|ϕx−ϕz|=2ϕx−2ϕy<4π. (41)

If ϕz ≤ ϕx < ϕy − π, we have

|ϕx−ϕy|+|ϕy−ϕz|+|ϕx−ϕz|=2ϕy−2ϕz<4π. (42)

In both cases, we have

φ(x, y) + φ(y, z)
= 2π − |ϕx − ϕy|+ 2π − |ϕy − ϕz| > |ϕx − ϕz|
≥ φ(x, z). (43)

This completes the proof. �

APPENDIX C
PROOF OF LEMMA 3

The definitions of X (b∗
i
)

i and xk∗
i

are the same as given in
(26) and (27). Noting that

|x∗ − x|2 =
∣∣∣√Es exp(jϕx∗)−

√
Es exp(jϕx)

∣∣∣2
= 2Es − 2Es cos (φ(x

∗, x)) (44)
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we have

k∗i = arg min

k∈K
(b∗

i
)

i

φ(xk∗ , xk). (45)

Similar to the proof of Lemma 2, we can get the unique solution

of k∗i as shown in (11), which means that ∀ k ∈ K(b∗
i
)

i \ {k∗i},
we have

φ(xk, x
∗) ≥ φ(x∗, xk∗

i
) + 2π/2m. (46)

Since x∗ is the nearest constellation point to y, we obtain

φ(x∗, y) ≤ π/2m. (47)

According to (7), (9), (46), and (47), we have, ∀ k∈K(b∗
i
)

i \{k∗i}

φ(xk, y) ≥φ(x∗, xk)− φ(x∗, y)
≥φ(x∗, xk∗

i
) + 2π/2m − π/2m

≥φ(x∗, xk∗
i
) + φ(x∗, y) ≥ φ(xk∗

i
, y) (48)

|y − hxk| ≥ |y − hxk∗
i
|. (49)

Therefore, xk∗
i

is not only the nearest constellation point to x∗

in X (b∗
i
)

i but the nearest constellation point to y in X (b∗
i
)

i as well.
This completes the proof. �

REFERENCES

[1] Digital Video Broadcasting (DVB); Frame Structure Channel Coding and
Modulation for a Second Generation Digital Terrestrial Television Broad-
casting System (DVB-T2), ETSI EN Std. 302 755 V1.3.1, Apr. 2012.

[2] Digital Video Broadcasting (DVB); Frame Structure Channel Coding and
Modulation for a Second Generation Digital Transmission System for
Cable Systems (DVB-C2), ETSI EN Std. 302 769 V1.2.1, Apr. 2012.

[3] Third-Generation Partnership Project (3GPP); Technical specification
group radio access network; Physical layer aspects for evolved UTRA,
Third-Generation Partnership Project (3GPP), Sophia Antipolis, France.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/25814.htm

[4] J. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol de-
tectors with parallel structures for ISI channels,” IEEE Trans. Commun.,
vol. 42, no. 2/3/4, pp. 1661–1671, Feb./Mar./Apr. 1994.

[5] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal
and sub-optimal MAP decoding algorithms operating in the log domain,”
in Proc. IEEE ICC, Seattle, WA, USA, Jun. 18–22, 1995, vol. 2,
pp. 1009–1013.

[6] L. Wang, D. Xu, and X. Zhang, “Recursive bit metric generation for PSK
signals with Gray labeling,” IEEE Commun. Lett., vol. 16, no. 2, pp. 180–
182, Feb. 2012.

[7] E. Akay and E. Ayanoglu, “Low complexity decoding of bit-interleaved
coded modulation for M-ary QAM,” in Proc. IEEE ICC, Paris, France,
Jun. 20–24, 2004, vol. 2, pp. 901–905.

[8] C.-W. Chang, P.-N. Chen, and Y. S. Han, “A systematic bit-wise decom-
position of M-ary symbol metric,” IEEE Trans. Wireless Commun., vol. 5,
no. 10, pp. 2742–2751, Oct. 2006.

[9] F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary
interleaved COFDM with application to HIPERLAN/2,” in Proc. IEEE
ICC, New York, NY, USA, Apr. 28/May 2, 2002, vol. 2, pp. 664–668.

[10] M. Zhang and S. Kim, “Efficient soft demapping for M-ary APSK,” in
Proc. ICTC, Seoul, Korea, Sep. 28–30, 2011, pp. 641–644.

[11] G. Gül, A. Vargas, W. H. Gerstacker, and M. Breiling, “Low complex-
ity demapping algorithms for multilevel codes,” IEEE Trans. Commun.,
vol. 59, no. 4, pp. 998–1008, Apr. 2011.

[12] J. W. Park, M. H. Sunwoo, P. S. Kim, and D.-I. Chang, “Low complexity
soft-decision demapper for high order modulation of DVB-S2 system,” in
Proc. ISOCC, Busan, Korea, Nov. 24, 2008, pp. II-37–II-40.

[13] D. Pérez-Calderoñ, V. Baena-Lecuyer, A. C. Oria, P. López, and
J. G. Doblado, “Rotated constellation demapper for DVB-T2,” Electron.
Lett., vol. 47, no. 1, pp. 31–32, Jan. 2011.

[14] S. Tomasin and M. Butussi, “Low complexity demapping of rotated and
cyclic Q delayed constellations for DVB-T2,” IEEE Wireless Commun.
Lett., vol. 1, no. 2, pp. 81–84, Apr. 2012.

[15] Y. Fan and C. Tsui, “Low-complexity rotated QAM demapper for the
iterative receiver targeting DVB-T2 standard,” in Proc. IEEE VTC-Fall,
Québec City, QC, Canada, Sep. 3–6, 2012, pp. 1–5.

[16] Z. Liu, Q. Xie, K. Peng, and Z. Yang, “APSK constellation with
Gray mapping,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1271–1273,
Dec. 2011.

[17] Q. Xie, Z. Wang, and Z. Yang, “Simplified soft demapper for APSK with
product constellation labeling,” IEEE Trans. Wireless Commun., vol. 11,
no. 7, pp. 2649–2657, Jul. 2012.

[18] F. Gray, “Pulse code communications,” US Patent 2 632 058, Mar. 17,
1953.

[19] E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality of
the binary reflected Gray code,” IEEE Trans. Inf. Theory, vol. 50, no. 12,
pp. 3170–3182, Dec. 2004.

[20] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms:
Theory and Practice. Englewood Cliffs, NJ, USA: Prentice-Hall, 1977.

[21] R. De Gaudenzi, A. Guillen, and A. Martinez, “Performance analysis of
turbo-coded APSK modulations over nonlinear satellite channels,” IEEE
Trans. Wireless Commun., vol. 5, no. 9, pp. 2396–2407, Sep. 2006.

[22] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propa-
gation based decoding of low-density parity check codes,” IEEE Trans.
Commun., vol. 50, no. 3, pp. 406–414, Mar. 2002.

Qi Wang received the B.S. degree from Tsinghua
University, Beijing, China, in 2011, where he is
currently working toward the Ph.D. degree with the
Department of Electronic Engineering.

His current research interests include optical
wireless communications and channel coding and
modulation.

Qiuliang Xie received the B.Eng. degree in telecom-
munication engineering from Beijing University of
Posts and Telecommunications, Beijing, China, in
2006 and the Ph.D. degree in electronic engineering
from Tsinghua University, Beijing, in 2011, both
with high honors.

From July 2011 to March 2013, he was with Dig-
ital TV National Engineering Laboratory (Beijing)
Co., Ltd., where he participated in developing
China’s next-generation broadcasting standard. He is
currently a Postdoctoral Fellow with the Department

of Radiation Oncology, University of California, Los Angeles, CA, USA, where
he is engaged in medical image processing. His main research interests include
medical image processing and broadband wireless communication, specifi-
cally including information theory, coding theory, and image/signal processing
theories.

Zhaocheng Wang (SM’10) received the B.S., M.S.,
and Ph.D. degrees from Tsinghua University,
Beijing, China, in 1991, 1993, and 1996,
respectively.

From 1996 to 1997, he was a Postdoctoral Fellow
with Nanyang Technological University, Singapore.
From 1997 to 1999, he was with OKI Techno Centre
(Singapore) Pte. Ltd., first as a Research Engineer
and then as a Senior Engineer. From 1999 to 2009, he
was with Sony Deutschland GmbH, first as a Senior
Engineer and then as a Principal Engineer. He is

currently a Professor with the Department of Electronic Engineering, Tsinghua
University. He has published over 80 technical papers. He is the holder
of 30 U.S./European Union patents. His research interests include wireless
communications, digital broadcasting, and millimeter-wave communications.

Dr. Wang has served as a Technical Program Committee Cochair/Member of
many international conferences. He is a Fellow of the Institution of Engineering
and Technology.



130 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

Sheng Chen (M’90–SM’97–F’08) received the
B.Eng. degree in control engineering from East
China Petroleum Institute, Dongying, China, in
1982; the Ph.D. degree in control engineering from
City University London, London, U.K., in 1986; and
the D.Sc. degree from the University of Southamp-
ton, Southampton, U.K., in 2005.

From 1986 to 1999, he held research and academic
appointments with The University of Sheffield, The
University of Edinburgh, and the University of
Portsmouth, all in the U.K. Since 1999, he has been

with Electronics and Computer Science, University of Southampton, where
he is currently a Professor of intelligent systems and signal processing.
He is a Distinguished Adjunct Professor with King Abdulaziz University,
Jeddah, Saudi Arabia. He has published over 480 research papers. His recent
research interests include adaptive signal processing, wireless communications,
modeling and identification of nonlinear systems, neural network and machine
learning, intelligent control system design, evolutionary computation methods,
and optimization.

Dr. Chen is a Chartered Engineer and a Fellow of the Institution of Engineer-
ing and Technology. He was an Institute for Scientific Information highly cited
researcher in the engineering category in March 2004.

Lajos Hanzo (M’91–SM’92–F’04) received the
M.S. degree (with first-class honors) in electronics
and the Ph.D. degree from the Technical University
of Budapest, Budapest, Hungary, in 1976 and 1983,
respectively, the D.Sc. degree from the University of
Southampton, Southampton, U.K., in 2004, and the
“Doctor Honoris Causa” degree from the Technical
University of Budapest in 2009.

During his 35-year career in telecommunications,
he has held various research and academic posts in
Hungary, Germany, and the U.K. Since 1986, he has

been with the School of Electronics and Computer Science, University of
Southampton, Southampton, U.K., where he holds the Chair for Telecommuni-
cations. Since 2009, he has been a Chaired Professor with Tsinghua University,
Beijing China. He is currently directing a 100-strong academic research team,
working on a range of research projects in the field of wireless multimedia
communications sponsored by industry; the Engineering and Physical Sciences
Research Council, U.K.; the European IST Programme; and the Mobile Virtual
Centre of Excellence, U.K. He is an enthusiastic supporter of industrial and
academic liaison and offers a range of industrial courses. He has successfully
supervised 80 Ph.D. students, coauthored 20 John Wiley/IEEE Press books on
mobile radio communications totaling in excess of 10 000 pages, published
more than 1250 research entries on IEEE Xplore, and presented keynote
lectures. (For further information on research in progress and associated
publications, please refer to http://www-mobile.ecs.soton.ac.uk.)

Dr. Hanzo is Fellow of the Royal Academy of Engineering, U.K., a Fellow
of the Institution of Electrical Engineers, and a Governor of the IEEE Vehicular
Technology Society. He has been a Technical Program Committee Chair and a
General Chair for IEEE conferences. During 2008-2012, he was the Editor-in-
Chief of the IEEE Press. He has received a number of distinctions.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


