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Abstract—This paper introduces a new adaptive nonlinear
equalizer relying on a radial basis function (RBF) model, which is
designed based on the minimum bit error rate (MBER) criterion,
in the system setting of the intersymbol interference channel
plus cochannel interference (CCI). Our proposed algorithm is re-
ferred to as the online mixture of Gaussian-estimator-aided MBER
(OMG-MBER) equalizer. Specifically, a mixture of Gaussian-
based probability density function (pdf) estimator is used to model
the pdf of the decision variable, for which a novel online pdf update
algorithm is derived to track the incoming data. With the aid
of this novel online mixture of Gaussian-based sample-by-sample
updated pdf estimator, our adaptive nonlinear equalizer is capable
of updating its equalizer’s parameters sample by sample to aim
directly at minimizing the RBF nonlinear equalizer’s achievable
bit error rate (BER). The proposed OMG-MBER equalizer signifi-
cantly outperforms the existing online nonlinear MBER equalizer,
known as the least bit error rate equalizer, in terms of both the
convergence speed and the achievable BER, as is confirmed in our
simulation study.

Index Terms—Adaptive nonlinear equalizer, minimum bit error
rate (MBER), mixture of Gaussians, probability density function
(pdf), radial basis function (RBF).

I. INTRODUCTION

CHANNEL equalization as a standard approach in com-
munications to combat the dispersive effects of a channel

has been very well studied [1]–[4]. Both linear and nonlinear
equalizers have been proposed [5]–[9] and the majority of them
are based on the MMSE criterion. The MMSE equalizer has the
advantage of easy implementation with good performance. The
MMSE linear equalizer also has a natural link to adaptive filters
[10] and admits a very simple yet powerful online adaptation
by the least mean square (LMS) algorithm [11]. However, the
MMSE criterion is not equivalent to the minimum bit error rate
(MBER) criterion, and the latter is the ultimate performance
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criterion for communication channel equalization [12]–[32].
Equalizers based on the MBER criterion are thus of great in-
terest and have attracted considerable attention [14], [20]–[23],
[33]–[35]. The least bit error rate (LBER) nonlinear equalizer
for binary transmission was proposed in [33], which was shown
to achieve significant performance gain over both the adaptive
linear and nonlinear MMSE equalizers.

The equalization problem can alternatively be regarded as
a classification problem, where the task of the equalizer is
to determine the decision boundaries for separating the dif-
ferent classes of data. It is shown in [33] that the adaptive
MBER nonlinear equalizer achieves the decision boundary
that is close to the optimum Bayesian equalizer and so is its
equalization performance. While both the batch and sample-
by-sample adaptive nonlinear MBER equalizers were proposed
in [33], the latter, referred to as the LBER, is of particular
interest since it is an online adaptive algorithm with very
low computational complexity and is capable of tracking the
channel variation well. To update the gradient of the BER with
the new coming data, which is required for adapting the MBER
nonlinear equalizer’s parameters, it is necessary to adaptively
estimate the probability density function (pdf) of the signed
decision variable constructed based on the desired signal and
the equalizer output. The LBER nonlinear equalizer [33] adopts
a one-sample or single Gaussian kernel estimate for the pdf
of the signed decision variable to realize sample-by-sample
adaptation of the nonlinear equalizer’s parameters, in a manner
similar to the LMS algorithm that updates the linear equalizer’s
parameters using a one-sample estimate for the MSE [10].

The performance of an adaptive MBER nonlinear equalizer
is to a large extent determined by the online pdf estimator em-
ployed. Despite of its computational simplicity and its superior
performance over the adaptive MMSE equalizer, the LBER
nonlinear equalizer in [33] has a drawback, owing to the fact
that it adopts a one-sample pdf estimate, which is stochastic
by nature and is very sensitive to the noise in the received
signal sample. In statistical data learning, there exist a large
number of works [36]–[41] using the Gaussian mixture model
to estimate pdf. These kernel density estimators based on a
mixture of Gaussians however are batch learning algorithms
by nature and are unsuitable for online applications. In this
paper, we also use a kernel density estimator, consisting of a
small number of Gaussian kernels to estimate the pdf of the
signed decision variable. Our novel contribution is to propose a
new online mixture of Gaussian estimator (OMG) to update the
pdf estimate sample by sample. To be specific, a new Gaussian
kernel is formed for each new data, and it is then merged with
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the “nearest” existing Gaussian kernel in the kernel density
estimator. With the aid of this OMG for online estimation of
the signed decision variable’s pdf, the nonlinear equalizer’s
parameters can be adapted sample by sample in the way similar
to the LBER nonlinear equalizer of [33]. We refer to this new
adaptive MBER nonlinear equalizer as the OMG-aided MBER
(OMG-MBER) algorithm. Because the proposed OMG-MBER
equalizer relies on a much more accurate online pdf estimate,
unlike the one-sample pdf estimator of the LBER algorithm,
it outperforms the LBER nonlinear equalizer in terms of both
the convergence speed and the equalizer’s achievable BER. A
simulation study is carried out, and the results obtained con-
firm that the OMG-MBER equalizer significantly improve the
equalization performance, compared with the existing LBER
nonlinear equalizer.

This paper is organized as follows. Section II introduces the
equalization problem in the setting of the intersymbol inter-
ference channel plus cochannel interference (CCI) and reviews
the existing adaptive MMSE and MBER equalizers. Section III
details our proposed novel OMG-MBER nonlinear equalizer.
The simulation results are presented in Section IV and our
conclusions are given in Section V.

II. PRELIMINARIES

We first introduce the channel model and then review the
adaptive equalizers based on the MMSE and MBER criteria.

A. System Model

We assume, without loss of generality, that the system suffers
from one CCI. The received signal sample at symbol index k is
given by [42]

r(k) = r̄(k) + n(k) = r̄0(k) + r̄1(k) + n(k)

=

n0−1∑
i=0

a0, ib0(k − i) +

n1−1∑
i=0

a1, ib1(k − i) + n(k) (1)

where n(k) is the additive white Gaussian noise (AWGN) with
zero mean and variance E[n2(k)] = σ2

n; r̄(k), r̄0(k), and r̄1(k)
are the noise-free received signal, desired signal, and interfering
signal, respectively; a0, i, 0 ≤ i ≤ n0 − 1 and a1, i, 0 ≤ i ≤
n1 − 1, are the coefficients for the channel and the cochannel,
respectively; and b0(k) and b1(k) are the uncorrelated binary
desired and interfering data, respectively, taking value from the
set {±1}.

We assume that the equalizer length is m, namely, the equal-
ization is based on the received vector of the m most recently
received signal samples given by

r(k) = [r(k) r(k − 1) · · · r(k −m+ 1)]T . (2)

Then, (1) can be expressed in the matrix form as

r(k) = r̄(k) + n(k) = r̄0(k) + r̄1(k) + n(k)

=H0b0(k) +H1b1(k) + n(k) (3)

where n(k)=[n(k)n(k−1) · · ·n(k−m+1)]T is the AWGN
vector; b0(k)=[b0(k)b0(k − 1) · · · b0(k − n0 −m+ 2)]T and

b1(k) = [b1(k)b1(k − 1) · · · b1(k − n1 −m+ 2)]T are the de-
sired and interfering signal vectors, respectively; and H0 ∈
R

m×(m+n0−1) and H1 ∈ R
m×(m+n1−1) are the desired and

interfering channel matrices, respectively, given by

Hi=

⎡⎢⎢⎢⎢⎣
ai,0 ai,1 · · · ai, ni−1 0 · · · 0

0 ai,0 ai,1 · · · ai, ni−1
. . .

...
...

. . .
. . .

. . . · · · . . . 0
0 · · · 0 ai,0 ai,1 · · · ai, ni−1

⎤⎥⎥⎥⎥⎦
(4)

for i = 0 and 1. The equalization output can be expressed as

b̂0(k − d) = sgn (y(k)) with y(k) = f(r(k); w) (5)

where f(·; ·) denotes the equalizer function, w is the equalizer
parameter vector of an appropriate dimension containing all the
equalizer’s adjustable parameters, d is the decision delay, and
sgn(y) = 1 if y ≥ 0 and sgn(y) = −1 if y < 0.

As b0(k) and b1(k) are binary signals, there are N0 =
2m+n0−1 and N1 = 2m+n1−1 possible combinations or “states”
for b0(k) and b1(k), respectively. The jth state of b0(k)
is denoted b0, j , where 1 ≤ j ≤ N0, whereas the lth state of
b1(k) is denoted b1, l, where 1 ≤ l ≤ N1. Accordingly, there
are N0 and N1 states for r̄0(k) and r̄1(k), which are denoted
{r̄0, j = H0b0, j}N0

j=1 and {r̄1, l = H1b1, l}N1

l=1, respectively.
Consequently, there are Nr = N0 ×N1 states for r̄(k), which
we denote R = {r̄i}Nr

i=1. R can be divided into two subsets,
R+ and R−, corresponding to the dth element of b0, j , which

is denoted b
(d)
0, j , being +1 and −1, respectively. Thus, b

(d)
0, j

serves as the “class” label for r(k) ∈ R
m, and the equalization

(5) is equivalent to a classification process, which partitions
the m-dimensional observation space by the decision boundary
defined as

f(r; w) = 0. (6)

The optimal Bayesian equalizer y(k) = fB(r(k);w), given
the channel and cochannel, is expressed by [42], [43]

fB (r(k); w)=

N0∑
j=1

N1∑
l=1

b
(d)
0, j

(2πσ2
n)

m/2 N0N1

e
−‖r(k)−r̄0, j−r̄1, l‖2

2σ2
n

=

Nr∑
i=1

b
(d)
i

(2πσ2
n)

m/2 Nr

e
−‖r(k)−r̄i‖2

2σ2
n (7)

where b(d)i is the class label for r̄i. It can be seen that the dimen-
sion of the optimal Bayesian equalizer’s parameter vector w is
very large as w consists of all the r̄i. Thus, the computational
complexity of this Bayesian solution is often too high because
the size of R is typically huge.

B. Equalizer Based on the MMSE Criterion

Due to its mathematical tractability, the most widely adopted
criterion for training an equalizer is the MMSE criterion,
and the well-known LMS algorithm [11] offers an adaptive
algorithm for training a linear equalizer based on the MMSE
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criterion. The LMS algorithm can be also extended to train a
nonlinear equalizer according to

w(k)=w(k−1)+η (b0(k−d)−y(k))
∂f (r(k);w(k−1))

∂w
(8)

where η is a small positive step size.
The adaptive nonlinear equalizer design based on the radial

basis function (RBF) network was well studied [43], and the
RBF equalizer output is given by

y(k) = f (r(k); w) =

nc∑
j=1

αje
−‖r(k)−cj‖2

σ2
j (9)

where nc is the number of RBF nodes employed, and the RBF
equalizer parameter vector w consists of all the RBF weights
αj , variances σ2

j , and centers cj . The dimension of w is there-
fore nc(m+ 2) or w ∈ R

nc(m+2). The partial derivatives of the
equalizer output with respect to the equalizer’s parameters w in
(8) are given for 1 ≤ j ≤ nc by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂f(r(k);w)
∂αj

= e
−‖r(k)−cj‖2

σ2
j

∂f(r(k);w)
∂σ2

j

= αje
−‖r(k)−cj‖2

σ2
j

‖r(k)−cj‖2
σ4
j

∂f(r(k);w)
∂cj

= 2αje
−‖r(k)−cj‖2

σ2
j

r(k)−cj

σ2
j

.

(10)

For the linear equalizer y(k) = fL(r(k); w), the equalizer
parameter vector w has a dimension of m or w ∈ R

m. Thus,
for the linear equalizer

y(k) = wT r(k) (11)

equation (8) returns to its original LMS form, i.e.,

w(k) = w(k − 1) + η (b0(k − d)− y(k)) r(k). (12)

C. Equalizer Based on MBER Criterion

However, the ultimate goal of equalization is to minimize
the BER [12]–[16]. Many studies [20]–[23], [33]–[35] have
demonstrated that the MBER equalizer can significantly im-
prove the performance compared with the traditional equalizer
design based on the MMSE criterion. Specifically, for the linear
equalizer (11), the MBER design has been extensively studied
[13]–[16], [18], [20], and adaptive MBER linear equalizer
has been proposed based on the LBER algorithm [21], [23].
Moreover, the MBER design and its adaptive LBER algorithm
have been extended to the generic nonlinear equalizer of (5)
[33], [34].

The error probability of the equalizer (5) can be obtained
as [33]

PE(w) = Prob {sgn (b0(k − d)) y(k) < 0} . (13)

By defining the signed decision variable as ys(k)=sgn(b0(k −
d))y(k), we have

PE(w) =

0∫
−∞

py(ys)dys (14)

where py(ys) is the pdf of ys(k). Linearizing the equalizer
around r̄(k) yields [33]

y(k) = f (r̄(k) + n(k); w)

≈ f (r̄(k); w) + e(k) = ȳ(k) + e(k) (15)

where e(k) is an equivalent zero-mean Gaussian noise with
variance ρ2. Noting that the noise-free received signal ȳ(k)
takes value from the finite set, namely, ȳ(k) ∈ Yf = {ȳi =
f(r̄i; w)}Nr

i=1, the pdf of ys(k) can be approximated as [33]

py(ys) ≈
1

Nr

√
2πρ

Nr∑
i=1

e
− (

ys−sgn(b(d)i )ȳi)
2

2ρ2 . (16)

Substituting (16) into (14) then yields the following error
probability of the equalizer:

PE(w)≈ 1

Nr

√
2π

Nr∑
i=1

∞∫
ḡi(w)

e−
x2
i
2 dxi=

1
Nr

Nr∑
i=1

Q(ḡi(w)) (17)

where

Q(x) =
1√
2π

∞∫
x

e−
y2

2 dy (18)

ḡi(w) =
sgn

(
b
(d)
i

)
f(r̄i; w)

ρ
. (19)

Then, the gradient of PE(w) can be approximated as

�PE(w) ≈ − 1

Nr

√
2π

Nr∑
i=1

e
−

ȳ2
i

2ρ2
∂ḡi(w)

∂w

= − 1

Nr

√
2π

Nr∑
i=1

e
−

ȳ2
i

2ρ2 sgn
(
b
(d)
i

) ∂f(r̄i;w)

∂w
. (20)

Thus, if the channel and cochannel are known, the equalizer
parameters can be updated by minimizing the approximate BER
in (17), leading to the MBER updating rule, i.e.,

w(l) = w(l − 1)− η�PE (w(l − 1)) . (21)

In practice, the channel and cochannel are unknown. Thus,
set R and, hence, set Yf are unknown. The key to developing
an effective adaptive algorithm for implementing the MBER
design is to estimate the pdf py(ys) of the signed decision
variable ys(k) based on the training data DK = {r(k), b0(k −
d)}Kk=1 [33]. Specifically, given DK , the Parzen window or the
kernel density estimate of the pdf py(ys) is given as [33]

p̂y(ys) =
1

K
√

2πρ

K∑
k=1

e
− (ys−sgn(b0(k−d))y(k))2

2ρ2 . (22)
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Substituting (22) into (14) yields the estimated error probability
P̂E(w), the gradient of which is given by

�P̂E(w) = − 1

K
√

2πρ

K∑
k=1

e
− y2(k)

2ρ2 sgn (b0(k − d))

× ∂f (r(k); w)

∂w
. (23)

This leads to the block adaptive MBER algorithm [33], i.e.,

w(l) =w(l − 1) − η�P̂E(w(l − 1))

=w(l − 1) +
η

K
√

2πρ

K∑
k=1

e
− y2(k)

2ρ2 sgn (b0(k − d))

× ∂f (r(k);w(l − 1))
∂w

. (24)

To realize a sample-by-sample adaptation, the nonlinear
LBER algorithm [33] only uses a single data point to estimate
the pdf, i.e.,

p̃y(ys, k) =
1√
2πρ

e
− (ys−sgn(b0(k−d))y(k))2

2ρ2 . (25)

With this “instantaneous” pdf estimate, we have a “one-sample”
error probability estimate P̃E(w, k) with the stochastic gradi-
ent given by

�P̃E(w, k)=− 1√
2πρ

e
− y2(k)

2ρ2 sgn(b0(k−d))
∂f(r(k);w)

∂w
. (26)

This leads to the stochastic gradient adaptive algorithm known
as the LBER algorithm [33], i.e.,

w(k) = w(k − 1) +
η√
2πρ

e
− y2(k)

2ρ2 sgn (b0(k − d))

×∂f (r(k); w(k − 1))
∂w

(27)

in which the equalizer parameter vector is adjusted sample
by sample, in a similar manner to the LMS algorithm for the
nonlinear equalizer given in (8).

III. ONLINE MIXTURE OF GAUSSIAN-ESTIMATOR-AIDED

MBER EQUALIZER

To realize a sample-by-sample adaptive MBER nonlinear
equalizer, the LBER algorithm [33] uses a single sample to
estimate the pdf online. Our OMG-MBER adopts a novel OMG
pdf estimator. Specifically, we derive the kernel pdf estimator
based on a mixture of Gaussians with a small number of
mixtures, which is capable of adapting the pdf estimate sample
by sample. With the aid of this online kernel density estima-
tion algorithm, our adaptive MBER equalizer is capable of
updating its equalizer’s parameters sample by sample, similar
to the LBER algorithm. Since our OMG-MBER algorithm
relies on a much more accurate one-line pdf estimate, unlike
the one-sample pdf of the LBER algorithm, we expect our
OMG-MBER will outperform the LBER, at the expense of a
negligibly small increase in complexity.

A. Online Kernel-Based PDF Estimator

Our goal is to derive an online pdf estimator that updates
the estimate of py(ys) as each new data ys(k) is received. We
consider the pdf estimator based on the mixture of M Gaussians
[37] given by

p̂y(ys) = p̂(M) (ys; λM , μM , ρM )

=

M∑
j=1

λjG(ys; μj , ρj) (28)

s.t. λj > 0, 1 ≤ j ≤ M, and λT
M1M = 1 (29)

where λj , μj , and ρj are the weight, mean, and standard devi-
ation of the jth Gaussian kernel, respectively; λM = [λ1λ2 · · ·
λM ]T ; μM =[μ1μ2 · · ·μM ]T ; ρM =[ρ1ρ2 · · · ρM ]T ; 1M is the
M -dimensional vector whose elements are all equal to one; and

G(ys; μj , ρj) =
1√

2πρj
e
− (ys−μj)

2

2ρ2
j . (30)

At time k=0, we have the initial estimate for py(ys) given as

p̂ (M) (ys; λM (0),μM (0), ρM (0))=
M∑
j=1

1
M

G (ys; μj(0), ρ0)

(31)

where λj(0) = 1/M and ρj(0) = ρ0 for 1 ≤ j ≤ M , with
ρ0 being a predetermined kernel width, whereas μj(0) for
1 ≤ j ≤ M are some randomly drawn positive values. The
initialization of the OMG-MBER-based nonlinear equalizer
will be discussed in more detail in Section III-C.

At time step k, the new data point ys(k) is received, and the
triplets {λM , μM , ρM} in the pdf estimate, i.e.,

p̂(M) (ys; λM (k − 1), μM (k − 1), ρM (k − 1))

=

M∑
j=1

λj(k − 1)G (ys; μj(k − 1), ρj(k − 1)) (32)

need to be updated accordingly, while keeping the same number
of mixtures M . A natural way is to place a Gaussian kernel on
ys(k) and to merge this new kernel with its nearest existing
mixture component G(ys; μj∗(k − 1), ρj∗(k − 1)), where

j∗ = arg min
1≤j≤M

|ys(k)− μj(k − 1)| . (33)

This can be realized in the following two steps.
1) Create a temporary (M + 1)-order model by adding the

newly created (M + 1)th Gaussian kernel based on ys(k)
to the estimate (32) according to

p̂ (M+1)
(
ys; λM+1(k), μM+1(k), ρM+1(k)

)
=

M

M + 1

M∑
j=1

λj(k − 1)G (ys; μj(k − 1), ρj(k − 1))

+
1

M + 1
G (ys; ys(k), ρ0) . (34)
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Clearly, we set λM+1(k)=1/(M+1), and for 1≤j≤M

λj(k) =
Mλj(k − 1)

M + 1
(35)

to satisfy the constraints λj(k) > 0 for 1 ≤ j ≤ M + 1
and λT

M+1(k)1M+1 = 1, while using μM+1(k) = ys(k)
and ρM+1(k) = ρ0, and for 1 ≤ j ≤ M

μj(k) =μj(k − 1) (36)

ρj(k) = ρj(k − 1). (37)

2) Merge the j∗th, where j∗ is determined in (33), and
(M + 1)th mixtures in the temporary estimate (34) into
the single new j∗th mixture, so that

λj∗(k)G (ys; μj∗(k), ρj∗(k))

≈ Mλj∗(k − 1)
M + 1

G (ys; μj∗(k − 1), ρj∗(k − 1))

+
1

M + 1
G (ys; ys(k), ρ0) . (38)

Thus, the new j∗th weight λj∗(k) is given by

λj∗(k) =
Mλj∗(k − 1)

M + 1
+

1
M + 1

(39)

whereas the new j∗th mean and standard deviation μj∗(k)
and ρj∗(k), respectively, are updated by matching the
mean and standard deviation of the two mixtures with the
new single Gaussian. As shown in Appendix A, we have
the following adaptation rules:

μj∗(k) =
Mλj∗(k − 1)

Mλj∗(k − 1) + 1
μj∗(k − 1)

+
1

Mλj∗(k − 1) + 1
ys(k) (40)

ρ2j∗(k) =
Mλj∗(k − 1)

(
ρ2j∗(k − 1) + μ2

j∗(k − 1)
)

Mλj∗(k − 1) + 1

+
ρ20 + y2s(k)

Mλj∗(k − 1) + 1
− μ2

j∗(k). (41)

The pdf of the signed decision variable at sample time k can
thus be approximated by

p̂y(ys, k) = p̂ (M) (ys; λM (k), μM (k), ρM (k))

=

M∑
j=1

λj(k)G (ys; μj(k), ρj(k)) (42)

in which the j∗th weight, mean, and standard deviation are
given in (39)–(41), respectively, whereas the jth weight, mean,
and standard deviation, where 1 ≤ j ≤ M and j 
= j∗, are
given in (35)–(37), respectively. Note that only μj∗(k) and
ρ2j∗(k) contain the new information provided by ys(k). This
online estimator is a much more accurate estimate of the true
pdf py(ys) than the one-sample estimate of (25), at the cost of a
modest increase in computational requirements, as the number
of mixtures M is a very small number.

B. Adaptive MBER Equalizer

Based on the estimated pdf of the signed decision variable at
sample k, as given in (42), the error probability of the equalizer
can be expressed as

P̂E(w, k) =

0∫
−∞

p̂y(ys, k) dys

=

0∫
−∞

(
M∑

j=1, j 
=j∗

λj(k)G (ys; μj(k), ρj(k))

+ λj∗(k)G (ys; μj∗(k), ρj∗(k))

)
dys

= R̂E(w, k) +
M∑

j=1, j 
=j∗

λj(k)

×
0∫

−∞

G (ys; μj(k), ρj(k)) dys (43)

where

R̂E(w, k) =
λj∗(k)√
2πρj∗(k)

0∫
−∞

e
− (

ys−μj∗ (k))
2

2ρ2
j∗

(k)
dys

=
λj∗(k)√

2π

∞∫
gj∗ (w, k)

e−
y2

2 dy (44)

with

gj∗(w, k) =
μj∗(k)

ρj∗(k)
. (45)

In (43), only μj∗(k) and ρj∗(k) depend on the current equal-
izer’s parameter vector w since only μj∗(k) and ρj∗(k) depend
on ys(k) = b0(k − d)y(k) = b0(k − d)f(r(k); w). Therefore,
we have the “instantaneous” gradient of P̂E(w, k) given by

�P̂E(w, k) = � R̂E(w, k)

= − λj∗(k)√
2π

e
−

μ2
j∗ (k)

2ρ2
j∗

(k) ∂gj∗(w, k)

∂w
(46)

where

∂gj∗(w, k)

∂w
=

(
ρ2j∗(k)+μ2

j∗(k)
)
sgn (b0(k−d))−μj∗(k)y(k)

ρ3j∗(k) (Mλj∗(k−1)+1)

×∂f(r(k);w)

∂w
(47)

the derivation of which is given in Appendix B.
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At sample k, given the equalizer’s signed decision variable
ys(k) = b0(k − d)f(r(k);w(k − 1)), the online parameter up-
dating for the adaptive MBER equalizer based on “stochastic”
gradient descent is therefore expressed by

w(k) = w(k − 1)− η � P̂E(w(k − 1), k) = w(k − 1)

+
ηλj∗(k)√

2π
e
−

μ2
j∗ (k)

2ρ2
j∗

(k) ∂gj∗(w(k − 1), k)
∂w

(48)

where η > 0 is a small step size.

C. OMG-MBER Algorithm Summary

It is well known that the mixture of Gaussians with a small
M is capable of accurately estimating an arbitrary pdf [36],
[37], [44], [45]. Therefore, the number of mixtures M in the
online kernel density estimator (28) can be chosen as a very
small number, and typically M = 4–6 is sufficient for most
applications. Too large an M may cause slow convergence of
the adaptive process, whereas a too small M may result in
a poor steady-state performance. The initial means μj(0) for
1 ≤ j ≤ M of the pdf estimator can be simply set to some
small positive and random values. Our extensive simulation
experience suggests that the choice of the initial means μj(0)
for 1 ≤ j ≤ M are not critical at all to the performance of the
adaptive equalizer. This is because the propose OMG pdf esti-
mator has an excellent adaptation capability and is capable of
adapting to the underlying true data distribution from different
choices of μj(0). By the same reason, the choice of the initial
kernel width ρ0 does not have a major impact on the achievable
performance.

The nonlinear equalizer we employed is the RBF equalizer
(9). The number of the RBF nodes nc is problem dependent.
Specifically, nc is related to the size Nr of the state set R. With
nc set to Nr, the RBF equalizer has the potential of attaining
the full optimal performance of the Bayesian equalizer (7).
However, this is rarely achievable as Nr is typically huge. In
general, there exists a tradeoff between achievable performance
and affordable cost in choosing nc. A large nc has the potential
of achieving a better performance at the cost of higher complex-
ity and slower adaptation process. In practice, we often choose a
very small nc, compared with the problem size Nr. We are now
ready to summarize the proposed OMG-MBER RBF equalizer.

Initialization (k ≤ 0):

1) Given the equalizer order m and the RBF equalizer
size nc, initialize the RBF equalizer, namely, set the
initial equalizer’s parameter vector w(0).

2) Given the number of mixtures M and the initial
kernel width ρ0, initialize the mixture-of-Gaussian-
based pdf estimator (31), namely, set the initial means
μj(0), 1 ≤ j ≤ M , of the M Gaussians.

Adaptation (k ≥ 1):

1) Given w(k−1) and the new data {r(k), b0(k−d)},
calculate the RBF equalizer output y(k) = f(r(k);
w(k − 1)) using (9) and compute the signed decision
variable ys(k) = b0(k − d)y(k).

2) Update the mixture-of-Gaussian-based pdf estimator
from (32) into (42). Specifically,

• Find the index j∗ according to (33).
• Update the j∗th weight, mean, and standard

deviation according to (39)–(41), respectively.
• Update the jth weights, means, and standard

deviations for 1 ≤ j ≤ M and j 
= j∗ according
to (35)–(37), respectively.

3) Given the step size η, update the RBF equalizer’s pa-
rameter vector from w(k − 1) to w(k). Specifically

• Calculate (∂f(r(k); w(k − 1))/∂w) according
to (47).

• Calculate (∂gj∗(w(k − 1), k)/∂w) according
to (47).

• Update the RBF equalizer’s parameter vector
according to (48).

Because the initial choice of the RBF equalizer’s
parameter vector w(0) has some influence on the
convergence speed of the online adaptive procedure,
we choose the initial centers cj(0), 1 ≤ j ≤ nc, from
the data {(r(k), b0(k − d)), k ≤ 0} according to the
following heuristic rules. Half of the initial centers
are chosen from the data points r(k) that correspond
to the desired signal b0(k − d) = +1, whereas the
other half of the initial centers are chosen from the
data points r(k) that have the desired signal value
b0(k − d) = −1. Moreover, the chosen initial centers
must have a minimum distance apart. Specifically, for
1 ≤ i, j ≤ nc and i 
= j

‖cj(0)− ci(0)‖ >
ζ0
nc

(49)

where the preset positive parameter ζ0 controls the
distribution of the initial RBF nodes. The initial
weights αj(0) are set either to +α0 or to −α0, de-
pending on whether cj(0) are related to b0(k − d) =
+1 or b0(k − d) = −1, where α0 > 0 is a preset pa-
rameter. All the initial variances σ2

j (0), 1 ≤ j ≤ nc,
are set to the same value of (σ2

0/n
2
c), where the preset

positive value σ2
0 controls the influencing field of the

initial RBF nodes. This RBF equalizer initialization
procedure is similar to the one given in [33].

The values of ζ0, α0, and σ0 and the step size η are
carefully chosen based on trial-and-error to achieve a
best possible performance.

D. Complexity Analysis

We now explicitly compare the computational complexity of
the OMG-MBER RBF equalizer with that of the LBER RBF
equalizer. The latter is well known to have a low complexity.
Since both the adaptive RBF equalizers need to compute the
RBF equalizer output y(k) or the signed output ys(k) and the
partial derivative vector of the RBF function (∂f(r(k);w(k −
1))/∂w), we simply denote the computational complexity
of computing y(k) or ys(k) and (∂f(r(k);w(k − 1))/∂w)
by CRBF.
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TABLE I
COMPLEXITY COMPARISON FOR THE OMG-MBER-BASED AND LBER-BASED RBF EQUALIZERS

Noting the dimension of w is nc(m+ 2), from (27), it is a
simple matter to work out that the parameter vector updating of
the LBER algorithm additionally requires one e{·} evaluation,
3 + nc(m+ 2) multiplications, and nc(m+ 2) additions.

For the OMG estimator, determining which mixture com-
ponent, i.e., (33), to update requires M comparisons, and its
complexity is negligible. Updating the mixture components,
i.e., (35) and (39)–(41), requires additionally M + 9 multipli-
cations and 7 additions. From (47) and (48), it can be shown that
the OMG-MBER algorithm updates the parameter vector by
further adding one e{·} evaluation, one square root computation,
9 + nc(m+ 2) multiplications, and 2 + nc(m+ 2) additions.

The computational complexity of these two adaptive RBF
equalizers are listed in Table I, where it can be clearly seen
that the complexity of the OMG-MBER-based RBF equalizer is
only slightly more than that of the LBER-based RBF equalizer.

IV. SIMULATION STUDY

Two examples were used to compare the proposed OMG-
MBER RBF equalizer with the LBER RBF equalizer given in
[33] and the conventional linear MMSE equalizer based on the
LMS algorithm. For the both examples, the number of mixtures
was set to M = 6 with the initial kernel parameters ρ0 = 1
and μj(0), 1 ≤ j ≤ M , randomly chosen from [0.5, 1.5] for
the proposed OMG pdf estimator, whereas the step size of the
OMG-MBER RBF equalizer was set to η = 0.3.

Example 1: In the first experiment, the transfer functions of
the channel and cochannel were given as A0(z) = 0.5 + 1.0z−1

and A1(z) = λ(1.0 + 0.5z−1), respectively, where λ was set
to yield the signal-to-interference ratio (SIR) of 12 dB. The
equalizer order and decision delay were set to m = 2 and d =
1, respectively; therefore, the size of the state set R was Nr =
64. For both the OMG-MBER- and LBER-based RBF equal-
izers, we had nc = 4. For the OMG-MBER RBF equalizer, the
initialization was carried out with ζ0 = 8, σ0 = 6, and α0 = 10.
For the LBER RBF equalizer, the same initialization as in [33]
was used; moreover, the LBER algorithmic parameters were set
to ηk = 0.5k−0.25 and ρ2 = 20σ2

n, the same as in [33].
Fig. 1 compares the decision boundaries of the linear MMSE

equalizer, the LBER RBF equalizer, and the proposed OMG-
MBER RBF equalizer using the optimal Bayesian equalizer
(7) as the benchmark, under the SNR condition of 15 dB. It is
shown in Fig. 1 that the linear MMSE equalizer could only re-
alize a linear decision boundary, whereas the LBER and OMG-
MBER RBF equalizers with only four RBF nodes were capable
of approximating well the optimal nonlinear decision boundary
of the 64-node Bayesian equalizer. The learning curves of the
four-center LBER and OMG-MBER RBF equalizers and the
two-tap linear MMSE equalizer based on the LMS algorithm
are compared in Fig. 2 given SNR = 15 dB, where the BER

Fig. 1. Comparison of decision boundaries. (thin dotted) Linear MMSE.
(thick dotted) LBER RBF. (thin solid) Proposed OMG-MBER RBF. (thick
solid) Optimal Bayesian. Example 1 given SNR = 15 dB.

Fig. 2. Comparison of learning curves for the linear MMSE equalizer based
on the LMS, the LBER RBF equalizer, and the OMG-MBER RBF equalizer,
in terms of BER performance, and averaged over 100 runs for Example 1 given
SNR = 15 dB.

results were averaged over 100 runs. As expected, the linear
MMSE equalizer had the worst BER performance. In Fig. 2,
it is shown that the OMG-MBER RBF equalizer considerably
outperformed the LBER RBF equalizer both in convergence
speed and achievable BER performance. The achievable BER
performance of the three adaptive equalizers is shown in Fig. 3
together with the BER of the optimal Bayesian equalizer. The
results of Fig. 3 again confirm that the proposed OMG-MBER
RBF equalizer had the superior performance over the LBER
RBF equalizer.
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Fig. 3. BER performance comparison of the linear MMSE equalizer based on
the LMS, the LBER RBF equalizer, the OMG-MBER RBF equalizer, and the
optimal Bayesian equalizer for Example 1.

Fig. 4. Learning curves of the OMG-MBER RBF equalizer with different nc,
in terms of BER performance, and averaged over 100 runs for Example 1 given
M = 6 and SNR = 12 dB.

As explained previously, the achievable performance of the
OMG-MBER RBF equalizer is influenced by the number of
RBF nodes employed. For this example, nc = 4 is appropriated.
Too few RBF nodes may not achieve an adequate equalization
performance, whereas a larger nc has the potential of achieving
a better performance at the cost of higher complexity and slower
adaptation process. Fig. 4 shows the learning curves of the
OMG-MBER RBF equalizer with different nc, given M = 6
and SNR = 12 dB. The results of Fig. 4 clearly confirm our
analysis. Similarly, there exists a tradeoff between achievable
steady-state performance and convergence speed in choosing
an appropriate number of mixture components M . Fig. 5 shows
the learning curves of the OMG-MBER RBF equalizer with
different M , given nc = 4, and SNR = 12 dB, where it can be
seen that M = 6 is an appropriate choice for this example. The
choice of the initial means μj(0), 1 ≤ j ≤ M , for the OMG
density estimator on the other hand has little influence on the
performance of the OMG-MBER RBF equalizer. To demon-

Fig. 5. Learning curves of the OMG-MBER RBF equalizer with different M ,
in terms of BER performance, and averaged over 100 runs for Example 1 given
nc = 4 and SNR = 12 dB.

Fig. 6. Learning curves of the OMG-MBER RBF equalizer with different
initial means for the OMG density estimator, in terms of BER performance, and
averaged over 100 runs for Example 1 given nc=4, M=6, and SNR=12 dB.

strate this, given nc = 4, M = 6, and SNR = 12 dB, we simply
set μj(0) = a, 1 ≤ j ≤ M , with three different values of a =
0.5, 1, and 1.5, and the results obtained are shown in Fig. 6.

Example 2: The transfer functions of the channel and
cochannel were specified by A0(z) = 0.3482 + 0.8704z−1 +
0.3482z−2 and A1(z) = λ(0.6 + 0.8z−1), respectively, where
the value of λ was chosen to yield the SIR = 20 dB. The equal-
izer order was set to m = 4 and the decision delay d = 1. The
number of the signal states in R was Nr = 2048. We used nc =
16 for both the LBER and OMG-MBER RBF equalizers. For
the initialization of the OMG-MBER RBF equalizer, we used
ζ0 = 12, σ0 = 16, and α0 = 10. For the LBER RBF equalizer,
ηk = 0.3k−0.25 and ρ2 = 10σ2

n and the same initialization as
given in [33] were used.

The learning curves of the three adaptive equalizers are
shown in Fig. 7 given the SNR = 15 dB, where the results
were averaged over 100 runs. As expected, the four-tap linear
MMSE equalizer trained by the LMS algorithm had the fastest
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Fig. 7. Comparison of learning curves for the linear MMSE equalizer based
on the LMS, the LBER RBF equalizer, and the OMG-MBER RBF equalizer,
in terms of BER performance, and averaged over 100 runs for Example 2 given
SNR = 15 dB.

Fig. 8. BER performance comparison of the linear MMSE equalizer based on
the LMS, the LBER RBF equalizer, and the OMG-MBER RBF equalizer for
Example 2.

convergence speed, but its achievable BER performance was
the worst. Fig. 8 shows the BER performance of the three
adaptive equalizers tested. In both Figs. 7 and 8, it can be
clearly seen that the proposed OMG-MBER RBF equalizer
significantly outperformed the LBER RBF equalizer, in terms
of both convergence speed and achievable BER. It is worth
noting that, for this example, the optimal full Bayesian solution
would require 2048 nodes. Thus, this optimal Bayesian equal-
izer becomes impractical when the channel and the interfering
cochannel both have high orders.

The influence of the number of RBF nodes nc to the achiev-
able performance of the OMG-MBER RBF equalizer is inves-
tigated in Fig. 9, where it is shown that nc = 8 is inadequate
for this example and nc = 16 is appropriate. Although a larger
OMG-MBER RBF equalizer with nc = 24 achieves a slightly
better equalization performance than the one with nc = 16, it
considerably increases the computational complexity imposed.

Fig. 9. Learning curves of the OMG-MBER RBF equalizer with different nc,
in terms of BER performance, and averaged over 100 runs for Example 2 given
M = 6 and SNR = 12 dB.

Fig. 10. Learning curves of the OMG-MBER RBF equalizer with different
M , in terms of BER performance, and averaged over 100 runs for Example 2
given nc = 16 and SNR = 12 dB.

The influence of the number of mixture components M to the
achievable performance of the OMG-MBER RBF equalizer is
shown in Fig. 10, where it is seen that the choice of M = 6
is better than M = 10. The choice of the initial means for the
OMG density estimator has little influence on the performance
of the OMG-MBER RBF equalizer, as clearly shown from the
results shown in Fig. 11.

V. CONCLUSION

The performance of an adaptive MBER nonlinear equal-
izer critically depends on the online pdf estimator used for
estimating the signed decision variable’s distribution. In this
paper, a new online small-size Gaussian-mixture-based pdf
estimator has been proposed to aid an adaptive MBER nonlin-
ear equalizer. The resulting online MBER nonlinear equalizer,
referred to as the OMG-MBER nonlinear equalizer, has been
introduced under the generic setting of intersymbol interference
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Fig. 11. Learning curves of the OMG-MBER RBF equalizer with different
initial means for the OMG density estimator, in terms of BER performance, and
averaged over 100 runs for Example 2 given nc=16, M=6, and SNR=12 dB.

channel plus CCI. Compared with the existing LBER non-
linear equalizer, which relies on a one-sample pdf estimator,
our online mixture-of-Gaussian-based pdf estimator is capable
of providing a much more accurate estimate of the signed
decision variable’s pdf while maintaining very low computa-
tional requirements for online pdf estimation. Consequently,
our proposed OMG-MBER nonlinear equalizer significantly
outperforms the LBER nonlinear equalizer, in terms of both
convergence speed and achievable BER performance.

APPENDIX A
MERGING TWO GAUSSIANS AS ONE

Consider merging a mixture of two Gaussians as follows:

p̂ (2) (ys; λ2, μ2, ρ2) =

2∑
j=1

λjG(ys; μj , ρj) (50)

into one mixture by matching the resultant mean and variance.
The mean μ of the two mixtures is given by

μ =

∫
ysp̂

(2)(ys; λ2, μ2, ρ2) dys

=

2∑
j=1

λj

∫
ysG(ys; μj , ρj) dys =

2∑
j=1

λjμj (51)

whereas the variance ρ2 of the two mixtures is

ρ2 =

∫
(ys − μ)2p̂(2)(ys; λ2, μ2, ρ2) dys

=

∫
y2s p̂

(2)(ys; λ2, μ2, ρ2) dys − μ2

=

2∑
j=1

λj

∫
y2sG(ys, μj , ρj) dys − μ2

=

2∑
j=1

λj

(
ρ2j + μ2

j

)
− μ2. (52)

APPENDIX B
DERIVATION OF (∂gj∗(w, k)/∂w)

Noting ys(k) = sgn(b0(k − d))f(r(k); w), (40) becomes

μj∗(k) =
Mλj∗(k − 1)

Mλj∗(k − 1) + 1
μj∗(k − 1)

+
sgn (b0(k − d))

Mλj∗(k − 1) + 1
f (r(k); w) . (53)

The partial derivative of μj∗(k) with respect to the equalizer’s
parameter vector w, which is denoted μ′

j∗(k), is then given by

μ′
j∗(k) =

∂μj∗(k)

∂w
=

sgn (b0(k − d))

Mλj∗(k − 1) + 1
∂f(r(k); w)

∂w
. (54)

From (41), we also have

ρ2j∗(k) =
Mλj∗(k − 1)

(
ρ2j∗(k − 1) + μ2

j∗(k − 1)
)

Mλj∗(k − 1) + 1

+
ρ20 + (sgn (b0(k − d)) f (r(k); w))2

Mλj∗(k − 1) + 1
− μ2

j∗(k)

=
Mλj∗(k − 1)

(
ρ2j∗(k − 1) + μ2

j∗(k − 1)
)

Mλj∗(k − 1) + 1

+
ρ20 + f2 (r(k); w)

Mλj∗(k − 1) + 1
− μ2

j∗(k). (55)

Thus, the partial derivation of ρ2j∗(k) with respect to the equal-
izer’s parameter vector w is

∂ρ2j∗(k)

∂w
=

2y(k)
Mλj∗(k − 1) + 1

∂f (r(k);w)

∂w

− 2μj∗(k)
∂μj∗(k)

∂w
. (56)

Substituting (54) into (56) yields

∂ρ2j∗(k)

∂w
=

2y(k)
Mλj∗(k−1)+1

∂f(r(k);w)

∂w

− 2μj∗(k)sgn (b0(k−d))

Mλj∗(k−1)+1
∂f (r(k);w)

∂w

=
2(y(k)−μj∗(k)sgn (b0(k−d)) )

Mλj∗(k−1)+1
∂f (r(k);w)

∂w
. (57)

By denoting ρ′j∗(k) = (∂ρj∗(k))/(∂w), then

∂ρ2j∗(k)

∂w
= 2ρj∗(k)ρ

′
j∗(k). (58)

From (57) and (58), we have

ρ′j∗(k) =
y(k)− μj∗(k)sgn (b0(k − d))

ρj∗(k) (Mλj∗(k − 1) + 1)
∂f (r(k); w)

∂w
. (59)

Finally, by making use of (59) and (54), we have

∂gj∗(w, k)

∂w

=
μ′
j∗(k)ρj∗(k)− μj∗(k)ρ

′
j∗(k)

ρ2j∗(k)

=

(
ρ2j∗(k) + μ2

j∗(k)
)
sgn (b0(k − d))− μj∗(k)y(k)

ρ3j∗(k) (Mλj∗(k − 1) + 1)

× ∂f (r(k); w)

∂w
. (60)
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