
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 1, JANUARY 2022 805

AirEdge: A Dependency-Aware Multi-Task
Orchestration in Federated Aerial Computing

Uchechukwu Awada , Student Member, IEEE, Jiankang Zhang , Senior Member, IEEE,
Sheng Chen , Fellow, IEEE, and Shuangzhi Li

Abstract—Emerging edge computing (EC) systems are currently
exploiting attaching portable edge devices on drones for data
processing close to the sources, to achieve high performance, fast
response times and real-time insights. To this end, existing EC
research has proposed several multiple drone-based edge deploy-
ments for various purposes, such as data caching, task offloading,
real-time video analytics, and computer vision. However, none of
them consider the ability of seamlessly integrating edge resources
running across multiple drones in a single pool, to holistically man-
age and control these resources as well as to eliminate vendor lock-
in situations. This paper presents an intelligent resource scheduling
solution for a federated aerial EC system, called AirEdge, which
jointly considers task dependencies, heterogeneous resource de-
mand and drones’ flight time. We propose a multi-task execution
time estimation and a dispatching policy, to select the closest drone
deployment having congruent flight time and resource availability
to execute ready tasks at any given time. For the utilization of
the drones’ attached edge resources, we propose a variant bin-
packing optimization approach through gang-scheduling of multi-
dependent tasks that co-locates tasks tightly on nodes to fully utilize
available resources. Experiments on real-world data-trace from
Alibaba cluster trace with information on task dependencies (about
12,207,703 dependencies) and resource demands show the effective-
ness, fast executions, and resource efficiency of our approach.

Index Terms—Edge computing, aerial computing, dependency-
aware, application container, execution time, resource efficiency.

I. INTRODUCTION

EDGE computing (EC) is an innovative distributed com-
puting paradigm that brings computation and data storage

closer to the location where they are needed, to improve response
times and save bandwidth. Instead of housing these critical re-
sources in a Big Data-center that could be hundreds or thousands

Manuscript received February 7, 2021; revised September 29, 2021; accepted
November 8, 2021. Date of publication November 10, 2021; date of current
version January 20, 2022. This work was supported in part by joint Funds
of the National Natural Science Foundation of China under Grants 61571401
and 61901416, in part by China Postdoctoral Science Foundation under Grant
2021TQ0304, and in part by the Innovative Talent of Colleges, and the University
of Henan Province under Grant 18HASTIT021. The review of this article was
coordinated by Prof. Tiago Koketsu. (Corresponding authors: Jiankang Zhang;
Shuangzhi Li.)

Uchechukwu Awada and Shuangzhi Li are with the School of Informa-
tion Engineering, Zhengzhou University, Zhengzhou 450001, China (e-mail:
awada@gs.zzu.edu.cn; ielsz@zzu.edu.cn).

Jiankang Zhang is with the Department of Computing and In-
formatics, Bournemouth University, Poole BH12 5BB, U.K. (e-mail:
jzhang3@bournemouth.ac.uk).

Sheng Chen is with the School of Electronics and Computer Sci-
ence, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail:
sqc@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TVT.2021.3127011

of miles away from the data source, this enabling architecture
deploys them at the edge of the network, and even beyond the
edge of the network [1]. Emerging latency-sensitive technolo-
gies, such as connected and autonomous vehicles (CAVs) [2],
healthcare IoT systems [3], real-time augmented reality [4],
smart cities [5], Industry 4.0 [6], etc, rely on heterogeneous
edge resources in close proximity, to offload their computational
intensive tasks, improve response times and save bandwidth.
To further improve latency, the low altitude platform (LAP)
unmanned aerial vehicles (UAVs) or drones are currently being
exploited by EC systems to execute complex resource-hungry
use cases [7]–[10]. Drones can fly to the target locations with
nearly no constraint due to their mobility, flexibility and adap-
tive altitude, to deliver faster execution closer to data source.
However, a typical drone has a limited flight time due to power
factor which can lead to loss of job if it is not taking into
consideration [11]. The critical issue is how to optimize both
the drones’ flight time and application execution on the attached
edge device(s) in a timely manner, without jeopardizing appli-
cation performance.

Consequently, existing researches on EC has proposed several
multiple drone-based edge deployments to cater for wide range
of end devices [12]–[17]. However, none of them considers
the ability of seamlessly integrating edge resources and service
entities running across multi-drone deployments in a single
pool, such that these resources can be holistically managed and
controlled from a single federated plane, applications can be
deployed dynamically across the resources, and vendor lock-in
situations can be eliminated. Moreover, efficient orchestration
of complex dependencies among tasks in such independent
aerial deployments is challenging due to constrained resource
capabilities, mobility and availability factors, etc. For example,
Fig. 1(a) shows a multiple aerial computing system without any
cooperation. Such an approach can result in resource overloaded
and longer queuing delay for tasks due to insufficient resource
availability, and hence it is not suitable for latency-sensitive edge
workloads.

Aerial edge federation makes it easier to manage multiple
drone deployments by synchronizing resources across multiple
drones, enabling flexible tasks execution and preventing lock-in
situations. Having a federated edge minimizes latency by serving
users from the edge that is the closest to them [18], [19]. A recent
lightweight Kubernetes-based edge tool, called Kubermatic,1

1https://www.kubermatic.com/products/kubermatic/

0018-9545 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2300-0586
https://orcid.org/0000-0001-5316-1711
https://orcid.org/0000-0001-6882-600X
https://orcid.org/0000-0002-2801-5779
mailto:awada@gs.zzu.edu.cn
mailto:ielsz@zzu.edu.cn
mailto:jzhang3@bournemouth.ac.uk
mailto:sqc@ecs.soton.ac.uk

806 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 1, JANUARY 2022

Fig. 1. (a) The architecture of multiple aerial edge computing system, and
(b) the architecture of a federated aerial edge computing system. The latter
requires a holistic approach to multiple aerial edge resource management.

Fig. 2. The directed acyclic graph (DAG) of a video processing (VP) job.

can deploy and manage multiple edge resources running across
multi-drones with a single management interface, as shown in
Fig. 1(b). In a federated edge clusters setup, the federation
control plane (FCP) is deployed in one of the clusters which
serves as the host cluster. Participating edge deployments
can be added or removed from the FCP. Nevertheless, to of-
fload complex applications, e.g., a video processing application
shown in Fig. 2, which consists of a large number of inter-
dependent applications and requires substantial resources for
execution, present several challenges. First, given a federated
edge resources running across multi-drone, where each drone is
attached with one or more edge devices, how to automatically
decide where a job or multi-task should be executed is a tricky
task. Previous works [20]–[22] assume that each edge deploy-
ment can only execute one task or job at any time and schedule
each task individually, which results in high communication
overhead. Second, the existing container schedulers deploy tasks
randomly on nodes with sufficient resource availability without
considering inter-task dependencies, which results in longer
execution time, resource wastage through underutilized nodes,
and a reduction in the number of tasks that can be executed,

given the available resources. These schedulers do not pack tasks
tightly on nodes to achieve high resource utilization.

In this paper, we show that machine learning (ML) tech-
niques [23], [24] can help federated aerial edge systems to
achieve effective dispatching strategy and to cope with stochastic
service request arrivals. We propose AirEdge, which extends the
state-of-the-arts by providing an intelligent dependency-aware
multi-task dispatching and co-location scheme to achieve high
resource utilization and fast execution of tasks in a federated
autonomous aerial (drone-based) EC system. For a multi-task
dispatch, a major issue is the complexity of federated aerial
edge network, which consists several drones attached with edge
devices and heterogeneous resource request from end users. A
decentralized approach [25], [26], which interacts with individ-
ual member cluster, would exhibit high computation complex-
ity and is far from trivial to realize. Therefore, we adopt an
FCP to holistically obtain an update state from all participating
drones, in terms of location, flight time availability and resource
availability, through a single application programming interface
(API), such that optimal multi-task dispatching is achieved. By
contrast, if multi-tasks are scheduled naively, e.g., in an edge
deployment which can only execute one task or job at any
time, each task is scheduled individually [20]–[22], federated
aerial edge can become unproductive. Hence, an efficient multi-
task orchestration is needed to achieve optimal performance in
federated aerial computing. With limited edge resources and
drones’ flight time, it is necessary to consider task dependencies
in drone-based EC task offloading, by jointly optimizing the
drones’ flight time and resource availability such that all the tasks
can be fast executed with minimum resources before the drone
has to return for recharging. Hence, our aim is to schedule and
execute all the tasks by considering dependencies and resource
demands, such that the actual scheduling and execution time
is minimized, and is much less than the drones’ flight time. In
summary, to achieve our AirEdge implementation, we address
the following critical areas:
� We propose an intelligent scheduling through the joint

optimization of the set of tasks packaged in lightweight
containers, the drones’ flight time and the cluster resources,
that packs or co-locates the tasks tightly on nodes to fully
utilize available resources.

� Specifically, we derive a multi-task ML based execution
time estimation and a dispatching policy, called closest,
to select the closest drone deployment having congruent
flight time and resource availability to execute ready tasks
at any given time and to autonomously deploy the selected
drone to the needed location.

� To fully utilize the available drones’ attached edge re-
sources, we further propose a variant bin-packing optimiza-
tion approach through gang-scheduling of multi-dependent
tasks, to co-locate tasks tightly on nodes. The drone returns
to its box after completing its mission.

� We show that the proposed AirEdge can minimize the
actual completion time of tasks using minimum resources,
such that the actual completion time is much less than the
drones’ flight time.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

AWADA et al.: AIREDGE: A DEPENDENCY-AWARE MULTI-TASK ORCHESTRATION IN FEDERATED AERIAL COMPUTING 807

TABLE I
RECENTLY INTRODUCED DRONE-BASED EDGE DEVICES

� We conduct extensive experiments and comparisons with
real-world data-trace from Alibaba cluster trace,2 which
provides information on task dependencies and resource
demands, on federated aerial edge deployments.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. In Section III, we present some
preliminaries on task dependency-awareness and discuss our
motivation. In Section IV, we detail our proposed AirEdge for
achieving high resource utilization and minimizing the execu-
tion times of applications deployed on federated aerial edge
resources. In Section V, we compare the performance of our
proposed AirEdge against those of several state-of-the-art ap-
proaches through extensive experiments. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

To support a wider implementation of drone-based edge de-
ployment, cloud computing providers, i.e., Amazon Web Ser-
vices (AWS), Microsoft Azure, etc., have recently introduced
various drone-based edge computing devices and begun offering
edge/cloud computing services directly on these devices. Table I
lists some of the recently introduced drone-based edge devices.
A typical drone-based edge deployment can attach one or more
or different combination of these devices, depending on the
drones’ load capacity.

Multiple UAVs/drones can be deployed to provide EC services
for IoT and other end devices. The authors of [12] proposed a
multi-UAV-aided mobile-edge computing (MEC) system, where
multiple UAVs act as MEC nodes to provide computing offload-
ing services for ground IoT nodes of limited local computing
capabilities. The work [13] proposed a multi-UAV-enabled MEC
system, where edge servers are equipped on multiple UAVs
to provide flexible computation assistance to IoT devices with
hard deadlines. In [14], a two-layer optimization method was
presented for jointly optimizing the deployment of UAVs and
task scheduling to minimize system energy consumption. The
work [15] formulated a computation efficiency maximization
problem in a multi-UAV assisted MEC system, where both com-
putation bits and energy consumption were considered. In [16]

2https://github.com/alibaba/clusterdata/blob/master/cluster-trace-
v2018/trace-2018.md

a multi-UAV enabled MEC system was introduced, where the
energy consumption for ground users is minimized by jointly
optimizing the UAV task scheduling, bit allocation, and UAV
trajectory. The authors of [17] proposed a cluster of multi-UAVs
to provide computing task offloading and resource allocation ser-
vices to IoT devices. They further proposed a multi-agent deep
reinforcement learning (MADRL)-based approach to minimize
the overall network computation cost while ensuring the quality
of service (QoS) requirements of IoT devices.

Contrary to on-premise edge deployments and cloud com-
puting, drone-based edge resources are limited, and therefore
managing resources is one of the key challenges in aerial edge
deployment [10]. Task co-location of different workloads on
the same computing cluster has gained popularity as a heuristic
solution for improving resource utilization and system through-
put in both cloud and edge computing. A workload co-location
mechanism was proposed in [27]–[30] to maximize the resource
utilization. Our work in this paper differs substantially from
the previous works [29], [30], which focused on workload
co-location in cloud environment. To further improve edge
resources, a resource management scheme which seamlessly
integrates or federates resources across multiple edge, such
that the resources are holistically managed has been proposed
in [18], [19], [25], [26]. Our recent work [19] considered a
dependency-aware task dispatching and co-location in a feder-
ated edge system. Dependency usually exists among the tasks of
a job. A task cannot start running until its dependent tasks have
been completed. Modern applications are complex and consist
of a large number of inter-dependent applications. The problem
of task scheduling based on task dependency was investigated
in [31]–[34]. The goal of these approaches is to identify task
scheduling decision that minimizes the average completion time
of multiple applications.

The aforementioned schemes on multiple drone-based task
offloading and execution however do not consider the ability
of seamlessly integrating edge resources and service entities
running across multi-drone deployments in a single pool, such
that these resources can be holistically managed and controlled
from a single federated plane, applications can be deployed
dynamically across the resources, and vendor lock-in situations
can be eliminated. They do not consider tasks dependencies and
assume that each UAV can only execute a task. In addition, they

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

808 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 1, JANUARY 2022

Fig. 3. Dependency depth of randomly selected Alibaba cluster jobs.

do not consider drones’ flight time, and assume that a drone
can fly for unlimited amount of time. It is important to note
that such an approach is impractical, except for tethered drone
systems which have limited navigation. Therefore, an effective
completion time estimation of ready applications is needed to
produce a dispatching plan in a federated aerial EC system,
such that these applications can be offloaded to a drone having
sufficient flight time and resources to execute the applications.
To this end, research on other types of EC systems has proposed
several methods of predicting or estimating tasks execution time,
based on ML [23], [24] and incremental learning [35], as well
as of scheduling [36]–[39].

III. PRELIMINARIES AND OUR MOTIVATION

In the light of the prior research, we first present some pre-
liminaries and discuss our motivation.

A. Preliminaries

Dependency-awareness is critical for achieving efficient
multi-task dispatching and co-location. Most of the batch work-
loads of Alibaba cluster trace for example are directed acyclic
graphs (DAGs), and only some of them are independent. Fig. 3
plots the dependency depth of 20 randomly selected jobs from
Alibaba cluster trace. It can be seen that the average job has a
depth of 10. A job is typically consisted of several tasks whose
dependencies are expressed by DAG. Clearly, if a task A is de-
pending on taskB, then taskA cannot start until all the instances
of task B are completed. The DAG of the tasks in a job can be
deduced from the Task_Name field of all the tasks of this job.
For example, the DAG of a video processing (VP) job is shown
in Fig. 2, where multi-dependent tasks together complete the
video classification computation. The job consists of inter-task
dependency depth γ of 12, i.e., (P1, P2,..., P12). The DAGs of
the 12 tasks are expressed with their Task_Names. Task ‘P1’
means that P1 is an independent task and can be started without
waiting for any other task. Task ‘P4_1’ indicates that task P4
depends on the completion of taskP1. Similarly, ‘P10_6_7_8’

Fig. 4. The example of scheduling strategies.

means that task P10 depends on the finishing of tasks P6, P7
and P8. A task is characterized by the type ε, data size δ, re-
source requirements in terms of CPU 〈c〉 and memory 〈m〉. The
complex inter-task dependency with multidimensional resource
demands, i.e., various amounts of CPU and memory resources,
and communication requirements, make resource management
in such an EC system very challenging. Knowledge about task
characteristics, such as resource demands and dependencies, is
necessary to pack or co-locate tasks effectively in a node or
cluster, ultimately to minimize the response times and improve
resource utilization [29], [30], [40]. Hence a key objective is
to reduce the execution time of such tasks and to improve
resource utilization by considering the inter-task dependency
and resource demands.

B. Our Motivation

To illustrate the advantage of AirEdge, we show a motivat-
ing example in Fig. 4. The upper part shows each task of a
video processing job, with its actual execution time Eexi

and
resource demand (CPU and memory 〈c,m〉). Our aim is to
deploy the job in a drone edge with requisite available resources,
such that dependent tasks can communicate faster to make
applications more interactive, compared to other deployments
across different drones [10]. Here, we assume that the selected
drone has the requisite fight time and available resources to
accommodate all the tasks, i.e., 〈8, 5〉. The lower part show the
scheduling of AirEdge together with three other state-of-the-art
approaches, namely, Spear [40], Graphene [41] and Tetris [42],
as well as the random approach. Our AirEdge achieves the lowest
execution time of

∑n
i=1 Eexi

/n (n is the number of tasks),
due to the following reasons: (i) our approach utilizes gang
scheduling [36], which co-schedules all the tasks at a time,
and (ii) our packing strategy explores the available nodes to
find the best one which has requisite available resources (CPU
and memory) to execute all the tasks by packing them tightly
on the node. By contrast, Spear and Tetris deploy the same
tasks individually or in parts, resulting in execution times of∑n

y=1 Eexy
+
∑m

z=1

∑k
i=1 Eexiz

/k and
∑m

z=1

∑n
i=1 Eexiz

/n,
respectively. In particular, Spear picks tasks along the critical

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

AWADA et al.: AIREDGE: A DEPENDENCY-AWARE MULTI-TASK ORCHESTRATION IN FEDERATED AERIAL COMPUTING 809

Fig. 5. Orchestration overview of AirEdge.

path (CP) in the DAG. The CP of a task is the longest path from
the task to the output. As an example, given a job with 100 DAGs,
Spear deploys about 15% of the tasks at a time. Tetris on the
other hand does not consider the task dependencies. It deploys
at least 50% of any given tasks at a time and focuses on packing
tasks on nodes to achieve high resource utilization. Graphene,
a state-of-the-art dependency-aware scheduler, considers both
task dependencies and resource packing. It first co-schedules
some tasks identified as troublesome tasks and then places
the rest of the tasks afterward, resulting in an execution time
of

∑n
x=1 Eexx

+
∑m

z=1

∑k
i=1 Eexiz

/k. The random approach
deploys a task randomly to any available node, and assumes a
node can only execute a task at a time, resulting in an execution
time of

∑n
i=1 Eexi

. Generally, delay in scheduling dependent
tasks directly impacts job completion time, and utilizing gang
scheduling is beneficial for overall performance.

IV. PROPOSED AIREDGE

In this section, we detail our proposed AirEdge for achieving
high resource utilization and minimizing the execution times of
applications deployed on federated aerial edge resources. Our
system model is depicted in Fig. 5.

A. System Model

The most important feature of EC is the ability to provide
storage and computing resources close to where it is needed,
so that applications can process data and return results with a
minimum time. One of the advantages of using federated edge
system is the ability to synchronize core data across all edge
deployments, such that same high efficiency can be achieved
wherever it is needed. For example, a CAV moving within a
road segment at a constant speed v should be able to access
the closest edge deployment and react immediately to changing
road conditions, without first offloading its core data which could
lead to an increased latency. Therefore, data synchronization is a

best-fit solution for CAVs to fully exploit EC. Another example
is IQ Smart City solution,3 which implements an artificial intel-
ligence (AI) based multi-sensory analytic system for video (face
recognition, license plate recognition, behavior analysis, etc.),
sound and smell analytics in 60 countries. Assuming that all the
sensor devices and their locationsDl

i are federated with the edge,
such that their data can be synchronized among the participating
edge deployments, then any closest available drone deployment
can fly autonomously to the needed location Dl

i to execute tasks
without the need of prior data offloading. Autonomous drones
have tools onboard to help them move around and plan paths, as
well as to estimate their fight time f l

i from their locations li to any
needed location Dl

i. For applications with small data sizes, it is
possible to package the applications and database in containers,
and then to deploy it to the closest edge whenever it is needed.
For such applications, let 〈δ, c,m〉 represent the size of data
input, CPU and memory requirements, respectively. The advan-
tage of using containers to host applications at the edge is that
these applications can be executed in any edge deployment re-
gardless of the resource type, configuration or vendor/provider.
All the recently introduced edge devices in Table I are made of
container-instances (container optimized nodes), which provide
an efficient route to application execution within a lightweight,
isolated and well-defined execution environment, where each
container can run within its specified resource demand 〈δ, c,m〉.
For instance, a class of AWS EC2 instances under the family
name snc1, i.e., snc1.micro, snc1.small and snc1.medium can be
provisioned on AWS Snowcone edge device.

Given a federated aerial EC deployment EDGE, where
each participating edge deployment Dedgei is a drone or clus-
ter of container-instances i.e., edge device(s) with virtualized
container-optimized nodes, an update state from the FCP which
include each drones’ fight time availability fi, location li and
total resource capacity or availability D

〈δ,c,m〉
edgei

is needed to
dispatch ready applications, C, to the closest drone deployment
Dedgei� with minimum flight time f l

i from its location li to the
end device(s) location Dl

i, having sufficient flight time fi and

resource capacity or availability D
〈δ,c,m〉
edgei

to execute the tasks,
such that the tasks are dispatched concurrently, namely,

C ⇒ Dedgei� , (1)

where

Dedgei�=arg min
Dedgei

∈EDGE

{
f l
i : f

l
i <fi, D

〈δ,c,m〉
edgei

sufficient
}
. (2)

Existing works on multi-UAV or drone-based task offloading
and execution in EC systems [10], [12]–[17] do not consider
drones’ flight time and assume a drone can fly for unlimited
amount of time, which can lead to loss of job due to drones’
limited flight time [11]. Some researches [43], [44] have pro-
posed a greedy approach to deploy a job to an edge which brings
the least increase to the response time. But this approach can
lead to job waiting at the server due to insufficient resource
availability, which is not suitable for latency-sensitive jobs.
Hence an execution time estimation, tasks resource demands,

3https://iomni.ai/

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

810 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 1, JANUARY 2022

edge resource availability and drone’s flight time should be
jointly considered in a drone-enabled EC system. Therefore,
given a federated drone-based edge deployment EDGE and a
set C of inter-dependent containerized applications, where each
application Ti∈C serves as a task with its resource demand
denoted as T 〈c,m〉

i , our goal is to use the predicted or estimated
execution time of all the tasks to select a drone having con-
gruent flight time and resource availability, such that we can
intelligently schedule the tasks to minimize the actual execution
time as well as to achieve high resource utilization efficiency.

As multi-dependent containerized applications are admitted
into the system, their execution times are estimated using linear
regression model. The multi-task features fmt, including type
(number) of tasks ε, dependency depth γ, resource demand
〈c,m〉 and data size δ, are feed into the ML model Θ to estimate
the values of their execution times, i.e.,

fmt ·Θ =
[
Ẽex1 Ẽex2 · · · Ẽexε

]
. (3)

Assuming that fmt∈R1×d is a d-dimensional vector (tensor),
then Θ is a (d× ε)-dimensional parameter matrix. To build this
predictorΘ, we train it using historical data from previously exe-
cuted tasks/jobs based on Keras.4 Keras is a library which wraps
TensorFlow5 complexity into simple and user-friendly API. The
dataset D={(xi,yi)}ni=1 contain d-dimensional tensors of data
features xi∈R1×d and ε-dimensional tensors of labels (actual
execution times) yi∈R1×ε. The learning problem is to solve the
following optimization:

Θ� = arg min
Θ∈Rd×ε

1
2n

n∑
i=1

‖xiΘ− yi‖2
2 +

λ

2
‖Θ‖2

F , (4)

where λ is the regularization parameter and ‖ · ‖F denotes the
Frobenius norm. The optimization (4) is solved using gradient-
descent, where the model is updated iteratively until conver-
gence, i.e., Θt+1=Θt−η(1

ng(Θ
t)+λΘl), in which η is the

learning rate, g(Θ)= 1
nX

T(XΘ−Y) denotes the gradient of
the loss function, X=[xT

1 · · ·xT
n]

T and Y =[yT
1 · · ·yT

n]
T are

the feature set and label set, respectively.
Note that the dispatcher only has the value of Ẽexi

, instead
of the actual execution time, when making a decision to select a
drone. Also it is important to note that existing researches [23],
[24], [35], [37]–[39] do not consider the scheduling strategy
when estimating execution time of tasks. However, since the
scheduling actually influences the job execution time, it should
be taken into consideration when estimating the execution time.
We show that with this estimation of job execution time, AirEdge
can minimize the actual execution time of multi-dependent tasks
and achieve high resource utilization in a federated aerial edge
system.

For a task T , let Es and Ec denote its actual starting time and
completion time, respectively. Therefore, the actual execution
time of T is:

Eex = Ec − Es. (5)

4https://keras.io/
5https://www.tensorflow.org/

AirEdge utilizes the gang scheduling [36] strategy to co-
schedule all ready applications at a time. Hence the aggregate
execution time of a multi (n)-task C is given as

∑n
i=1

Eexi

n . The
federated edge system EDGE consists of all N participating
individual edge deployments Dedgei , 1 ≤ i ≤ N , i.e.,

EDGE =

N∑
i=1

Dedgei . (6)

Given a cluster of container-instances or nodes I in each de-
ploymentDedgei , let I〈c,m〉

i denote each node’s resource capacity
or availability. For the purpose of simplicity, we will focus on
the CPU and memory requirements/capacity of all tasks and
resources. That is, the storage is sufficient for the size of data
input δ, and hence the requirement 〈δ, c,m〉 is simplified as
〈c,m〉. The resource demands of k containerized applications to
be orchestrated,

∑k
i=1 Ti

〈c,m〉, the update state of the EDGE

clusters, i.e., the resources availability D
〈c,m〉
edgei

, drones’ flight
time fi and location li, are important information needed in order
to make informed decision on where to deploy ready applications
C at time t. Our strategy chooses the closest drone having
requisite capacityD〈c,m〉

edgei
and fight timefi. In real scenario where

multi-users u∈U offload multi-tasks with multi-dependency at
t, these applications are deployed as a multi-Job J, where each
Job J is a collection of each user’s multi-tasks, with collective
resource demand denoted as

∑k
i=1T

〈c,m〉
i =T 〈c,m〉′, and the ag-

gregate execution time estimation as
∑k

i=1Ẽexi
= Ẽex′. We can

dispatch all users’ Jobs with dependency on the same cluster by
jointly considering

∑
J∈J T

〈c,m〉′, D〈c,m〉
edgei

,
∑

J∈J Ẽex′ and fi.
Hence the aggregate of the actual execution time of a multi-job
J is given as:

∑
J∈J

k∑
i=1

Eexi

k
= Eex′, (7)

and we can dispatch a multi-job to the closest edge, such that:

J ⇒ Dedgei� . (8)

The resource utilization of the cluster for multi-job deployment
is thus

ρ
〈c,m〉
C =

∑
J∈J T

〈c,m〉′

D
〈c,m〉
edgei

. (9)

B. Problem Formulation

The basic notations adopted are described in Table II. AirEdge
includes an intelligent scheduling, which packs tasks tightly on
nodes to fully utilize available resources at edge clusters, while
considering task dependencies. Our objectives are to maximize
the cluster resource utilization, ρ〈c,m〉

C of (9), and to minimize
the overall actual execution time of tasks, Eex′ of (7), subject to
certain constraints.

Constraints: First, the collective resource demand or request
of a multi-job J or multi-task at any given time t cannot exceed

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

AWADA et al.: AIREDGE: A DEPENDENCY-AWARE MULTI-TASK ORCHESTRATION IN FEDERATED AERIAL COMPUTING 811

TABLE II
COMMON NOTATIONS

the collective resource capacity or available in the cluster:∑
J∈J

T 〈c,m〉′ ≤ D
〈c,m〉
edgei

, ∀c,m. (10)

Second, the aggregate execution time estimation of a multi-
job J or multi-task at any given time t cannot exceed the flight
time availability of any selected drone:∑

J∈J

Ẽex′ ≤ fi, ∀Dedgei
∈EDGE. (11)

Third, unused or inactive container-instance or node Ii∈
Dedgei in the cluster would be shut down. All the nodes are
in one of the two states: Active and Inactive. An Active node
is a node that is ready to accept jobs or has at least a job being
started, executing or completing. An Inactive node is a node that
is not ready to accept jobs and not having at least a job that is
being started, executing or completing. These two states can be
expressed as follows:

∀c,m β (Ii) =

{
1, Active if Ji ∈ [Es, Ec, Eex],
0, Inactive if Ji /∈ [Es, Ec, Eex],

(12)

where the indicatorβ(Ii)=1 indicates that the node Ii is ready to
accept new jobs, and at least a jobJi is being started, executing or
completing, i.e., Ji∈ [Es,Ec, Eex], on Ii; otherwise β(Ii)=0.

Optimization formulation: Hence, maximizing utilization of
a cluster depends on application orchestration:

Maximize ρ
〈c,m〉
C =

∑
J∈J T

〈c,m〉′

D
〈c,m〉
edgei

, (13)

subjectto J ⇒ Dedgei� , ∃, (14)

∑
J∈J

Ẽex′ ≤ fi, ∀Dedgei
∈EDGE, ∃, (15)

∑
J∈J

T 〈c,m〉′ ≤ D
〈c,m〉
edgei

, ∀c,m, (16)

β (Ii)∈ {0, 1}, ∃. (17)

The constraint (14) indicates the dispatching of multi-job to the
closest edge. We shall discuss the details of our dispatching
policy in Subsection IV-C and in Algorithm 2. Constraint (15) in-
dicates that the overall execution time estimation of the multi-job
should be congruent to the flight time availability of the selected
drone. The constraint (16) indicates that the collective resource
demand of a multi-job cannot exceed the resource availability of
the selected drone, while the condition (17) indicates that active
nodes (β(Ii)=1) should be used for execution, and inactive
nodes (β(Ii)=0) should be shut down. Hence, our aim is to
minimize the number of active nodes used for execution by
co-locating or packing tasks tightly on each node in order to
maximize resource utilization. We shall discuss the details of
our packing strategy in Subsection IV-C and in Algorithm 3.

On the other hand, the overall actual execution time can be
minimized depending on orchestration:

Minimize
∑
J∈J

k∑
i=1

Eexi

k
= Eex′, (18)

subjectto J ⇒ Dedgei� , ∀c,m. (19)

The constraint (19) indicates the dispatching of multi-job to the
closest edge. The execution time of multi-dependent tasks can
be minimized by executing them on the same cluster, i.e., by
enabling the inter-dependent tasks to communicate faster. The
details of our dispatching policy are given in Subsection IV-C
and in Algorithm 2.

C. Algorithm

Our AirEdge solution consists of three components: the exe-
cution time estimation, dispatching, and packing. These com-
ponents aim at finding the optimal solution for the problem
formulation in (13) and the formulation in (18). The execution
time for multi-job required by the dispatcher is first estimated.
Our dispatching strategy is based on the orchestration of ready
tasks to the closest cluster or drone deployment with the min-
imum flight time f l

i to arrive at location Dl
i, and having req-

uisite available resources to accommodate the tasks, while our
packing strategy involves packing these tasks tightly on nodes
or container-instances to fully utilize the available resources.
Below we detail the procedures of the execution time estimation,
dispatching, and co-location or packing.

Execution time estimation: When the set of multi-dependent
tasks C are ready to be deployed, the collective execution
time Ẽex′ is first estimated. We train a ML regression model
with historical data for this prediction task. The input to the
prediction model is the set of runtime parameters fmt, such as
task dependency depth γ, resource demands T 〈c,m〉′, data size δ
and type of task ε, and the output is the execution time estimation

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

812 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 1, JANUARY 2022

Algorithm 1 AirEdge: Execution Time Estimation

Input: Multi-Job J released at time t in location Dl
i, set of

runtime parameters fmt

Output: Execution time estimation
∑

J∈J Ẽex′ of a
multi-job

1: for Ji ∈ Jdo
2: Data size of Ji = δJi

3: Dependency depth of Ji = γJi

4: for Ti ∈ Jido
5: Ti = 〈c,m〉, i.e., resource demand
6: ML(fmt)Ti

= ẼexTi

7: end for
8: ẼexJi

= ẼexJi
+ ẼexTi

10: end for

Ẽex′. Algorithm 1 describes the execution time estimation for
multi-job. Once the execution time estimation value is extracted,
it is used in the dispatching stage.

Dispatching: Our policy is to dispatch a set of tasks to the
closest edge Dedgei� with the congruent resource capacity or

availability and flight time availability, i.e., T 〈c,m〉′ ∼= D
〈c,m〉
edgei�

and Ẽex′ ∼= fi� , respectively. For the rationale of this strategy,
again consider the smart city solution, IQ Smart City, which
provides an AI based multi-sensory analytic systems for video,
sound and smell analytics, integrated with a V2X platform, i.e.,
Ericsson Connected Vehicle Platform (CVP),6 to serve about
4.5 million active vehicles across more than 130 countries.
Assume that there are updates from a given set of vehicles
and sensors at location Dl

i and time t. Then it is better to
deploy a closest drone having congruent resource and flight time
availability to serve these vehicles and sensors at the same time,
i.e., J ⇒ Dedgei� .

Our strategy utilizes the closest heuristic to minimize the
overall response time. This is based on the orchestration of
ready tasks to the closest drone deployment or cluster (i.e.,
with the smallest flight time to the needed location) having
requisite flight time and available resources to execute the tasks.
Closest is a widely adopted heuristic or principle in distributed
systems, since mobile devices often need to communicate only
with the closest or nearest edge-clouds. Most of the works
on edge-clouds, e.g., [29], [30], [43], [44], adopt the closest
principle as the task offloading policy.

Algorithm 2 describes the dispatching procedure in 3 steps.
First, it captures the collective resource demand of ready multi-
task/job and location of users, and updates the state of EDGE
resources. Second, it selects the closest edge having congruent
resources (line 3). Lastly, it dispatches the multi-task/job to the
selected cluster (line 4). If the closest edge does not have the
required resources, the selection procedure is repeated until the
next closest edge having congruent resources is found, and the
multi-task/job is dispatched to the next closest edge (line 6).

6https://www.ericsson.com/en/internet-of-things/automotive/connected-
vehicle-cloud

Algorithm 2 AirEdge: Dispatching Policy

Input: Multi-Job J released at time t within location Dl
i,

execution time estimation
∑

J∈J Ẽex′, and federated
edge-drone deployments Dedgei ∈EDGE update state

Output: Closest drone with congruent flight time and
resource availability, such that J ⇒ Dedgei�

1: for Dedgei ∈ EDGE do
2: if

∑
J∈J T

〈c,m〉′ ∼= D
〈c,m〉
edgei

and
∑

J∈J Ẽex′ ∼= fi
then

3: if Dedgei� = argminDedgei
∈EDGE(f

l
i) then

4: J ⇒ Dedgei�

5: else
6: Dispatch J to next closest edge
7: end if
8: end if
9: end for

Algorithm 3 AirEdge: Multi-job packing
Input: Multi-Job J dispatched to closest edge cluster
Dedge� , resource capacity or availability I

〈c,m〉
i of all

nodes Ii∈Dedge�

Output: Multi-Job co-location through packing, such that
fewer container-instances or nodes are used in full
utilization, i.e., Minimize

∑
Ii∈Dedge�

Ii
1: for Ii ∈ Dedge� do
2: if β(Ii)= 1 then
3: I

〈c,m〉
i = 〈c,m〉, i.e., resource availability

4: for J ∈ J do
5: if Γ[J, Ii] = 1 then
6: J ⇒ Ii
7: I

〈c,m〉
i = I

〈c,m〉
i + T 〈c,m〉′

8: end if
9: end for

10: if I〈c,m〉
i ≥ 〈c,m〉 then

11: i = i+ 1
12: end if
13: end if
14: end for

Packing: At the edge cluster, we develop a new packing
algorithm which uses the cluster resource capacity or availabil-
ity and multi-job resource requirement information to provide
better packing, such that more efficient resource utilization is
achieved in the federated system. Specifically, the gang schedul-
ing is adopted to co-schedule all the multi-jobs at a time,
while the variable-sized multi-capacity bin-packing (VSMCBP)
algorithm [45] places the jobs on nodes by co-locating jobs
tightly on each node. As multi-jobs arrive at the cluster Dedge� ,
the VSMCBP algorithm scans the list of the jobs, and maps
these jobs to nodes. The key difference between the VSMCBP
and other bin-packing algorithms, such as first fit bin packing
(FFBP) [46], is the criteria used to select which jobs should
be co-located to fully utilize any given node(s). The FFBP
algorithm requires the next job to be packed on the current node,

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

AWADA et al.: AIREDGE: A DEPENDENCY-AWARE MULTI-TASK ORCHESTRATION IN FEDERATED AERIAL COMPUTING 813

TABLE III
FEDERATED-EDGE RESOURCE CAPACITIES

and if this cannot be done, a new node is used. The VSMCBP
algorithm on the other hand scans the given list of jobs and maps
jobs randomly to nodes in full utilization. Some jobs consist of
a single task and do not have dependent or do not depend on
other task(s), and such jobs are also co-located with other jobs.

Multi-job J is a collection of several jobs J ∈ J. These jobs
are packed tightly on nodes, so that fewer nodes are used in full
utilization and all the jobs are executed concurrently. Hence our
packing strategy is to solve the problem:

Minimize
∑

Ii∈Dedge�

Ii, (20)

subject to J ⇒ Dedge� , (21)∑
J∈J

Γ [J, Ii] · T 〈c,m〉′ ≤ I
〈c,m〉
i , ∀c,m, (22)

Γ [J, Ii]=

{
1, if J ⇒ Ii,
0, otherwise, ∀Ii ∈ Dedge�.

(23)

The constraint (22) indicates that the total resource requirements
of co-located jobs cannot exceed the node resource capacity
or availability, while the condition (23) means that if job J
is deployed on the node Ii, the indicator returns a value of 1;
otherwise, 0 is returned. This is to ensure that each job is placed
in exactly one node. The powerful Google OR-Tools,7 which
provides an interface to several mixed-integer programming
(MIP) solvers, i.e., coin-or branch and cut (CBC),8 is employed
to solve this VSMCBP problem for multi-job packing.

Algorithm 3 describes the packing strategy which packs tasks
tightly on nodes, such that for any given tasks/jobs, fewer
nodes are used for execution. It takes the resource demand of
multi-task/job and resource availability of container-instances
or nodes as input, then scans through the multi-task/job to select
jobs having congruent resources matching the active node in full
utilization. This process is repeated until all jobs are scheduled
on nodes.

V. PERFORMANCE EVALUATION

We evaluate our AirEdge on real-time Alibaba cluster data
traces. With the aid of the job execution time estimate Ẽex′,
we show that AirEdge can minimize the actual execution time
of multi-dependent tasks, achieve high resource utilization and
avoid loss of job in a federated aerial edge system. We conduct
extensive experiments with orchestrated sets of multi-dependent
tasks having heterogeneous resource requests across the comput-
ing resources. For each deployment, we compare our AirEdge
with some existing state-of-the-arts.

A. System Setup

Computing Resources: We use 6 federated aerial edge de-
ployments (drones), as summarized in Table III. The computing
resources are made up of heterogeneous container-optimized
nodes (container-instances). These drones have various resource
capacities (up to 74 CPU cores and 202 GiB of memory) and
weights (up to 15 kg). We assume that the selected drones
have congruent flight time to execute ready applications. This
assumption is reasonable as practical drones have such capacity.
For example, the Easy Aerial Falcon9 is an autonomous drone
with load capacity up to 2 kg and flight time up to 45 minutes. The
Bell ATP7010 is another autonomous drone with load capacity
up to 31 kg and can cover up to 35 miles on a single charge while
carrying its maximum load.

Applications: To evaluate our framework, we employ use-
cases of real-world CPU and memory intensive data-trace from
Alibaba, which records the activities of both long running
containers (for Alibaba’s e-commerce business) and batch jobs
across an 8-day period. An Alibaba cluster is a set of 4,034
machines, packed into racks, and connected by a high-bandwidth
cluster network. Workload arrives at the cluster in the form
of jobs. A job is comprised of one or more tasks, each of
which is accompanied by a set of resource requirements used
for scheduling the tasks onto machines. The data trace contains
about 14,295,731 tasks (with about 12,207,703 dependencies)
and 4,201,014 jobs, among which we randomly choose 201
jobs with total of 857 tasks (including dependencies) for our
experiments. The number of tasks in each multi-job ranges from
(12, 302], while the task dependency depth among the jobs
ranges from (1, 18]. Task dependencies [47] in Alibaba data
trace is valuable for our investigation. In our experiments, we
assume that all tasks are of high priority.

B. Heuristics and Baselines

As explained previously, the closest heuristic or principle is
widely adopted as the dispatching policy in distributed systems.
Therefore, we fix the dispatching policy of the state-of-the-art
dependency-aware task orchestration benchmarks compared to
that of AirEdge, i.e., the closest heuristic. We compare our
scheduling or packing strategy with the following three state-
of-the-art schemes and the random approach.

1) Graphene [41] is a state-of-the-art approach in the liter-
ature for dependency-aware task orchestration problems.

7https://developers.google.com/optimization
8https://projects.coin-or.org/Cbc
9https://easyaerial.com
10https://www.bellflight.com/products/bell-apt

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

814 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 1, JANUARY 2022

Fig. 6. Multi-task deployment across the federated aerial edge resources.

TABLE IV
MULTI-TASK EXECUTION IN FEDERATED AERIAL EDGE

First, it co-schedules some tasks identified as troublesome
tasks. Then the remaining tasks are divided into parent,
child and sibling subsets, which are placed afterward
to ensure compactness and to respect dependencies. It
deploys about 40% of a given DAG at a time.

2) Tetris [42] is an existing state-of-the-art approach for task
packing problems, although it does not consider the task
dependencies. It deploys at least 50% of any given tasks
at a time and primarily focuses on packing tasks on nodes
mainly to achieve high resource utilization. For every task,
it computes a packing score pScoret, as a dot product
between the task resource requirements vector and the
node’s resource availability vector.

3) Spear [40] is a dependency-aware task scheduler, which
applies Monte Carlo tree search (MCTS) with deep rein-
forcement learning. It utilizes the Critical Path (CP) to
pick tasks along the CP in the DAG. Spear deploys about
15% of the tasks at a time.

4) Random approach deploys a task randomly to any avail-
able node, and assumes a node can only execute a task at
a time.

C. Deployment Results and Performance Comparison

Our investigation focuses on CPU and memory utilization,
task deployment, scheduling and execution times. We use the
cluster data trace from Alibaba to obtain resource requirements
(CPU, Memory) and all the task dependencies. The multi-job
execution information across the federated aerial edge deploy-
ments are listed in Table IV. The results obtained by AirEdge,
Graphene, Tetris, Spear and Random are compared.

We first investigate the capabilities of the five schemes com-
pared to deploy the required tasks across the six drone resources.

The multi-task deployments of all the five schemes across the
federated aerial edge resources are depicted in Fig. 6. It can be
see that AirEdge, Tetris and Graphene all are able to deploy
100% of all the tasks. Spear is slightly inferior and could not
deploy 100% of the tasks across all the six drones. Specifi-
cally, it can only achieve 93%, 96% and 99% of the multi-task
deployments on Drones 3, 4 and 6, respectively. As expected,
Random is the worst and the percentage of its deployed tasks
is much lower. Random approach deploys a task randomly to
any available node, and assumes that a node can only execute
a task at a time. This results in resource under utilization and
inability to deploy all its tasks, given the available resources.
Note that in the case that it is impossible to deploy 100% of
the tasks on a drone, other drone, which has the additional
congruent resource and flight time availability, will have to
deploy and execute these remaining tasks. In the following
performance comparison, however, we only show the results
for the tasks which are deployed successfully in the federated
aerial deployments.

1) Performance Comparison Across Federated Aerial Edge:
We first introduce a performance metric, the actual resources
usage of jobs D

〈c,m〉
edgeiARU , which is defined as the ratio of the

resources used for execution D
〈c,m〉
edgeiU

over the edge’s resource

capacity or availability D
〈c,m〉
edgei

:

D
〈c,m〉
edgeiARU =

D
〈c,m〉
edgeiU

D
〈c,m〉
edgei

. (24)

Another metric, the resources utilization ρ
〈c,m〉
C , is already given

in (9). The metric ρ
〈c,m〉
C includes the CPU utilization ρ

〈c〉
C and

the memory utilization ρ
〈m〉
C , which can be defined respectively

according to

ρ
〈c〉
C =

∑
J∈J T

〈c〉′

D
〈c〉
edgeiU

, (25)

ρ
〈m〉
C =

∑
J∈J T

〈m〉′

D
〈m〉
edgeiU

, (26)

where
∑

J∈J T
〈c〉′ and

∑
J∈J T

〈m〉′ are the total collective CPU
and memory demands, respectively.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

AWADA et al.: AIREDGE: A DEPENDENCY-AWARE MULTI-TASK ORCHESTRATION IN FEDERATED AERIAL COMPUTING 815

Fig. 7. Actual resource usage across the federated aerial edge clusters.

Fig. 8. CPU utilization across the federated aerial edge resources.

Fig. 9. Memory utilization across the federated aerial edge resources.

Fig. 7 compares the actual resource usage of AirEdge with
those of the three baseline schemes and the random approach.
It can be seen that AirEdge consumes the fewest resources in
the clusters with Tetris as the very close second best, while
Random uses the highest resources with Spear as the second
worst. Graphene ranks in the middle, in terms of resource
usage. The CPU and memory resource utilization comparisons
are shown in Figs. 8 and 9, respectively. Again, AirEdge and
Tetris are superior than Graphene, Spear and Random, and they
achieve the highest and close second highest resource utilization,
respectively, while Spear and Random achieve the second lowest
and lowest resource utilization, respectively.

Two other key metrics are the actual multi-task scheduling
time and, more importantly, the actual multi-task execution time.
Figs. 10 and 11 compares the actual multi-task scheduling time
and multi-task execution time of AirEdge with those of the four
benchmarks, respectively. The results show that AirEdge is the
best, Tetris is the second best, and Graphene is the third best,
while Random is the worst and Spear the second worst, in terms
of both scheduling and execution times. Moreover, the superior
performance of AirEdge over the other benchmark schemes is
overwhelmingly clear.

2) Performance Comparison in Individual Clusters: Having
compared the performance of all the five schemes across the

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

816 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 1, JANUARY 2022

Fig. 10. Actual multi-task scheduling time across the federated aerial edge resources.

Fig. 11. Actual multi-task execution time across the federated aerial edge resources.

entire federated aerial edge, in terms of actual resource usage
and resource utilization, task scheduling and execution times,
which are shown in Figs. 7 to 11, respectively, we now exam the
the performance of all the five schemes in individual clusters in
detail.

In Drone-1 edge-cluster, we deploy 1 job with a total
of 6 tasks, where the job has a task dependency depth of
5. AirEdge first optimizes the deployment by co-locating as
many jobs in a node as possible, to fully utilize the available
resources in the node. Utilizing the gang scheduling strategy,
AirEdge co-schedules all the 6 tasks at a time. These tasks are
tightly packed on nodes using the VSMCBP algorithm, which
uses all the nodes in the cluster to execute the job. Note that
this cluster is a small-capacity cluster, having 6 CPU cores
and 6 GiB of memory. Using the same configuration for the
baseline schemes, Graphene, Tetris and Spear also utilize the
full resources. The random approach utilizes the full resources
as well. Importantly, AirEdge has the fastest scheduling and
execution times compared to the three state-of-the-art schemes
and the random approach, mainly due to the following reasons:
(i) AirEdge utilizes the gang scheduling to co-schedule all the
tasks at a time, and (ii) its packing strategy explores the available
nodes to find the best node, which has the requisite available
resources to execute all the tasks, by packing them tightly on
the node. Observe that AirEdge is more than 2 times faster than
the second best Tetris in both the scheduling and execution times.
It is more than 3 times and 2 times faster than Graphene as
well as 9 times and 3 times faster than Spear in the scheduling
and execution times, respectively. Compared with the worst

Random, AirEdge is 48 times and 6 times faster in terms of
scheduling and execution times, respectively.
Drone-2 cluster is also a small-capacity cluster but with

higher CPU and memory capacity than Drone-1. Here, 3
jobs with a total of 13 tasks are deployed, where each job
has a task dependency in the range of (1, 6]. We optimize the
deployment to ensure that resources are fully utilized. Containers
provide isolation to running applications, making it possible to
co-locate multiple applications on the same node without any
interference. A single container-optimized node can execute
more containerized applications, given that there are sufficient
available resources. AirEdge, Graphene and Tetris consume
8% fewer resources than Spear, and 25% fewer resources than
Random. AirEdge, Graphene and Tetris also gain 9% and 24%
higher CPU utilization over Spear and Random, respectively,
as well as 4% and 9% higher memory utilization than Spear
and Random, respectively. More significantly, AirEdge is 9, 6
and 23 times faster in the scheduling time than Graphene, Tetris
and Spear, respectively, while it is 2, 2 and 3 times faster in the
execution time over these state-of-the-art schemes, respectively.
It is worth recapping that in the case of Random, the results
of actual resource usage, resource utilization, scheduling and
execution times are for 92% of the tasks that it is able to deploy
on Drone-2.
Drone-3 has high load capacity (up to 8 kg) compared to

Drone-1 and Drone-2. This cluster is made up of 1 HPE
EL300 and 1 Stack Edge mini edge devices, with total
resource capacity of 20 Cores and 28 GiB. In this cluster,
we deploy 9 jobs, with total 31 tasks, where each job has

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

AWADA et al.: AIREDGE: A DEPENDENCY-AWARE MULTI-TASK ORCHESTRATION IN FEDERATED AERIAL COMPUTING 817

a task dependency range (1, 13]. AirEdge and Tetris reduce
resource usage by 10% compared with Graphene, Spear and
Random. AirEdge and Tetris achieve 10% and 5% higher CPU
and memory utilization, respectively, compared to Graphene,
Spear and Random. In terms of both scheduling and execution
times, AirEdge is about 2 times faster than Tetris. It is 4 times
and 5 times faster than Graphene as well as 18 times and 10
times faster than Spear, in the scheduling and execution times,
respectively. Not surprisingly, Random has the worst scheduling
and execution time performance.
Drone-4 edge-cluster is a high capacity cluster. Here, 11

jobs with total of 26 tasks are deployed, where each job has a
dependency depth range (1, 4]. It can be seen that AirEdge and
Tetris consume 12% and 19% fewer resources than Graphene
and Spear, respectively. AirEdge and Tetris also achieve 13%
and 18% higher CPU utilization as well as 4% and 6% higher
memory utilization, over Graphene and Spear, respectively. It is
worth pointed out that although Spear and the Random approach
utilize the same amount of resources, Random can only deploy
38% of the tasks but Spear deploys 96% of the tasks. By contrast,
AirEdge, Graphene and Tetris all deploy 100% of the tasks. In
terms of scheduling time, AirEdge is approximately 7 times,
3 times and 30 times faster than Graphene, Tetris and Spear,
respectively. In terms of execution time, AirEdge is about 4
times, 2 times and 8 times faster than Graphene, Tetris and
Spear, respectively. Again Random has the worst scheduling
and execution time performance.
Drone-5 and Drone-6 are the largest clusters in terms of

resource and load capacity. We deploy 15 and 30 jobs in these
two clusters, respectively. The total number of tasks deployed
in Drone-5 cluster is 42, while total of 103 tasks are deployed
in Drone-6 cluster. The task dependency depth of each job is
in the range of (1, 13]. Observe that Random can only deploy
28% of the tasks in these two resource and capacity rich drone
clusters, respectively.

For Drone-5 edge-cluster, AirEdge and Tetris use 3% and
10% less resources, compared with Graphene and Spear, re-
spectively. AirEdge and Tetris also achieve 4% and 10% higher
CPU utilization as well as 1% and 3% higher memory utilization
than Graphene and Spear, respectively. In terms of scheduling
time, AirEdge is approximately 10 times, 16 times, 30 times
and 800 times faster than Graphene, Tetris, Spear and Random,
respectively. In terms of execution time, AirEdge is about 4
times, 2 times, 8 times and 40 times faster than Graphene, Tetris,
Spear and Random, respectively.

For Drone-6 edge-cluster, AirEdge uses 2% less resources
than Tetris as well as 5% less resources than Graphene and Spear.
AirEdge also achieve 1% higher CPU utilization than Tetris as
well as 4% higher CPU utilization than Graphene and Spear. In
terms of memory utilization, AirEdge is 1% higher than Tetris
as well as 2% higher than Graphene and Spear. In terms of
scheduling time, AirEdge is slightly faster than Tetris as well
as 2 times faster than Graphene and Spear. In terms of execution
time, AirEdge is 6 times faster, 3 times faster and 11 times faster
than Graphene, Tetris and Spear, respectively. AirEdge is 160
times faster and 100 times faster than Random in the scheduling
time and execution time, respectively.

D. Summary

Overall, AirEdge has demonstrated superior QoS in resource
management and multi-task orchestration in federated edge
clusters. Our algorithm consistently achieves both the highest
cluster resource utilization as well as the fastest scheduling and
execution times for multi-tasks/jobs, compared to the three state-
of-the-arts, Graphene, Tetris and Spear. Increasing resource
utilization by just a few percentage points can save millions of
dollars in large scale-computing. Achieving faster scheduling
time and in particular faster execution time are crucial for
modern applications to perform better.

The gains achieved by AirEdge as observed from our ex-
periments include load-balancing in a distributed and federated
edge clusters and an increase in the number of tasks that can be
deployed at a time as well as faster execution time of the overall
tasks and improved usage of cluster resources. The significant
advantage of AirEdge can be explained as follows. It deploys
sets of multi-jobs/tasks as a unit through the gang scheduling
strategy, and these applications are deployed and executed con-
currently. Unlike AirEdge, the existing state-of-the-art methods
do not deploy all ready tasks at a time or do not respect task
dependencies, leading to more resource usage and cluster under
utilization as well as causing scheduling delay and longer task
execution times.

VI. CONCLUSION

This paper has presented a dependency-aware multi-task or-
chestration in a federated aerial edge computing system, called
AirEdge, to improve resource efficiency and enhance perfor-
mance. We have utilized a resource-specific dispatching strategy
that selects the closest edge cluster or drone suitable for given
job(s) based on estimated value of their execution time, and
a container-based bin packing optimization strategy that packs
or co-locates tasks tightly on nodes to fully utilize available re-
sources. Our approach involves capturing the high-level resource
request of tasks, federated aerial edge clusters update state ser-
vice, execution time estimation, gang scheduling and co-locating
multi-task on container-optimized nodes called container-
instances. To evaluate our approach, we have illustrated use
cases of real-world CPU and memory intensive tasks from Al-
ibaba cluster trace, which records the activities of both long run-
ning containers (for Alibaba’s e-commerce business) and batch
jobs across an 8-day period. We have compared our approach
with the state-of-the-art dependency-aware task orchestration
and task packing baseline strategies. Our experimental results
have demonstrated that AirEdge achieves both the highest clus-
ter resource utilization and the fastest execution time for multi-
tasks/jobs compared to the existing state-of-the-art strategies.

REFERENCES

[1] J. Ren et al., “A survey on end-edge-cloud orchestrated network com-
puting paradigms: Transparent computing, mobile edge computing,
fog computing, and cloudlet,” ACM Comput. Surv., vol. 52, no. 6,
pp. 1–36, 2019, doi: https://doi.org/10.1145/3362031.

[2] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing for
autonomous driving: Opportunities and challenges,” Proc. IEEE, vol. 107,
no. 8, pp. 1697–1716, Aug. 2019.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3362031

818 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 1, JANUARY 2022

[3] S. U. Amin and M. S. Hossain, “Edge intelligence and Internet of
Things in healthcare: A survey,” IEEE Access, vol. 9, pp. 45–59, 2021,
doi: 10.1109/ACCESS.2020.3045115.

[4] Z. Tan, H. Qu, J. Zhao, S. Zhou, and W. Wang, “UAV-aided edge/fog
computing in smart IoT community for social augmented reality,” IEEE
Internet Things J., vol. 7, no. 6, pp. 4872–4884, Jun. 2020.

[5] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi, T. N. Dang, and C. S.
Hong, “Edge-computing-enabled smart cities: A comprehensive survey,”
IEEE Internet Things J., vol. 7, no. 10, pp. 10200–10232, Oct. 2020.

[6] R. Mahmud, A. N. Toosi, K. Ramamohanarao, and R. Buyya, “Context-
aware placement of industry 4.0 applications in fog computing envi-
ronments,” IEEE Trans. Ind. Informat., vol. 16, no. 11, pp. 7004–7013,
Nov. 2020.

[7] H. Guo and J. Liu, “UAV-enhanced intelligent offloading for Internet
of Things at the edge,” IEEE Trans. Ind. Informat., vol. 16, no. 4,
pp. 2737–2746, Apr. 2020.

[8] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and resource
allocation in UAV-enabled mobile edge computing,” IEEE Internet Things
J., vol. 7, no. 4, pp. 3147–3159, Apr. 2020.

[9] X. Zhang et al., “Resource allocation for a UAV-enabled mobile-edge
computing system: Computation efficiency maximization,” IEEE Access,
vol. 7, pp. 113345–113354, 2019, doi: 10.1109/ACCESS.2019.2935217.

[10] Y. Liu, S. Xie, and Y. Zhang, “Cooperative offloading and resource man-
agement for UAV-enabled mobile edge computing in power IoT system,”
IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12229–12239, Oct. 2020.

[11] F. Giuseppe, G. Christian, and S. Giovanni, “Fog in the clouds: UAVs to
provide edge computing to IoT devices,” ACM Trans. Internet Technol.,
vol. 20, no. 3, pp. 26:1–26:26, 2020.

[12] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, “Multi-
UAV-enabled load-balance mobile-edge computing for IoT networks,”
IEEE Internet Things J., vol. 7, no. 8, pp. 6898–6908, Aug. 2020.

[13] C. Zhan, H. Hu, Z. Liu, Z. Wang, and S. Mao, “Multi-UAV-enabled
mobile edge computing for time-constrained IoT applications,” IEEE
Internet Things J., vol. 8, no. 20, pp. 15553–15567, Oct. 2021,
doi: 10.1109/JIOT.2021.3073208.

[14] Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, “Joint deployment and
task scheduling optimization for large-scale mobile users in multi-UAV-
enabled mobile edge computing,” IEEE Trans. Cybern., vol. 50, no. 9,
pp. 3984–3997, Sep. 2020.

[15] J. Zhang et al., “Computation-efficient offloading and trajectory schedul-
ing for multi-UAV assisted mobile edge computing,” IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2114–2125, Feb. 2020.

[16] Y. Luo, W. Ding, and B. Zhang, “Optimization of task scheduling and
dynamic service strategy for multi-UAV-enabled mobile-edge computing
system,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 3, pp. 970–984,
Sep. 2021.

[17] A. M. Seid, G. O. Boateng, B. Mareri, G. Sun, and W. Jiang, “Multi-agent
DRL for task offloading and resource allocation in multi-UAV enabled IoT
edge network,” IEEE Trans. Netw. Serv. Manage., vol. 18, no. 4, pp. 4531–
4547, Dec. 2021.

[18] X. Cao, G. Tang, D. Guo, Y. Li, and W. Zhang, “Edge federation: To-
wards an integrated service provisioning model,” IEEE/ACM Trans. Netw.,
vol. 28, no. 3, pp. 1116–1129, Jun. 2020.

[19] U. Awada and J. Zhang, “Edge federation: A dependency-aware multi-
Task dispatching and co-location in federated edge container-instances,”
in Proc. IEEE Int. Conf. Edge Comput., Beijing, China, 2020, pp. 91–98.

[20] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks,” IEEE Trans.
Cloud Comput., vol. 5, no. 4, pp. 725–737, Oct.–Dec. 2017.

[21] R. Urgaonkar et al., “Dynamic service migration and workload scheduling
in edge-clouds,” Perform. Eval., vol. 91, pp. 205–228, Sep. 2015.

[22] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun., San Francisco, CA, USA, 2016, pp. 1–9.

[23] T. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow task exe-
cution time in the cloud using a two-stage machine learning approach,”
IEEE Trans. Cloud Comput., vol. 8, no. 1, pp. 256–268, Jan.–Mar. 2020.

[24] F. Nadeem, D. Alghazzawi, A. Mashat, K. Faqeeh, and A. Almalaise,
“Using machine learning ensemble methods to predict execution time of
e-Science workflows in heterogeneous distributed systems,” IEEE Access,
vol. 7, pp. 25138–25149, 2019, doi: 10.1109/ACCESS.2019.2899985.

[25] L. Larsson, H. Gustafsson, C. Klein, and E. Elmroth, “Decentralized
Kubernetes federation control plane,” in Proc. IEEE/ACM 13th Int. Conf.
Utility Cloud Comput., Leicester, U.K., 2020, pp. 354–359.

[26] Y. Han et al., “Tailored learning-based scheduling for Kubernetes-oriented
edge-cloud system,” in Proc. Conf. Comput. Commun., Vancouver, BC,
Canada, May 2021, pp. 1–10.

[27] V. S. Marco, B. Taylor, B. Porter, and Z. Wang, “Improving spark applica-
tion throughput via memory aware task co-location: A mixture of experts
approach,” in Proc. ACM/IFIP/USENIX Middleware Conf., Las Vegas,
NV, USA, 2017, pp. 95–108.

[28] Y. Li, D. Sun, and B. C. Lee, “Dynamic colocation policies with rein-
forcement learning,” ACM Trans. Architecture Code Optim., vol. 17, no. 1,
pp. 1:1–1:25, Mar. 2020.

[29] U. Awada and A. Barker, “Resource efficiency in container-instance
clusters,” in Proc. 2nd Int. Conf. Internet Things Data Cloud Comput.,
Cambridge, U.K., Mar. 2017, pp. 1–5.

[30] U. Awada and A. Barker, “Improving resource efficiency of
container-instance clusters on clouds,” in Proc. 17th IEEE/ACM Int.
Symp. Cluster, Cloud Grid Comput., Madrid, Spain, May 2017,
pp. 929–934.

[31] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-user offload-
ing for edge computing networks: A dependency-aware and latency-
optimal approach,” IEEE Internet Things J., vol. 7, no. 3, pp. 1678–1689,
Mar. 2020.

[32] J. Liu and H. Shen, “Dependency-aware and resource-efficient scheduling
for heterogeneous jobs in clouds,” in Proc. IEEE Int. Conf. Cloud Comput.
Technol. Sci., Luxembourg City, Luxembourg, 2016, pp. 110–117.

[33] J. Lee, H. Ko, J. Kim, and S. Pack, “DATA: Dependency-aware task
allocation scheme in distributed edge clouds,” IEEE Trans. Ind. Informat.,
vol. 16, no. 12, pp. 7782–7790, Dec. 2020.

[34] Y. Liu et al., “Dependency-aware task scheduling in vehicular edge
computing,” IEEE Internet Things J., vol. 7, no. 6, pp. 4961–4971,
Jun. 2020.

[35] M. H. Hilman, M. A. Rodriguez, and R. Buyya, “Task runtime prediction
in scientific workflows using an online incremental learning approach,” in
Proc. IEEE/ACM 11th Int. Conf. Utility Cloud Comput., Zurich, Switzer-
land, 2018, pp. 93–102.

[36] Z. Han, H. Tan, S. H.-C. Jiang, X. Fu, W. Cao, and F. C. M. Lau,
“Scheduling placement-sensitive BSP jobs with inaccurate execution time
estimation,” in Proc. IEEE Conf. Comput. Commun., Toronto, ON, Canada,
2020, pp. 1053–1062.

[37] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep learn-
ing,” in Proc. 13th USENIX Conf. Operating Syst. Des. Implementation,
Carlsbad, CA, USA, Oct. 2018, pp. 595–610.

[38] S. Venkataraman et al., “Ernest: Efficient performance prediction for
large-scale advanced analytics,” in Proc. 13th USENIX Conf. Oper-
ating Syst. Des. Implementation, Santa Clara, CA, USA, Mar. 2016,
pp. 363–378.

[39] Y. Peng et al., “Optimus: An efficient dynamic resource scheduler for
deep learning clusters,” in Proc. 13th EuroSys Conf., Porto, Portugal,
2018, pp. 1–14.

[40] Z. Hu, J. Tu, and B. Li, “Spear: Optimized dependency-aware task schedul-
ing with deep reinforcement learning,” in Proc. Int. Conf. Distrib. Comput.
Syst., Dallas, TX, USA, 2019, pp. 2037–2046.

[41] R. Grandl et al., “GRAPHENE: Packing and dependency-aware schedul-
ing for data-parallel clusters,” in Proc. 13th USENIX Conf. Oper-
ating Syst. Des. Implementation, Savannah, GA, USA, Nov. 2016,
pp. 81–97.

[42] R. Grandl et al., “Multi-resource packing for cluster schedulers,” in
Proc. Conf. ACM Special Int. Group Data Commun., Chicago, IL, USA,
Aug. 2014, pp. 455–466.

[43] H. Tan, Z. Han, X. Li, and F. C. M. Lau, “Online job dispatching and
scheduling in edge-clouds,” in Proc. Conf. Comput. Commun., Atlanta,
GA, USA, May. 2017, pp. 1–9.

[44] Z. Han, H. Tan, X. Li, S. H.-C. Jiang, Y. Li, and F. C. M. Lau, “OnDisc:
Online latency-sensitive job dispatching and scheduling in heterogeneous
edge-clouds,” IEEE/ACM Trans. Netw., vol. 27, no. 6, pp. 2472–2485,
Dec. 2019.

[45] P. Lai et al., “Optimal edge user allocation in edge computing with variable
sized vector bin packing,” in Proc. Int. Conf. Serv.-Oriented Comput.,
Hangzhou, China, Nov. 2018, pp. 230–245.

[46] S. Rampersaud and D. Grosu, “Sharing-aware online virtual machine
packing in heterogeneous resource clouds,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 7, pp. 2046–2059, Jul. 2017.

[47] H. Tian, Y. Zheng, and W. Wang, “Characterizing and synthesizing task
dependencies of data-parallel jobs in Alibaba cloud,” in Proc. ACM Symp.
Cloud Comput., Santa Cruz, CA, USA, 2019, pp. 139–151.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/ACCESS.2020.3045115
https://dx.doi.org/10.1109/ACCESS.2019.2935217
https://dx.doi.org/10.1109/JIOT.2021.3073208
https://dx.doi.org/10.1109/ACCESS.2019.2899985

AWADA et al.: AIREDGE: A DEPENDENCY-AWARE MULTI-TASK ORCHESTRATION IN FEDERATED AERIAL COMPUTING 819

Uchechukwu Awada (Student Member, IEEE) is
currently working toward the Ph.D. degree with the
School of Information Engineering, Zhengzhou Uni-
versity, Zhengzhou, China. His current research inter-
ests include edge computing, cloud computing, dis-
tributed systems, IoT, and wireless communications.
He is a Student Member of ACM.

Jiangkang Zhang (Senior Member, IEEE) is cur-
rently a Senior Lecturer with Bournemouth Univer-
sity, U.K. Prior to joining in Bournemouth University,
he was a Senior Research Fellow with the Univer-
sity of Southampton, Southampton, U.K. He was a
Lecturer from 2012 to 2013 and then an Associate
Professor from 2013 to 2014 with Zhengzhou Univer-
sity, Zhengzhou, China. His research interests include
the areas of aeronautical communications, aeronau-
tical networks, evolutionary algorithms, and edge
computing. He is an Associate Editor for the IEEE

ACCESS.

Sheng Chen (Fellow, IEEE) received the B.Eng.
degree in control engineering from East China
Petroleum Institute, Dongying, China, in 1982 and the
Ph.D. degree in control engineering from City Univer-
sity, London, U.K., in 1986. In 2005, he was awarded
the higher doctoral degree, the Doctor of Sciences
(D.Sc.) degree from the University of Southampton,
Southampton, U.K. From 1986 to 1999, he held Re-
search and Academic appointments with the Univer-
sities of Sheffield, Edinburgh and Portsmouth, U.K.
Since 1999, he has been with the School of Elec-

tronics and Computer Science, University of Southampton, where he holds
the post of a Professor of intelligent systems and signal processing. He has
authored or coauthored more than 600 research papers. He has more than
16,800 Web of Science citations with h-index 57 and more than 33,500 Google
Scholar citations with h-index 78. His research interests include adaptive signal
processing, wireless communications, modeling and identification of nonlinear
systems, neural network and machine learning, intelligent control system design,
evolutionary computation methods and optimization. Dr. Chen is a Fellow of
the United Kingdom Royal Academy of Engineering, a Fellow of Asia-Pacific
Artificial Intelligence Association, and a Fellow of IET. He is one of the original
ISI highly cited Researcher in engineering (March 2004).

Shuangzhi Li received the B.S. and Ph.D. de-
grees from the School of Information Engineering,
Zhengzhou University, Zhengzhou, China, in 2012
and 2018, respectively. From 2015 to 2017, he was
a Visiting Student with the Department of Elec-
trical and Computer Engineering, McMaster Uni-
versity, Hamilton, ON, Canada. He is currently a
Lecturer with the School of Information Engineer-
ing, Zhengzhou University. His research interests
include noncoherent space-time coding and ultra-
reliable low-latency communications.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 22,2022 at 10:22:27 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

