
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 1, JANUARY 2024 691

A General Matrix Variable Optimization Framework
for MIMO Assisted Wireless Communications
Chengwen Xing , Member, IEEE, Yihan Li , Shiqi Gong , Jianping An , Senior Member, IEEE,

Sheng Chen , Fellow, IEEE, and Lajos Hanzo , Life Fellow, IEEE

Abstract—Complex matrix derivatives play an important role
in matrix optimization, since they form a theoretical basis for the
Karush-Kuhn-Tucker (KKT) conditions associated with matrix
variables. We commence with a comprehensive discussion of com-
plex matrix derivatives. First, some fundamental conclusions are
presented for deriving the optimal structures of matrix variables
from complex matrix derivatives. Then, some restrictions are im-
posed on complex matrix derivatives for ensuring that the resultant
first order equations in the KKT conditions exploit symmetric
properties. Accordingly, a specific family of symmetric matrix
equations is proposed and their properties are unveiled. Using these
symmetric matrix equations, the optimal structures of matrix vari-
ables are directly available, and thereby the original optimization
problems can be significantly simplified. In addition, we take into
account the positive semidefinite constraints imposed on matrix
variables. In order to accommodate the positive semidefinitness
of matrix variables, we introduce a matrix transformation tech-
nique by leveraging the symmetric matrix equations, which can
dramatically simplify the KKT conditions based analysis albeit at
the expense of destroying convexity. Moreover, this matrix trans-
formation technique is valuable in practice, since it offers a more
efficient means of computing the optimal solution based on the
optimal structures derived directly from the KKT conditions.

Index Terms—Matrix variable optimization, complex matrix
derivatives, Karush-Kuhn-Tucker conditions, matrix symmetric
structures, matrix variable transformation.

I. INTRODUCTION

MATRIX optimization plays an essential role in wireless
system designs [1], [2], [3], [4]. For example, multiple-

input multiple-output (MIMO) system optimization, including
both transmit precoder (TPC) matrix optimization and equalizer
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matrix optimization, is an important design issue in wireless
systems [1], [2], [4], [5], [6], [7], [8]. Complex matrix deriva-
tives provide efficient tools for solving these advanced matrix
optimization problems [9]. In view of the importance of complex
matrix derivatives, there is already some literature, in which
many insightful results are tabulated for readers to look up the
required ones [9], [10], [11], [12], [13]. With the evolution of
wireless technologies, many new matrix optimization problems
are emerging subject to new constraints. Solving these problems
generally requires efficient mathematical optimization tools,
which which is the core of our work.

Because the matrix variables are typically high-dimensional,
the key issue in matrix optimization is how to reduce the
computational complexity. A popular strategy is based on the
Karush-Kuhn-Tucker (KKT) conditions, which constitute nec-
essary conditions for finding optimal solutions [14]. Specifically,
for convex optimization problems, the solutions that satisfy the
KKT conditions are the optimal solutions, since the KKT con-
ditions act as sufficient and necessary conditions for this case.
Even for many non-convex problems, all the solutions derived
from the KKT conditions have a common structure, which is also
the analytical structure of the optimal solution. Therefore, the
KKT conditions having beneficial mathematical tractability play
a vital role in solving general optimization problems [3], [15].
The second strategy is that of leveraging majorization theory,
which relies on matrix inequalities associated with the diagonal
elements of Hermitian matrices [2]. However, there are strict
limitations on the optimization objective functions and con-
straints when utilizing the majorization theory based methods.
For example, for the classical MIMO transceiver design, the
majorization theory is only suitable for handling Schur-convex
or Schur-concave objective functions subject to the total power
constraint [16], [17]. The third one is referred to as the matrix
monotonic optimization framework, which exploits the mono-
tonicity of the positive semidefinite matrix cone to derive the
optimal structures of matrix variables [1], [18], [19]. Unfortu-
nately, the matrix monotonic optimization framework is not ap-
plicable to many practical applications, such as the optimization
problems where multiple constraints conflict with each other.

Among the three strategies, the KKT conditions based strat-
egy may be declared to be the prime technique of matrix
variable optimization, given its appealing mathematical simplic-
ity [3], [15], which has also been well studied by wireless re-
searchers. Nevertheless, in general, the KKT conditions are only
necessary conditions for the optimal solutions. The complex

0018-9545 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 18,2024 at 10:12:34 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4941-3503
https://orcid.org/0009-0003-9099-5450
https://orcid.org/0000-0003-3966-8000
https://orcid.org/0000-0002-6441-9711
https://orcid.org/0000-0001-6882-600X
https://orcid.org/0000-0002-2636-5214
mailto:chengwenxing@ieee.org
mailto:yihanli.bit@gmail.com
mailto:gsqyx@163.com
mailto:an@bit.edu.cn
mailto:sqc@ecs.soton.ac.uk
mailto:lh@ecs.soton.ac.uk


692 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 1, JANUARY 2024

TABLE I
COMPARISON BETWEEN OUR WORK AND THE EXISTING LITERATURE

TABLE II
SUMMARY OF MAIN SYMBOLS

matrix derivative is a fundamental tool conceived for deriv-
ing the KKT conditions, which usually has close relationships
with the specific structures of matrix variables. A number of
papers and textbooks have been published on complex matrix
derivatives [9], [13]. Building upon these works, the complex
matrix derivatives for the KKT conditions associated with matrix
variables can be derived.

The studies [3], [15] have shown the advantages of the
KKT conditions based algorithms, in which complex matrix
derivatives act as a theoretical basis for formulating the KKT
conditions. Generally, there exist equivalent variants of a real-
valued function based on matrix manipulations, thereby leading
to complex matrix derivatives in a diverse range of mathe-
matical formulas. Motivated by this fact, the KKT conditions
based methods usually rely on a case-by-case implementation.
Specifically, it was found in [3] that the optimal water-filling
structure of the positive semidefinite transmit signal covariance
matrix directly accrues from the KKT conditions. In [21], the
optimal structures of matrix variables were derived from KKT
conditions utilizing uplink-downlink duality. However, the au-
thors of [15] pointed out that the optimal solution structure is
difficult to directly obtain from the KKT conditions, since the
corresponding optimization problem is non-convex. Fortunately,
these KKT conditions can be simplified by exploiting the fact
that when a matrix multiplied by a diagonal matrix is diagonal,
the original matrix must also be diagonal. Based on this, the
optimal closed-form linear TPC/equalizer was derived and also
proved to be able to diagonalize the MIMO channel into its eigen
sub-channels. In the face of the ever increasing requirements
for wireless communications, the performance optimization
problems can be diverse. Considering the existence of multiple
objective functions, a general framework of KKT conditions
based matrix variable optimization is investigated in this article.
Our novel contributions are contrasted to the above-mentioned
literature, which can be seen at a glance in Table I and are further
detailed as follows:

� We provide a number of fundamental conclusions regard-
ing complex matrix derivatives for wireless communi-
cations. It is noted that there are several mathematical
formulations for traditional complex matrix derivatives.
In contrast to ignoring some strict restrictions on com-
plex matrix derivatives in some classical textbooks, we
additionally define symmetric complex matrix derivative
operators for reasons of mathematical rigour. Therefore,
our provided fundamental conclusions form a firm basis
for the successive theoretical analysis and mathematical
derivations.

� Inspired by matrix Hermitian symmetry, we propose the
concept of symmetric matrix equations and some important
conclusions to simplify the related theoretical analysis.
Considering several typical matrix optimization problems
in MIMO systems, we derive the corresponding symmetric
matrix equations from their KKT conditions. Based on
this, the optimal structures of matrix variables are available
and thereby the original optimization problems can be
significantly simplified.

� For practical wireless communications, we consider the
positive semi-definite constraints imposed on matrix vari-
ables, which substantially affect the resultant complex
matrix derivatives. Therefore, we introduce an efficient
variable transformation technique to transform the posi-
tive semi-definite matrices into matrices associated with
independent variables. It is shown that this transformation
technique can automatically satisfy the matrix rank con-
straints. Although the variable transformation may destroy
the convexity of the original optimization problems, it can
simplify the derivation of the optimal structures of matrix
variables. Consequently, the optimization problems can be
drastically simplified.

This article is organized as follows. In Section II, we present
fundamental definitions and results concerning complex matrix
derivatives, which provide the theoretical basis for our work. In
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Section III, we derive some fundamental results for the family
of the symmetric matrix equations, which form the basis of
the KKT conditions based methods harnessed for deriving the
optimal structures of matrix variables. Moreover, a number of
specific applications are presented in this section. In Section IV,
the positive semidefinite constraints are investigated, and the
corresponding symmetric matrix equations are derived. In Sec-
tion V, our numerical results are presented in support of our
conclusions offered in Section VI.

Notations: We use regular letters for scalars, lowercase and
uppercase boldface letters for vectors and matrices, respectively.
(·)∗, (·)T, (·)H and (·)−1 represent the conjugate, transpose,
Hermitian and inverse operators, respectively. 0 denote the
zero matrix and I denote the identity matrix. For a complex
matrix X , XR and XI denote its real and imaginary parts,
respectively. [X]i,j denote the (i, j)-th element of X . |X|
and Tr(X) represent the determinant and trace of X , respec-
tively. λi(X) denote the ith largest eigenvalue of X . X � 0
means that the matrix X is positive semidefinite and (x)+

= max{0, x}.

II. FUNDAMENTAL RESULTS ON COMPLEX MATRIX

DERIVATIVES

Optimization relying on matrix variables is more general than
based on vector or scalar variables, but it subsumes both vector
and scalar optimization as its special cases. Secondly, complex-
valued matrix derivatives play an important role in wireless
communications. From the engineering point of view, the phases
of signals must be taken into account. Therefore, the matrices
involved in wireless communications are usually defined as
complex matrices. However, new applications are continuously
emerging, which involve new complex matrix variable opti-
mization subject to specific structural constraints. For example,
in hybrid beamforming optimization or transceiver design, the
complex-valued analog matrix is a special matrix variable with
each element subject to constant modulus constraints. Another
example is a reconfigurable intelligent surface aided MIMO
system, where the complex reflecting matrix is a diagonal matrix
having diagonal elements under constant modulus constraints. It
is therefore necessary to investigate complex matrix derivative
operators under practical structural constraints. This is a widely
open issue.

Let the optimization objective function (OF) f be a real-
valued scalar function of the complex matrix variable X =
XR + jXI, where j =

√−1. Then the following fundamental
linear complex matrix derivative operators may be defined [9],
[12], [13].

∂f(X)

∂X
=

1
2

(
∂f(X)

∂XR
− j

∂f(X)

∂XI

)
,

∂f(X)

∂X∗ =
1
2

(
∂f(X)

∂XR
+ j

∂f(X)

∂XI

)
. (1)

The real matrix derivative operator involved in (1) is defined as
follows [9], [12], [13]

∂f(Z)

∂Z
=

⎡⎢⎢⎢⎣
∂f(Z)
∂[Z]1,1

· · · ∂f(Z)
∂[Z]1,Nc

...
. . .

...
∂f(Z)

∂[Z]Nr,1
· · · ∂f(Z)

∂[Z]Nr,Nc

⎤⎥⎥⎥⎦ , (2)

where Z ∈ RNr×Nc is a real matrix. When Z is a symmetric
matrix, the right hand side of (2) must also be a symmetric
matrix.

Highlight 1: When some structural constraints are imposed
on Z, e.g., Z is a diagonal matrix, the definition given in (2)
becomes meaningless.

It should be highlighted that for some intermediate steps,
the complex matrix derivations with respect to X itself and
with respect to its conjugate X∗ are different. For example, the
following complex matrix operators are defined in the classic
textbooks [9], [12]

∂Tr
(
XH

)
∂X

= 0,
∂Tr

(
XH

)
∂X∗ = I. (3)

It is worth noting that the role of complex matrix derivatives
is to find extreme values. From a mathematical viewpoint, it
is meaningless to argue that a complex number is larger or
smaller than another complex number. Therefore, setting the
complex derivatives of a complex valued function is totally
meaningless. In the classic textbook [12], the following complex
matrix derivative operators were defined:

∂Tr (WX)

∂X
= WT,

∂Tr
(
WHXH

)
∂X

= 0, (4)

and

∂Tr (WX)

∂X∗ = 0,
∂Tr

(
WHXH

)
∂X∗ = WH, (5)

where X is a complex matrix variable and W is a complex ma-
trix of appropriate dimension. It is worth noting that Tr(WX)
can be a complex-valued function. In this case, the matrix deriva-
tive operators of (4) and (5) would become meaningless from
a mathematical viewpoint. However, in real-world applications
Tr(WX) and Tr(WHXH) usually appear in together. Thus,
it is more meaningful to define the following complex matrix
derivative operators

∂
[
Tr (WX) + Tr

(
WHXH

)]
∂X

= WT,

∂
[
Tr (WX) + Tr

(
WHXH

)]
∂X∗ = WH, (6)

instead of the previous operators of (4) and (5).
Highlight 2: The complex matrix derivative can be set either

with respect to a complex matrix variable X itself or to its
conjugate X∗. For these two matrix derivatives, the resultant
KKT conditions are exactly the same.

The key is that regardless of which complex matrix derivation
is used, the resultant KKT conditions must be the same. In the
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following, two quadratic derivative operators are defined

∂Tr
(
XWXH

)
∂X∗ = XW ,

∂Tr
(
XWXH

)
∂X

= (WXH)T,

(7)

where W must be a Hermitian matrix, i.e., W = WH. If W is
indeed a square matrix but not a Hermitian matrix, the definition
in (7) becomes meaningless and the following operator can be
defined

∂
[
Tr(XWXH) + Tr

(
XWHXH

)]
∂X∗ = X

(
W +WH

)
,

(8)

in which the term (W +WH) is definitely a Hermitian matrix.
The complex matrix derivative based methods are much more

straightforward than the existing traditional signal processing
techniques, and they can substantially simplify the optimiza-
tion [22]. Upon considering beamforming as an example, the
corresponding beamforming optimization problem is formu-
lated as [22]

max
w

wHAw

wHBw + σ2
, s.t. wHw ≤ P. (9)

The first order equation (FOEqu) of its KKT conditions may be
formulated as

(wHBw + σ2)Aw − (
wHAw

)
Bw

(wHBw + σ2)2
= λw. (10)

Based on (10) and exploiting that wHw = P , the Lagrange
multiplier can be derived as

λ =
σ2

P

wHAw

(wHBw + σ2)2
. (11)

Upon substituting (11) into the FOEqu (10), the following matrix
equality holds

Aw =
wHAw

wHBw + σ2

(
B +

σ2

P
I

)
w. (12)

It may then be concluded that the optimal beamforming vector
w equals to

wopt = P
((

B +
σ2

P
I

)−1

A

)
, (13)

where the operator P(M) denotes the principal eigenvector of
M [23]. Let us now consider a more complex beamforming op-
timization problem under per-antenna power constraints, which
is formulated as [22]

max
w

wHAw

wHBw + σ2
, s.t. [wwH]n,n ≤ Pn. (14)

The FOEqu of its KKT conditions is given by(
wHBw + σ2

)
Aw − (

wHAw
)
Bw

(wHBw + σ2)2

=
∑
n

λnΩnw = λ
∑
n

λn

λ
Ωnw. (15)

Let us now define λn

λ
� λ̃n and

∑
n λ̃nΩn � Ω, where the value

of λ is chosen for ensuring that the optimal beamformer w
satisfies wHΩw =

∑
n Pn. Hence, the optimal w is given by

wopt = P
⎛⎝(

B +
σ2∑
n Pn

∑
n

Ω

)−1

A

⎞⎠ , (16)

where Ω is a diagonal matrix. If all the diagonal elements
of Ω are identical, the optimal solutions of the above two
optimization problems, namely, (13) and (16), are the same.
The values of {λ̃n} can be computed using the subgradient
algorithm, as proposed in [18]. It may then be concluded that
the KKT conditions based method is a powerful counterpart
of the family of numerical optimization methods relying on
optimization software toolboxes.

Highlight 3: In the traditional definition of complex matrix
derivatives, there is no restriction imposed on the structures of
the matrix variable. The elements of the matrix variable are
independent variables.

Conclusion 1: Complex matrix derivatives may also be inter-
preted as concise and elegant expressions for multiple variables’
derivatives. This kind of expression can substantially simplify
the derivation and analysis processes. Furthermore, it is always
possible to use separate real and imaginary parts to define the
corresponding real matrices’ derivatives.

In the above definitions of this section, no structural con-
straints are imposed on the matrix variable X . If there are
some specific structural constraints, the results given above may
become incorrect. For example, when X is a symmetric real
matrix, i.e., X = XT, but W is not a symmetric real matrix,
we have

∂Tr
(
WTX

)
∂X

=
1
2

(
W +WT

)
. (17)

This example shows that a matrix specific structure significantly
influences the matrix derivatives. Moreover, for the same func-
tion of complex matrix, there are more than one mathematical
formulae for complex matrix derivatives. Here, the MIMO chan-
nel capacity may be considered as an example, which satisfies
the following equalities

C = log
∣∣I + FFHHHH

∣∣ = log
∣∣I +HFFHHH

∣∣ , (18)

where F is the linear TPC at the source and H is a constant
channel matrix. Therefore, we have the following complex
matrix derivative operators

∂ log
∣∣I + FFHHHH

∣∣
∂F ∗ = HHH

(
I + FFHHHH

)−1
F ,

(19)

∂ log
∣∣I +HFFHHH

∣∣
∂F ∗ = HH

(
I +HFFHHH

)−1
HF .

(20)

It is plausible that the complex matrix derivative operators in
(19) and (20) must be equal to each other, since they are derived
from the same OF. This conclusion is always true, because the
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following equality always holds:(
I +HFFHHH

)
H = H

(
I + FFHHHH

)
. (21)

The mathematical formulation of (20) is better than that of (19).
Explicitly the formulation in (19) is not suitable for analysis,
since the matrix FFHHHH may not have an eigenvalue de-
composition (EVD) for a general matrix F [23].

Symmetry is an important property that can be exploited to
derive the optimal structure of F . The following section pro-
vides important design guidelines, based on which the optimal
structure of matrix variables can be derived.

III. MATRIX SYMMETRIC EQUATIONS

In this section, several important design guidelines are pro-
vided for complex matrix derivatives to guarantee having a
symmetric structure. First, we introduce the following matrix
equality for the pair of Hermitian matrices A and B of appro-
priate dimensions:

AB = Φ, (22)

whereΦ is also a Hermitian matrix. This kind of matrix equation
is referred to as matrix symmetric equation. We will show that
A, B and Φ have the same unitary EVD matrix.

Lemma 1: For a pair of Hermitian matrices A and B satisfy-
ing AH = A and BH = B, both A and B as well as AB have
the same unitary EVD matrix, provided that AB is a Hermitian
matrix, i.e., BHAH = AB.

It should be pointed out that for a Hermitian matrix, its EVD is
not unique. In other words, a Hermitian matrix can have multiple
unitary EVD matrices. The statement in Lemma 1 means that
there exists at least one unitary matrix that is also the unitary
EVD matrix of A, B and AB. This result is given in Theorem
4.1.6 of [23]. However, there is no requirement that A and B
should be positive definite here.

Lemma 2: For complex matrices A and B of appropriate
dimensions, when AHBHBA and AHA have the same uni-
tary EVD matrix, BHB and AAH have the same unitary
EVD matrix.

Proof: The proof is given in Appendix A. �
Conclusion 2: For a pair of matrices A and B of appropriate

dimensions, when BHAHAB and BHB have the same unitary
EVD matrix, the right unitary matrix in singular value decom-
position (SVD) of A and the left unitary matrix in SVD of B
are the same.

Proof: Conclusion 2 is a direct result of Lemma 2. �
Conclusion 3: For a pair of matrices A and B of appropriate

dimensions and a positive definite matrix Φ, when BHAHAB
and BHΦB have the same unitary EVD matrix, there exists
a unitary matrix that is simultaneously the right unitary SVD
matrix of AΦ− 1

2 and the left unitary SVD matrix of Φ
1
2 B. In

other words, Φ− 1
2 AHAΦ− 1

2 and Φ
1
2 BBHΦ

1
2 have the same

unitary EVD matrix.
Proof: Conclusion 3 can be inferred upon replacingB andA

in Conclusion 2 by B̃ = Φ
1
2 B and Ã = AΦ− 1

2 , respectively.�

Conclusion 4: For an arbitrary complex matrix A,
AH(AAH + I)kA and AHA have the same unitary EVD
matrix. The scalar k can be an arbitrary real number.

Proof: Upon expressing the SVD of matrix A as A =
UΛV H, we have AHA = V ΛHΛV H and AH(AAH +
I)kA = V ΛH(ΛΛH + I)kΛV H. �

Highlight 4: The EVD is not unique for a Hermitian matrix
since the eigenvalues can be arranged in different orders. For two
N ×N positive semidefinite matrices A and B, the following
matrix inequalities can be exploited to choose eigenvalues pair-
ing [1]

Matrix Inequ.1: log |I +AB|

≤
N∑
i=1

log [1 + λi(A)λi(B)] , (23)

Matrix Inequ.2: log |A+B|

≤
N∑
i=1

log [λN−i+1(A) + λi(B)] , (24)

Matrix Inequ.3: Tr(AB) ≥
N∑
i=1

[λN−i+1(A)λi(B)] ,

(25)

Matrix Inequ.4: Tr
[
(A+B)−1

]
≥

N∑
i=1

[λN−i+1(A) + λi(B)]−1 . (26)

Having a symmetric matrix structure is an important charac-
teristic that can be exploited to derive the optimal solution. In
the following subsection, a number of specific matrix variable
optimization examples are given to illustrate how to derive the
optimal structures of the matrix variables based on symmetric
matrix equations.

A. Optimization for MIMO Communications

We mainly consider a general MIMO downlink communica-
tion scenario, where the BS and the user are equipped with Nt

and Nr antennas, respectively. Then the signal received at the
user can be expressed as

y = HFs+ n, (27)

where H ∈ CNr×Nt denotes the channel matrix, F represents
the precoding matrix, s is the transmitted signal satisfying
E[ssH] = I , andn is the additive noise vector at the user. Based
on (27), the capacity of the system can be expressed as

C = log
∣∣Π+ FHHHHF

∣∣, (28)

and the mean square error (MSE) can be expressed as

MSE = Tr
(
(Π+ FHHHHF )−1

)
, (29)

whereΠ satisfyingΠ = E[nnH] is the covariance matrix of the
additive noise. We consider the following optimization problem
relying on a combined OF under practical per-antenna power
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constraints.

P1 : max
F

γ1 log
∣∣Π+ FHHHHF

∣∣
− γ2Tr

(
(Π+ FHHHHF )−1

)
s.t. Tr

(
ΩnFFH

) ≤ Pn, 1 ≤ n ≤ Nt, (30)

where γ1 and γ2 are the weighting factors, and Pn denotes the
maximum transmit power of the n-th antenna at the BS.

To obtain the optimal structure of F , we firstly derive the
FOEqu of the KKT conditions associated with P1, given by

FOEqu1 : γ1H
HHF (Π+ FHHHHF )−1

+ γ2H
HHF (Π+ FHHHHF )−2 = μΩF ,

Ω �
Nt∑
n=1

λn

μ
Ωn, (31)

where λn is the Lagrange multiplier associated with the n-th
weighted power constraint. Based on FOEqu1 (31), we have
the following matrix symmetric equation (MSEqu)

MSEqu1 : FHHHHF︸ ︷︷ ︸
A

× (
γ1(Π+ FHHHHF )−1 + γ2(Π+ FHHHHF )−2

)︸ ︷︷ ︸
B

= μFHΩF . (32)

According to Lemma 1, FHHHHF and FHΩF have the
same unitary EVD matrix, and FHHHHF and Π have the
same unitary EVD matrix. Hence it can be concluded from
Conclusion 3 that the optimal solution of F for P1 satisfies
the following structure:

F opt = Ω− 1
2 UHΛFU

H
Π, (33)

where the unitary matrices UH and UΠ are defined based on
the following EVDs

Ω− 1
2 HHHΩ− 1

2 = UHΛHUH
H , Π = UΠΛΠUH

Π. (34)

As there are two EVDs, an eigenvalue pairing problem naturally
exists based on Highlight 4. Specifically, when γ1 ≥ 0 and γ2 ≥
0, it can be concluded that based on MSEqu1, the eigenvalues of
the two EVDs in (34) are in the reverse order. Moreover, for the
general case, when γ1 ≥ 0 and γ2 ≥ 0 are not guaranteed, we
can fix the eigenvalue ordering of the first EVD and then perform
an exhaustive search to find the optimal eigenvalue ordering of
the second EVD. The proposed algorithm based on the optimal
structure is summarized in Algorithm 1.

Highlight 5: It is worth noting that when γ1 = 0, P1 reduces
to the MSE minimization problem. Whereas when γ2 = 0, P1
becomes the classical MIMO capacity maximization problem. In
particular, when γ1 ≥ 0 and γ2 ≥ 0, P1 is convex. Nonetheless,
γ1 and γ2 are not limited to nonnegative values. Therefore, the
optimal structure derived based on the KKT conditions is also

Algorithm 1: Proposed algorithm for solving P1.

applicable to the case, when P1 is nonconvex or does not satisfy
the matrix-monotonic property [18].

Highlight 6: Under the assumption of imperfect CSI, we may
derive the expectation of problem P1 with respect to the channel
error, which is ultimately formulated as [16]

max
F

γ1 log
∣∣∣I +R−1ĤFFHĤ

H
∣∣∣

− γ2Tr

((
I +R−1ĤFFHĤ

H
)−1

)
,

s.t. Tr
(
ΩnFFH

) ≤ Pn, 1 ≤ n ≤ Nt, (35)

where Ĥ denotes the estimated channel matrix, and R =
Π+Tr(RTFFH)RR. RR and RT denote the receive and
transmit spatial correlation matrices, respectively. Similarly, we
can derive the optimal structure of F as follows

F opt = Γ− 1
2 URΛFU

H
DFT, (36)

where the positive semidefinite matrix Γ satisfies

Γ = μΩ+ γ1Tr

(
R−1RR −

(
R+ ĤFFHĤ

H
)−1

RR

)
RT

+ γ2Tr
(
(I −D)DR−1RR

)
RT.

with D =
(
I +R−1ĤFFHĤ

H
)−1

(37)

and UR is the unitary matrix defined by the following EVD.

Γ− 1
2 Ĥ

H
R−1ĤΓ− 1

2 = URΛRUH
R. (38)

B. Other Specific Examples

1) Min-Max Diagonal Element of Matrix Inversion: First,
we investigate the optimization problem of minimizing the
maximum diagonal element of a matrix inverse under multiple
weighted power constraints. The detailed mathematical formu-
lation is elaborated as follows.

P2 : min
F

max
1≤n≤N

[(
I + FHHHHF

)−1
]
n,n

s.t. Tr
(
ΩkFFH

) ≤ Pk, 1 ≤ k ≤ K. (39)
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The min-max optimization problem considered in [2] is a special
case of P2, which aims to minimize the MSE for the worst
user. The traditional complex matrix derivative operator is
difficult to apply to the max-min OF. In order to overcome
this difficulty, an auxiliary variable t is introduced and the
optimization problem (39) is reformulated as

min
t,F

t

s.t.
[(
I + FHHHHF

)−1
]
n,n

≤ t, ∀n,

Tr
(
ΩkFFH

) ≤ Pk, 1 ≤ k ≤ K. (40)

The FOEqu of the KKT conditions for the optimization problem
(40) is given by

FOEqu2 : αHHHF
(
I + FHHHHF

)−1

× (
I + FHHHHF

)−1

= μΩF , Ω =
K∑
k=1

λk

μ
Ωk, (41)

where α is the common Lagrange multiplier associated with the
first N constraints of the problem (40). The derivation is given
in Appendix B. Note that we can prove that all the Lagrange
multipliers for the first N constraints are equal. From FOEqu2
(41), we have the following matrix symmetric equation (MSEqu)

MSEqu2 :

αFHHHHF︸ ︷︷ ︸
A

(
I + FHHHHF

)−1 (
I + FHHHHF

)−1︸ ︷︷ ︸
B

= μFHΩF . (42)

Based on both (42) and Lemma 1, it can be concluded that
FHHHHF and FHΩF have the same EVD unitary matrix.
Then based on Conclusion 3, the optimal F satisfies the struc-
ture:

F opt = Ω− 1
2 UHΛFU

H
F , (43)

where UH is the right SVD unitary matrix of HΩ− 1
2 and the

unitary matrix UF is still unknown. Furthermore, according to
the KKT conditions of (40), the following equalities must hold[(

I + FHHHHF
)−1

]
n,n

= t, ∀n. (44)

Consequently, the optimal UF can be chosen as a DFT ma-
trix [23] and thus the optimal F satisfies the following structure

F opt = Ω− 1
2 UHΛFU

H
DFT. (45)

It is seen that for the min-max design, the method of KKT con-
ditions based on symmetric matrix equations is more straight-
forward than that based on majorization theory [2].

2) Optimization of Matrix Inversion: For completeness, we
also investigate the following optimization problem with the OF
in the form of summing up the diagonal elements of matrix
inversion

P3 : max
F

Tr
((

(I + FHHHHF )−1 +Ψ
)−1

)
s.t. Tr

(
ΩkFFH

) ≤ Pk, 1 ≤ k ≤ K. (46)

The FOEqu of the KKT conditions for P3 and the associated
MSEqu are given respectively by (47) and (48) shown at the
bottom of this page

FOEqu3 :

HHHF (I + FHHHHF )−1
(
(I + FHHHHF )−1 +Ψ

)−2

× (I + FHHHHF )−1 = μΩF . (47)

According to Lemma 1, FHHHHF and FHΩF have the
same unitary EVD matrix. Moreover, FHHHHF and Ψ have
the same unitary EVD matrix. As such, the optimal F for the
optimization problem P3 of (46) satisfies the following structure

F opt = Ω− 1
2 UHΛFU

H
Ψ, (49)

where UH and UΨ are the unitary matrices defined by the
following EVDs

Ω− 1
2 HHHΩ− 1

2 = UHΛHUH
H , Ψ = UΨΛΨUH

Ψ. (50)

As there are two EVDs, an eigenvalue pairing problem naturally
exists. According to Highlight 4, the eigenvalues of the two
matrices given in (50) are in the same order.

3) Optimization of Combined Functions: Similarly, another
optimization of combined OFs is expressed as

P4 : max
F

γ1 log
∣∣I + FHHHHF

∣∣
− γ2Tr

(
W (I + FHHHHF )−1

)
s.t. Tr(ΩkFFH) ≤ Pk, 1 ≤ k ≤ K, (51)

with weighting factors γ1 and γ2. Sepcifically, when γ1 = 0, P4
reduces to the weighted MSE minimization problem. Whereas
when γ2 = 0, P4 becomes the classical MIMO capacity max-
imization problem. Similar to P3, γ1 and γ2 are not limited to
nonnegative values. The FOEqu of the KKT conditions and the
corresponding MSEqu are then respectively as shown in (52)
and (53) at the bottom of the next page.

According to Lemma 1, FHHHHF and FHΩF have the
same unitary EVD matrix. Furthermore, FHHHHF and W
have the same unitary EVD matrix. Based on Conclusion 3, the
optimal structure of F for P4 is given by

F opt = Ω− 1
2 UHΛFU

H
W , (54)

MSEqu3 : FHHHHF︸ ︷︷ ︸
A

× (I + FHHHHF )−1
(
(I + FHHHHF )−1 +Ψ

)−2
(I + FHHHHF )−1︸ ︷︷ ︸

B

= μFHΩF (48)
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where the unitary matrices UH and UW are defined by the
following EVDs

Ω− 1
2 HHHΩ− 1

2 = UHΛHUH
H , W = UWΛWUH

W . (55)

When γ1 ≥ 0 and γ2 ≥ 0, it can be concluded that the eigen-
value ordering of the two EVDs in (55) are in the same order.
Furthermore, for the general case, when γ1 ≥ 0 and γ2 ≥ 0 are
not guaranteed, again we can fix the the eigenvalue ordering of
the first EVD and then perform an exhaustive search to find the
optimal eigenvalue ordering of the second EVD.

4) Capacity Maximization of Dual-Hop MIMO: The capac-
ity maximization problem for the dual-hop amplify-and-forward
MIMO system is formulated as [24]

P5 : max
F

log
|H2FH1H

H
1 F

HHH
2 +σ2

1H2FFHHH
2 +σ2

2I|
|σ2

1H2FFHHH
2 + σ2

2I|
s.t. Tr

(
F (H1H

H
1 + σ2

1I)F
H
) ≤ P, (56)

where H2 and H1 are the channel matrices in the second hop
and the first hop, respectively, while F is the relay forwarding
matrix. The FOEqu with respect to F is given by

FOEqu5 :

HH
2 (H2FΦFHHH

2 + σ2
2I)

−1H2F

−HH
2 (σ

2
1H2FFHHH

2 + σ2
2I)

−1σ2
1H2FΦ−1 = μF , (57)

where Φ = H1H
H
1 + σ2

1I . Based on (57), the following
MSEqu holds

MSEqu5 : FHHH
2

(
H2FΦFHHH

2 + σ2
2I

)−1
H2F

−FHHH
2

(
σ2

1H2FFHHH
2 +σ2

2I
)−1

σ2
1H2FΦ−1=μFHF .

(58)

According to MSEqu5, FHHH
2 (σ

2
1H2FFHHH

2 +
σ2

2I)
−1σ2

1H2F is a Hermitian matrix, and we conclude
that FHHH

2 H2F as well as Φ have the same unitary EVD
matrix. Similarly, FFH and FHHH

2 H2F also have the same
unitary EVD matrix. As a result, the optimal relay forwarding
matrix F satisfies the following structure

F = V H2ΛFU
H
H1

, (59)

where the unitary matrices V H2 and UH1 are defined based on
the following EVDs

H1 = UH1ΛH1V
H
H1

, H2 = UH2ΛH2V
H
H2

. (60)

It follows from MSEqu5 that the eigenvalues of FHHHHF
and FHF are in the same order. Therefore, the eigenvalues of
the two EVDs in (60) are in the same order.

It can be seen that using symmetric matrix equation, the KKT
conditions based method is much more straightforward than the
derivations given in [24].

5) Two Alternative BER Minimization Examples: Bit error
rate (BER) is an important performance metric for MIMO
transceiver optimization, which reflects the reliability of data
transmission. However, since an analytical expression of BER
may be not readily accessible, we instead consider an alterna-
tive BER performance metric, i.e., the so-called MSE metric,
for guaranteeing the reliable data transmission. This approach
has been widely adopted in the existing MIMO related lit-
erature [15]. For example, two alternative BER minimization
examples are given below. Firstly, in terms of the transmitted
signal detection at high SNRs, the alternative BER minimization
(i.e., sum MSE minimization) problem can be relaxed as

P6 : min
F

Tr
(
(FHΠF )−1

)
s.t. Tr

(
ΩkFFH

) ≤ Pk, 1 ≤ k ≤ K.
(61)

The FOEqu of the KKT conditions for P6 is given by

FOEqu6 : ΠF
(
FHΠF

)−2
= μΩF , (62)

based on which the following MSEqu is obtained

MSEqu6 :
(
FHΠF

)−1
= μFHΩF . (63)

It can be concluded that FHΠF and FHΩF have the same
unitary EVD matrix. Based on Conclusion 3, the optimal F
satisfies the following structure

F opt = Ω− 1
2 U

˜ΠΛFU
H
Arb, (64)

where the unitary matrix U
˜Π is defined in the following EVD

Ω− 1
2 ΠΩ− 1

2 = U
˜ΠΛ

˜ΠUH
˜Π
, (65)

and UArb is an arbitrary unitary matrix of appropriate dimen-
sions.

Secondly, from the perspective of channel estimation at high
SNRs, the relaxed sum MSE minimization problem is expressed
as [25]

P7 min
F

Tr
(
(FΠFH)−1

)
s.t. Tr

(
ΩkFFH

) ≤ Pk, 1 ≤ k ≤ K. (66)

Note that P6 and P7 are significantly different, because of the
position of the Hermitian operation in the OF. The FOEqu of the
KKT conditions for P7 is given by

FOEqu7 :
(
FΠFH

)−2
FΠ = μΩF , (67)

based on which the following MSEqu holds

MSEqu7 :
(
FΠFH

)−1
= μΩFFH. (68)

FOEqu4 : HHHF
(
γ1(I + FHHHHF )−1 + γ2(I + FHHHHF )−1W (I + FHHHHF )−1

)
= μΩF (52)

MSEqu4 : FHHHHF︸ ︷︷ ︸
A

× (
γ1(I + FHHHHF )−1 + γ2(I + FHHHHF )−1W (I + FHHHHF )−1

)︸ ︷︷ ︸
B

= μFHΩF (53)
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We conclude that FHΩF and Ω have the same unitary EVD
matrix, and FHΠF and FHΩF have the same unitary EVD
matrix. Recalling Conclusion 3 yields the optimal structure ofF

F opt = UΩΛFU
H
Π, (69)

where the unitary matrices UΠ and UΩ are defined using the
following EVDs

Π = UΠΛΠUH
Π, Ω = UΩΛΩU

H
Ω. (70)

As there are two EVDs, there is an eigenvalue pairing issue ac-
cording to Highlight 4. From MSEqu7, the optimal eigenvalues
involved in ΛΠ and ΛΩ in (70) are in the reverse order.

C. EVD Pairing Results

Based on the symmetric matrix equations derived for the KKT
conditions based method, the optimal structure of the matrix
variable can be efficiently obtained. However, since the eigenval-
ues of a Hermitian matrix can be arranged in different orders, the
optimal matrix variable cannot be uniquely determined from the
optimal structure. In order to overcome this issue, an important
conclusion is given in the following.

Conclusion 5: For the OF that is a matrix monotonic function
with respect to FHHHHF under multiple weighted power
constraints, i.e., when Tr(ΩkFFH) ≤ Pk, if FHHHHF and
FHΩF have the same unitary EVD matrix, we can conclude
that the eigenvalues of the matrices FHHHHF and FHΩF
are in the same order.

IV. POSITIVE SEMIDEFINITE CONSTRAINTS

In many MIMO optimization problems, the covariance matrix
Q of the transmit signal is the complex matrix variable, which
is positive semidefinite [26], [27], [28], [29]. In contrast to an
unconstrained complex matrix variable, there are two constraints
imposed on Q: 1) it is conjugate symmetric, and 2) its eigenval-
ues are all nonnegative. Based on the definition of the complex
matrix derivative [12], when the OF is a real valued function,
the matrix derivative result is a Hermitian matrix of the same di-
mension. Motivated by this fact, we have the following equality
for the corresponding complex matrix derivative operators(

∂f(Q)

∂Q

)T

=
∂f(Q)

∂Q∗ . (71)

For example, based on the complex matrix derivative and on
the fact that Q is positive semidefinite, we have the following
complex matrix derivative operators

∂Tr(WQ)

∂Q∗ =
∂Tr

(
WQH

)
∂Q∗ = W . (72)

It can be seen that the matrix derivative operators of (72) are
significantly different from those of (3). Here the matrix W
must be a Hermitian matrix. Otherwise, this derivation definition
is meaningless. In other words, there is no definition for the
complex matrix derivative in this case. In the following, we
consider the derivative of a quadratic function with respect to Q

∂Tr(QWQH)

∂Q∗ = QW +WQ, (73)

where W = WH and Q = QH. It is plausible that the right-
hand side of (73) is also a Hermitian matrix. It is worth pointing
out that this result is significantly different from the traditional
result derived without specific structural constraints.

A. Positive Semidefinite Matrix Variable

Moreover, as Q is a positive semidefinite matrix, the com-
plex matrix derivative must be defined on the set of positive
semidefinite matrices. Unfortunately, the existing definitions
of complex matrix derivatives never consider this. In other
words, there is a relaxation when performing complex matrix
derivatives in the classical literature, and if the final solution is
positive semidefinite, then there will be no loss. This is usually
guaranteed by the mathematical formula of the OF.

1) Lagrange Multiplier Method: It is worth noting that there
are certain specific structural constraints that cannot be im-
posed on the matrix derivative results, but they are reflected
by Lagrange multipliers. Considering the positive semidefinite
constraint as an example, i.e., Q � 0, the physical meaning of
this inequality is that all the eigenvalues of Q are nonnegative.
Then a matrix-valued Lagrange multiplier associated with this
positive semidefinite constraint may be introduced [21]

ΨQ = 0, Ψ � 0. (74)

In [27], the Lagrange multiplier for the positive semidefinite
matrix Q with rank constraints is also given. In the following,
we take a variant of P3 as an example:

P8 : max
Q

γ1 log
∣∣I +HQHH

∣∣− γ2Tr
(
(I +HQHH)−1

)
s.t. Tr(ΩkQ) ≤ Pk, 1 ≤ k ≤ K, Q � 0. (75)

The optimization problem P8 is convex with respect to the
positive semidefinite matrix variable Q. It is straightforward to
see that the KKT conditions of P8 are the necessary and sufficient
conditions for the optimal solution. In the following, a short
discussion is given to show how to derive the optimal solution
based on the KKT conditions. More details can be found in [27].
The FOEqu of the KKT conditions for problem P8 is given by

FOEqu8 : HH
(
γ1

(
I +HQHH

)−1

+ γ2
(
I +HQHH

)−2
)
H = Ω−Ψ, (76)

based on which the following MSEqu holds

MSEqu8 : Q
1
2 HH

(
γ1

(
I +HQHH

)−1

+ γ2
(
I +HQHH

)−2
)
HQ

1
2 = Q

1
2 ΩQ

1
2 .

(77)

It is plausible that the two matrices Q
1
2 ΩQ

1
2 and Q

1
2 HHHQ

1
2

have the same unitary EVD matrix. Then based on Conclusion 3,
the optimal structure of Q can be obtained as

Qopt = Ω− 1
2 UHΛQUH

HΩ− 1
2 , (78)

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 18,2024 at 10:12:34 UTC from IEEE Xplore.  Restrictions apply. 



700 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 1, JANUARY 2024

where ΛQ is a diagonal matrix and the unitary matrix UH is
derived from the following EVD

Ω− 1
2 HHHΩ− 1

2 = UHΛHUH
H , (79)

where the eigenvalues involved in ΛH are arranged in a non-
increasing order.

Similar to the sum MSE minimization, in the following, we
consider another general optimization problem associated with
the OF in the form of matrix inversion

P9 min
Q

Tr
[
(I +NQNH)−K

]
s.t. Tr(ΩnQ) ≤ Pn, 1 ≤ n ≤ N, Q � 0. (80)

The FOEqu of the KKT conditions for P9 and the associated
MSEqu are given respectively by

FOEqu9 : NH(I +NQNH)−K−1N = μΩ−Ψ, (81)

MSEqu9 : Q
1
2 NH(I +NQNH)−K−1NQ

1
2 = μQ

1
2 ΩQ

1
2 .

(82)

It may be readily shown that Q
1
2 ΩQ

1
2 and Q

1
2 NHNQ

1
2 have

the same unitary EVD matrix. Then based on Conclusion 3, the
optimal structure of Q is derived as

Qopt = Ω− 1
2 UNΛQUH

NΩ− 1
2 , (83)

where ΛQ is a diagonal matrix and the unitary matrix UN is
defined in the following EVD

Ω− 1
2 NHNΩ− 1

2 = UNΛNUH
N , (84)

where the eigenvalues are sorted in a non-increasing order.
2) Relaxation-Based Methods: Another popular approach to

deal with the positive semidefinite constraint is utilizing the
relaxation-based method. For example, a MIMO training opti-
mization problem associated with the least square (LS) estimator
is formulated as [25]

P10 : min
Q

Tr
(
WQ−1

)
s.t. Tr(Q) ≤ P, Q 	 0, (85)

where both the matrix variable Q and the weighting matrix W
are positive definite. Using the relaxation-based method, the
positive definite constraint is firstly relaxed and thus the original
training optimization problem is simplified as

min
Q

Tr
(
WQ−1

)
s.t. Tr(Q) ≤ P. (86)

Accordingly, the KKT conditions of the problem (86) are given
by

Q−1WQ−1 = λI, λ ≥ 0, λ(Tr(Q)− P ) = 0, Tr(Q) ≤ P.
(87)

The optimal solution satisfying the above KKT conditions is
unique, and is given by [25]

Q =
P

Tr(W
1
2 )
W

1
2 . (88)

The solution (88) is found to be positive definite, and thus it
is also the optimal solution of the original optimization problem
(85). This relaxation-based method enjoys simplicity, but a
double check is needed for the derived solution. Moreover, the
main weakness of this kind of algorithm is that there are strict
requirements on the optimization problems considered.

Highlight 7: The complex matrix derivative for a real-valued
function with respect to a positive semidefinite matrix variable
must be a Hermitian matrix. The semi-positivity is guaranteed
by the fact that the optimal OF value occurs at the set of the
positive semidefinite matrix variables.

B. Variable Transformation for Single-Matrix Variable

In order to overcome the challenges imposed by specific
structural constraints, an effective technique is to transform
the original complex matrix variables. For convex optimization
problems, it is possible to derive the optimal solutions purely
based on the KKT conditions. However, when the problem
considered is nonconvex, some variable transformation tech-
niques can be adopted to simplify the derivation of the optimal
structures of matrix variables. As such, the matrix derivative
operation involved can be substantially simplified.

In order to address the positive semidefinite constraint, such
as Q � 0, a feasible strategy is to exploit the equality

Q = F̃ F̃
H
, (89)

where F̃ is a general matrix without structural constraints. The
benefit of this strategy is twofold. On the one hand, no structural
constraint is imposed on F̃ and thus the complex matrix deriva-
tive with respect to F̃ is much easier to derive. On the other hand,
the rank constraint can be taken into account by adjusting the
number of columns in F̃ . Unfortunately, this strategy destroys
convexity, where the KKT conditions constitute necessary but
not sufficient conditions for the optimal solution. However in
many non-convex optimization problems, all the solutions that
satisfy the KKT conditions have a uniform structure, which is
thus the optimal structure of the matrix variable. It should be em-
phasized that having optimal structures are of great importance,
which can simplify the original optimization problem.

For example, using the matrix variable transformation (89),
P9 can be transferred into

P11 : min
˜F

Tr
[
(I +NF̃ F̃

H
NH)−K

]
s.t. Tr

(
ΩnF̃ F̃

H
)
≤ Pn, 1 ≤ n ≤ N. (90)

The FOEqu of the KKT conditions of the problem P11 is given
by

FOEqu11 : KNH
(
I +NF̃ F̃

H
NH

)−K−1
NF̃ = μΩF̃ ,

(91)

based on which the following MSEqu holds

MSEqu11 : KF̃
H
NH

(
I +NF̃ F̃

H
NH

)−K−1
NF̃

= μF̃
H
ΩF̃ . (92)
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It is plausible that F̃
H
ΩF̃ and F̃

H
NHNF̃ have the same

unitary EVD matrix. Then based on Conclusion 3, the optimal
structure of F̃ can be derived as

F̃ opt = Ω− 1
2 UNΛ

˜FV
H
Arb, (93)

where Λ
˜F is a diagonal matrix and the unitary matrix UN

is defined based on the following EVD with the eigenvalues
arranged in a non-increasing order

Ω− 1
2 NHNΩ− 1

2 = UNΛNUH
N . (94)

Likewise, based on Q = F̃ F̃
H

, the problem P10 can be
transferred into the following one

P12 : min
˜F

Tr

(
W

(
F̃ F̃

H
)−1

)
s.t. Tr

(
F̃ F̃

H
)
≤ P. (95)

The FOEqu of the KKT conditions for the optimization P12 is
given by

FOEqu12 :
(
F̃ F̃

H
)−1

W
(
F̃ F̃

H
)−1

F̃ = λF̃ , (96)

where λ is the Lagrange multiplier for the power constraint. It
follows from FOEqu12 that

F̃ F̃
H
=

√
1
λ
W

1
2 . (97)

Clearly, F̃ F̃
H

is the same as the optimal Q derived in [25].
This example shows that leveraging the variable transformation
technique beneficially simplifies the derivation of the optimal
solution.

C. Variable Transformation for Multi-Matrix Variables

1) Multi-User MIMO Capacity Maximization: The capacity
maximization problem of uplink multi-user MIMO communi-
cations can be formulated as [21]

P13 : max
{Qn}Nn=1

log

∣∣∣∣∣Π+
N∑

n=1

HnQnH
H
n

∣∣∣∣∣
s.t. Tr

(
N∑

n=1

Ωn,m,kQn

)
≤ Pm,k, ∀m, k,

Qn � 0, 1 ≤ n ≤ N, (98)

which can be equivalently transferred into the following problem

by utilizing Qn = F̃ nF̃
H

n

P14 : max
{˜Fn}Nn=1

log

∣∣∣∣∣Π+

N∑
n=1

HnF̃ nF̃
H

nH
H
n

∣∣∣∣∣
s.t. Tr

(
N∑

n=1

Ωn,m,kF̃ nF̃
H

n

)
≤ Pm,k, ∀m, k, (99)

where Hn denotes the channel between the n-th user and
the base station. The FOEqu of the KKT conditions for the
optimization P14 is then written as

FOEqu14 :

HH
n

(
Π+

N∑
n=1

HnF̃ nF̃
H

nH
H
n

)−1

HnF̃ n = μnΩnF̃ n

Ωn =
∑
k

∑
m

λm,k

μn
Ωn,m,k, 1 ≤ n ≤ N. (100)

The scalarsλm,k are the Lagrange multipliers associated with the
power constraints in P14. Then we have the following MSEqu.

MSEqu14 :

F̃
H

nH
H
nΣ

− 1
2

n

(
I +Σ

− 1
2

n HnF̃ nF̃
H

nH
H
nΣ

− 1
2

n

)−1
Σ

− 1
2

n HnF̃ n

= μnF̃
H

nΩnF̃ n,

Σn =
∑
j 
=n

HjF̃ jF̃
H

j H
H
j +Π, 1 ≤ n ≤ N. (101)

From MSEqu14, we conclude that F̃
H

nH
H
nΣ

−1
n HH

n F̃ n and

F̃
H

nΩnF̃ n have the same unitary EVD matrix. By recalling
Conclusion 3, the optimal F̃ opt,n satisfies the following struc-
ture [18]

F̃ opt,n = Ω
− 1

2
n UHn

Λ
˜Fn

V H
Arb,n, ∀n, (102)

where the unitary matrix UHn
is defined according to the

following EVD

Ω
− 1

2
n HH

nΣ
−1
n HnΩ

− 1
2

n = UHn
ΛHn

UH
Hn

. (103)

Clearly, using the variable transformation technique, the ana-
lytical structures of the optimal solutions for the more complex
multi-variable optimization are still available.

2) Dual-Hop MIMO Optimization: Next, we investigate
the transmit precoder optimization of a dual-hop amplify-and-
forward MIMO relaying system having two matrix variables,
i.e., the transmit covariance matrix Q1 at the source and

P15 : max
F 2,˜F 1

log

∣∣H2F 2H1F̃ 1F̃
H

1 H
H
1 F

H
2 H

H
2 + σ2

1H2F 2F
H
2 H

H
2 + σ2

2I
∣∣∣∣σ2

1H2F 2F
H
2 H

H
2 + σ2

2I
∣∣

s.t. Tr
(
F 2(H1F̃ 1F̃

H

1 H
H
1 + σ2

1I)F
H
2

)
≤ P2, Tr

(
F̃ 1F̃

H

1

)
≤ P1 (104)
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the forwarding matrix F 2 at the relay [24]. Specifically,

using Q1 = F̃ 1F̃
H

1 , the resultant matrix variable optimization
problem is expressed as problem P15, (104) shown at the bottom
of the previous page. In P15, the precoder at the source and the
forwarding matrix at the relay are jointly optimized. Observe
that P15 can be obtained by replacing H1 and F in the problem
P5 with H1F̃ 1 and F 2, respectively. Based on the results for
P5, we directly infer that F 2F

H
2 and FH

2 H
H
2 H2F 2 have the

same unitary EVD matrix, and FH
2 F 2 and H1F̃ 1F̃

H

1 H
H
1 also

have the same unitary EVD matrix. In addition, the FOEqu of
the KKT condition for P15 with respect to F̃ 1 is given by

FOEqu15 : HH
1 ΣH1F̃ 1

(
F̃

H

1 H
H
1 ΣH1F̃ 1 + I

)−1

= λ2H
H
1 F

H
2 F 2H1F̃ 1 + λ2F̃ 1,

Σ =FH
2 H

H
2 (σ

2
1H2F 2F

H
2 H

H
2 +σ2

2I)
−1H2F 2.

(105)

From (105), the following MSEqu holds

MSEqu15 : F̃
H

1 H
H
1 ΣH1F̃ 1

(
F̃

H

1 H
H
1 ΣH1F̃ 1 + I

)−1

= λ2F̃
H

1 H
H
1 F

H
2 F 2H1F̃ 1 + λ2F̃

H

1 F̃ 1. (106)

It can then be concluded that F̃ 1F̃
H

1 and F̃
H

1 H
H
1 H1F̃ 1 have

the same unitary EVD matrix. Finally, the optimal structures of
F̃ 1 and F 2 are derived as

F̃ 1 = V H1Λ˜F 1
UH

Arb, F 2 = V H2ΛF 2U
H
H2

. (107)

D. Discussions and Results

Based on the aforementioned results, the most important ad-
vantage of using the matrix variable Q (Q � 0) as the optimiza-
tion variable is that the convexity of the optimization problem
considered is guaranteed. Therefore, the optimal solutions of
the original optimization problems can be directly derived from
the KKT conditions. For example, the popular water-filling
solutions are available for MIMO communications from the
KKT conditions of P13 [27], but the complex matrix derivative
with respect to Q is complicated, making it hard to derive the
corresponding KKT conditions.

On the other hand, using the transformed matrix variable F̃

(F̃ F̃
H
= Q) as the optimization variable, the corresponding

optimization problem is no longer convex and the corresponding
KKT conditions are only necessary conditions for the optimal
solution. From a theoretical viewpoint, the KKT condition based
methods suffer from both “turning off” effects and “permuta-
tion ambiguity” effects [30]. For example, based on the KKT
conditions of P15, the water-filling solution cannot be derived
directly. However, the complex matrix derivative with respect
to F̃ becomes simple, making the inference of the optimal
structure from the KKT conditions simpler. Moreover, in many
non-convex optimization problems, all the solutions that satisfy
the KKT conditions have a uniform structure, which is thus the
optimal structure of the matrix variable considered. Therefore,
based on the derived optimal structures, the original optimization

Fig. 1. Achievable performance as the functions of SNR obtained by three
different solutions for the optimization problem P3 under the weighted power
constraints.

problems can be beneficially simplified. It can be concluded
that the benefits of the variable transformation often outweigh
its drawbacks.

V. NUMERICAL RESULTS

In this section, we present numerical evidence to support our
conclusions. Specifically, we consider a point-to-point MIMO
system, where both the transmitter and the receiver are equipped
with 6 antennas. The MIMO channel is considered to obey
Rayleigh fading, denoted by H or N . Unless otherwise stated,
F and Q represent the transmit precoding matrix and the trans-
mit covariance matrix, respectively. The maximum per-antenna
power Pk is assumed to be the same for all the users and the
power weighting matrix Ωk is set to a diagonal matrix whose
k-th diagonal element is one and all the other elements are zero.
All the simulation results are obtained by averaging over 100
random channel realizations.

First we consider the maximization problem P3, where we
set γ1 = γ2 = 1 and Π = I . We compare the performance of
three solutions, namely, 1) Our derived optimal solution to the
optimal structure (33) in which the unitary matrices UH and
UΠ are defined in (34) and the diagonal elements of ΛH and
ΛΠ in (34) are sorted in the reverse order; 2) Diff-Unitary:
The unitary matrices UH and UΠ in (33) are chosen as random
unitary matrices; and 3) Diff-Ordering: The diagonal elements
of ΛH and ΛΠ in (34) are sorted in the same order. Fig. 1 shows
the OF values achieved by the three schemes as the functions
of SNR. It can be seen from Fig. 1 that our optimal solution
achieves the best performance, which demonstrates both the
optimality of the derived unitary matrices UH and UΠ and the
fact that the eigenvalues involved in ΛH and ΛΠ must be in the
reverse order.

Next we consider the general optimization problem P9 and
the LS estimation problem P10 under the positive semidefinite
matrix constraint. The positive definite weighting matrix W is
set to I . Notes that when we set K = 1, P9 actually becomes
MSE minimization. It is worth noting that both the optimization
problems are convex, and the globally optimal solutions can be
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Fig. 2. Comparison between the optimal solution (83) using the Lagrange
multiplier method and the numerical solution using CVX toolbox for P9 as well
as between the optimal solution (88) using the relaxation-based method and the
numerical solution using CVX toolbox for P10.

Fig. 3. Comparison of the objective values of problem P9/P11 under different
rank constraints of {F̃ ,Q} for the single-variable case.

derived numerically using the CVX toolbox [31]. Recall from
Subsection IV-A that the Lagrange multiplier method and the
relaxation-based method can be utilized to solve the problems P9
and P10, respectively, and the corresponding optimal structures
of Q are obtained as (83) and (88), respectively. Fig. 2 confirms
that the two proposed optimal structures given in (83) and
(88) are capable of achieving the same performance as their
corresponding numerical CVX solutions for the optimization
problems P9 and P10, respectively. This verifies the global
optimality of both these obtained structures.

As discussed in Subsection IV-B, using the transformation

of the positive semidefinite matrix variable Q = F̃ F̃
H

of (89),
the minimization problem P9 is converted to the minimization
problem P11, where the rank constraint of Q is taken into
account by adjusting the number of columns in F̃ . Fig. 3 plots
the achievable OF values of the problems P9 and P11 under
different rank constraints. As expected, when both the positive
semidefinite matrix Q and the transformed matrix variable F̃
are full-rank, the same optimal performances are achieved by the
optimal structures of Q and F̃ . However, it follows from Fig. 3
that for a rank-deficient Q, there is a significant performance
gap between the optimal OF values achieved by the optimal

Fig. 4. Comparison of the objective values of problem P13/P14 under different
rank constraints of {F̃n,Qn} for the multi-variable case.

structures of Q and F̃ . More specifically, the rank-deficient
F attains better performance than the rank-deficient Q of the
same rank. This is because the optimal solution Q obtained
by directly solving the problem P9 may not satisfy the rank
constraint. Therefore, a feasible Q can only be derived using a
relaxation method, such as the Gaussian randomization method,
which causes a further degradation of the system performance.

Similarly, using the transformation of the positive semidefi-

nite matrix variables Qn = F̃ nF̃
H

n , the maximization problem
P13 is converted to the maximization problem P14, where the
rank constraints of Qn are taken into account by adjusting the
number of columns in F n. Fig. 4 plots the achievable OF values
of the maximization problems P13 and P14 under different
rank constraints. As expected, when the positive semidefinite
matrices Qn are of full-rank, the optimal structures of Qn

achieve the same optimal performance as that of the full-rank
F n. However, for rank-deficient Qn, there is a significant
performance gap between the optimal OF values achieved by
F n and Qn, which also becomes larger when lower-rank Qn

are considered. Specifically, the rank-deficient F n attain better
performance than the rank-deficient Qn of the same rank. This
is again because the optimal solutions Qn obtained by directly
solving the maximization problem P13 may not satisfy the rank
constraint. Therefore, a feasible Qn can only be derived using a
relaxation method such as the Gaussian randomization method,
which causes a further degradation of the system performance.

Finally, Fig. 5 shows the BER performance achieved by solv-
ing problem P1 with different parameter values, i.e., 1) γ1 = 0
and γ2 = 1; 2) γ1 = 1 and γ2 = 0 and 3) γ1 = 1 and γ2 = 1,
which corresponds to the MSE minimization, the capacity max-
imization and the hybrid optimization, respectively. It is clear
from Fig. 5 that the optimal solution for case 1) achieves the
best BER performance among the three considered cases, which
demonstrates that the MSE is indeed closely related to the BER.
Moreover, we observe that cases 1) and 2) have almost identical
BER performance at low SNRs, since the OFs in these two cases
degenerate to the same form. Under the assumption of Gaussian
distributed received signals, we recall the OF curve associated
with the optimal solution in (83) in Fig. 2, and find that the
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Fig. 5. Comparison of the BER performance achieved by solving problem P3
with different parameter values.

MSE-trend and BER-trend are similar, which also verifies the
close relationship between MSE and BER.

VI. SUMMARY AND CONCLUSIONS

In this article, we have presented a comprehensive framework
of complex matrix derivatives, based on which the KKT condi-
tions of the matrix variable optimization problems considered
can be derived directly. Our contribution has been three-fold.
In order to facilitate the theoretical analysis, firstly some fun-
damental conclusions have been presented for complex matrix
derivatives, which represent the boundary conditions for the
applications of complex matrix derivatives. Secondly, the sym-
metric properties involved in complex matrix derivatives and the
corresponding KKT conditions have been investigated in depth.
In addition, an important matrix equation, referred to as sym-
metric matrix equation, has been proposed in this article. Using
symmetric matrix equations, the optimal structures of matrix
variables can be derived, based on which the matrix-variable
optimization is substantially simplified. Moreover, a number
of specific matrix-variable optimization problems have been
discussed in detail. Thirdly, considering positive semidefinite
structural constraints imposed on matrix variables, a useful
variable transformation technique has been discussed in depth,
which can be utilized for simplifying the KKT conditions and
thus for deriving the optimal structures more easily. In a nutshell,
we have improved the KKT conditions based methods of matrix
variable optimization beyond simply trying to derive the optimal
solutions purely based on the KKT conditions.

APPENDIX A
PROOF OF LEMMA 2

Assume that a unitary matrix U is the EVD matrix of both
AHBHBA and AHA. Therefore, it is straightforward to show
that A has the following SVD

A = QΛAUH. (108)

Based on this and together with the fact thatU is the EVD unitary
matrix of AHBHBA the following two matrix equalities hold

UHAHBHBAU = ΛT
AQHBHBQΛA = Λ, (109)

where Λ is the diagonal EVD matrix of AHBHBA. It is
plausible that in the case that the diagonal matrix ΛA is a
square full rank matrix, the proof can be completed directly.
In general, however, some diagonal elements of ΛA may be
zero. To accommodate this general case, we define an index set
C as follows

[ΛA]n,n 
= 0, n ∈ C. (110)

Upon definingQ = [q1, . . . , qN ] and [ΛA]n,n = fn, the second
equality in (109) is equivalent to

[ΛT
AQHBHBQΛA]i,j = fifjq

H
i B

HBqj . (111)

Based on (111) as well as constructing Q̃ = [q(1), . . . , q(N{C})]
and Λ̃A = diag{f(1), . . . , f(N{C})}, where (n) denotes the n-th
largest index in C and N{C} is the total number of indices in C,
we have

Λ̃T
AQ̃HBHBQ̃Λ̃A = Λ̃, (112)

whereΛ̃ is a diagonal matrix. In (112), Λ̃A is a full-rank diag-
onal matrix and thus it is concluded that Q̃ consists of N{C}
eigenvectors of BHB. In other words, the eigenvectors of the
EVD of AAH corresponding to the nonzero eigenvalues are the
eigenvectors of the EVD of BHB. This proves that there exists
a unitary EVD matrix of BHB, which is also the unitary EVD
matrix of AAH.

APPENDIX B
DERIVATION OF (41)

The Lagrange of the optimization (40) is given by [14]

L (F , t, {αn}, {λk})

=
∑
n

αn

([(
I + FHHHHF

)−1
]
n,n

− t

)
+

∑
k

λk(Tr(ΩkFFH)− Pk) + t, (113)

based on which the KKT conditions of (40) are derived as

1 =
∑
n

αn,
[(
I + FHHHHF

)−1
]
n,n

= t, λk

(
Tr

(
ΩkFFH

)− Pk

)
= 0, Tr

(
ΩkFFH

)
≤ Pk, αk ≥ 0,HHHF

(
I + FHHHHF

)−1
Λα

× (
I + FHHHHF

)−1
= µΩF . (114)

Based on the first two KKT conditions, the Lagrange function
can be rewritten as

L(F , t, {αn}, {λk})

= t+
1
N

Tr
((

I + FHHHHF
)−1

)∑
n

αn − t
∑
n

αn
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+
∑
k

λk

(
Tr

(
ΩkFFH

)− Pk

)
= αTr

((
I + FHHHHF

)−1
)

+
∑
k

λk

(
Tr

(
ΩkFFH

)− Pk

)
. (115)

The first order equation with respect to F is then given by

αHHHF
(
I + FHHHHF

)−1 (
I + FHHHHF

)−1

= μΩF . (116)
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