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Abstract—Millimeter-wave (mm-wave) communications can
fundamentally solve the problem of spectrum shortage in wireless
communication systems, and many progresses have been made in
standardization, which laid the foundation for the application of
mm-wave in high-speed railway (HSR) scenarios. However, the
HSR channel is fast time-varying and difficult to model. Also
beamforming is essential to improve the directional gain of the
antenna and offset the high path loss of mm-wave. But the high-
speed movement of train makes the beam management extremely
challenging, and the trade-off between achievable performance and
beam training overhead is unavoidable. Reinforcement learning
(RL) can offer new solutions to this problem, as it does not need
a large number of training samples and other system information,
and is capable of achieving high performance with low complexity.
In this article, we propose an intelligent beam management scheme
based on a deep RL algorithm called deep Q-network (DQN), and
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our main idea is to exploit the hidden patterns of mm-wave train-
ground communication system to improve the downlink signal-to-
noise ratio (SNR), while ensuring a certain communication stability
and imposing a minimal training overhead. Through extensive
simulations, we demonstrate that the proposed DQN-based scheme
has better performance than the four baseline schemes, and it
also offers great advantages in SNR stability and implementation
complexity.

Index Terms—Train-ground communications, high-speed
railway, millimeter-wave communications, beam management,
deep reinforcement learning.

I. INTRODUCTION

A. Motivation

LOOKING back at the past decade, the rapid development
of high-speed rail (HSR) has driven many technological

innovations and changed people’s lives. By the end of 2020, the
operating mileage of Chinese HSR has reached 39,000 kilome-
ters, ranking the first in the world [1]. Since many passengers are
accustomed to broadband wireless access in their daily living,
more and more people hope to have high-quality broadband
wireless access on mobile terminals when traveling by train.
At present, the demand rate of passengers in each carriage is
about 37.5 Mbps, and with the growth of business volume and
quality of service (QoS), it may reach 0.5-5 Gbps in the fu-
ture [2]. But the wireless transmission scheme now widely used
in HSR scenarios, such as GSM-R, obviously cannot meet these
requirements. Therefore, it is important to carry out relevant
research on broadband wireless communication technology in
HSR scenarios.

At present, the research on HSR communications mainly
includes two categories: intra-train and train-ground commu-
nications. In order to overcome the huge penetration loss caused
by the metal body of carriage, it is usually considered to deploy
a mobile relay (MR) on the roof of the train and a wireless access
point (AP) inside the carriage. The AP collects users’ data and
transmit them to the track-side base station (BS) through the
MR [3]. At this time, analyzing the intra-train communications
is similar to the indoor communications. But the problems
inherent in HSR communications related to handover, Doppler
spread, non-stationary and fast time-varying are not solved [4].
Therefore, these issues related to train-ground communications
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are the main factors that affects the communication performance
in HSR scenarios.

Consistent with the main problems of other wireless commu-
nication systems, the current performance of the train-ground
communications in HSR scenarios is mainly limited by spectrum
resources. For example, the available spectrum resources of
GSM-R are only 4 MHz, but it needs to deal with emergency
calls, train scheduling and so on, leaving very little to meet the
need of passengers. The millimeter-wave (mm-wave) frequency
band located at 30-300 GHz, which has abundant spectrum
resources, can fundamentally solve this problem and provide
passengers with high-capacity broadband wireless access [5]. At
the same time, the rapid development of CMOS radio frequency
integrated circuits has also promoted the production of related
electronic devices and the formulation of standards [6], making it
possible to apply mm-wave communications in HSR scenarios.

However, mm-wave communication suffers from much
higher path loss than its low-frequency counterpart. For ex-
ample, in free space, the path loss in 60 GHz is 28 dB higher
than that in 2.4 GHz [7]. Furthermore, the rain attenuation and
atmospheric absorption of mm-wave signals further reduce its
effective propagation distance. In order to solve this problem,
directional antennas are generally used in mm-wave communi-
cations to realize beamforming, thereby increasing the antenna
gain. In addition, due to the much shorter wavelength, a large
number of antenna elements can be integrated in a small area,
and a large-scale antenna array can be deployed at the MR
to complete the receive (RX) beamforming. Consequently, a
variety of beam training algorithms have been proposed to help
reducing the time required for beam training [8].

Compared with traditional beamforming, the beam formed
in mm-wave communications is narrower. Since the velocity
of high-speed train (HST) is very fast, more frequent beam
alignment is required. Traditional schemes, such as traversal
scanning and hierarchical scanning, are no longer suitable for
train-ground communication system in HSR scenarios. On the
other hand, since HST generally travels along long straight
rail track, line-of-sight (LoS) transmission dominates in train-
ground communications between track-side BS and MR on the
roof of the train. Therefore, the optimal beam direction, defined
as the direction with the highest received signal power, is highly
correlated with the location of the train, and it is possible to
search for the optimal beam in a narrow area around the HST.
At the same time, the HST travels periodically on the same
transportation line based on a fixed timetable, and therefore the
train-ground communication system intuitively generates some
regular patterns. Since the artificial intelligence (AI) is good at
extracting the hidden relationship from data, applying it to the
train-ground communication system in the HSR scenarios can
fully exploit the relationship between the position of the HST and
the corresponding optimal beam direction, thereby simplifying
the process of beam management.

Among the many branches of AI algorithms, reinforcement
learning (RL) is a hot topic in recent years [9]. Compared with
other algorithms, RL is model-free and does not require the
desired output data from external supervisors. Furthermore, its
complexity mainly exists in the offline training, and the most

valuable action is executed directly according to the state of
the system in the online training, thereby the complex iterative
optimization process is avoided. Applying RL methods to the
train-ground communications in the HSR scenarios can effec-
tively reduce the overhead caused by frequent beam alignment,
and realize more intelligent beam management. This motivates
our work to design an intelligent beam management scheme
based on the deep RL (DRL) algorithm, called deep Q-network
(DQN), for the mm-wave train-ground communication system
to improve the downlink SNR and its stability. Specifically, our
contributions are as follows.
� Considering the mm-wave train-ground communication

system in the HSR scenarios, we formulate the optimiza-
tion problem of RX beam management to maximize the
downlink SNR, while ensuring a certain SNR stability.
Specific path loss, propagation properties, high mobility
and Doppler spread inherent in the mm-wave based HSR
train-ground communication are taken into consideration
in the formulation.

� Exploiting the correlation between the position of HST and
the downlink instantaneous received power, we propose
an intelligent beam management scheme based on a DRL
framework, called DQN, to establish the mapping between
the position of HST and the optimal beam direction.

� We evaluate the proposed algorithm in the 30 GHz mm-
wave train-ground communication system. Through exten-
sive evaluations, we show that the proposed DQN-based
algorithm not only achieves near-optimal performance,
but also imposes the lowest online training complexity, in
comparison with four baseline schemes. Our work there-
fore effectively resolves the classical dilemma having to
tradeoff between system performance and beam training
overhead in HSR scenarios.

The rest of the article is organized as follows. In Section I-B,
we provide an overview of the related work. Section II introduces
the mm-wave based train-ground communication system model
and formulates the problem of RX beam management aiming at
maximizing the downlink received power. The proposed DQN-
based algorithm to solve the RX beam management optimization
problem is detailed in Section III, and the performance evalua-
tion of the proposed DQN algorithm is provided in Section IV,
in comparison with some existing schemes. Section V concludes
this article.

B. Related Work

There are two main research directions for beam management
in HSR scenarios, beam switching and beam tracking. Com-
pared with traditional traversal and hierarchical scanning, beam
switching has lower complexity and overhead [10]. However,
due to the limited number of optional beams and frequent beam
switching, the gain of space division multiplexing decreases, i.e.,
the overhead is improved at the expense of system performance.
On the other hand, beam tracking offers high flexibility and
system capacity by adjusting the beam direction in real time to
track the specific propagation path [3]. Compared with beam
switching, beam tracking offers better system performance,
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while imposing higher complexity. Xiong et al. [11] proposed to
cover and track low-speed vehicles with a wide beam. However,
the system performance near the cell edge experiences signif-
icant degradation due to the high path loss of mm-wave. Gao
et al. [3] proposed a dynamic beam tracking scheme that jointly
adjusts the beam direction and width. In this scheme, the beam
tracking in mm-wave train-ground communication is formulated
as a non-convex optimization problem, and an approximate op-
timal solution is obtained based on genetic algorithm. However,
the scheme contains many restricted assumptions and simpli-
fications, which limit its application. Lu et al. [12] formulated
the multi-cell coordinated beamforming in HSR scenarios as an
optimization problem. By introducing auxiliary variables, the
globally optimal beamforming vector can be obtained iteratively.
However, it is difficult for this high-complexity optimization
based algorithm to work well in the train-ground communication
systems with fast time-varying channels. Therefore, proposing
a low-complexity and high-performance beam tracking scheme
suitable for HSR scenarios remains a key challenge.

Recently, Yan et al. [13] provided a new idea for solving
the above problem. In [13], it was mentioned that since the
data transmission in the mm-wave train-ground communication
is approximately LoS, the optimal beam direction is highly
correlated with the position of the train. Yu et al. [14] further
pointed out that the position of HST is almost predictable, and
with the help of the position information of the train, the optimal
beam direction can be determined by searching the narrow area
around the train, rather than blindly exploring the whole space.
In addition, based on a fixed timetable, HSTs run periodically on
the same transportation line, and therefore the trackside train-
ground wireless communication system intuitively generates
some regular patterns. By capturing these patterns, we can obtain
more valuable information to design better beam management
in HSR scenarios.

It is well known that AI emerging in recent years has the
ability to learn the hidden patterns from massive data, and it has
been widely used in wireless communications [13], [15]. Feng
and Mao [16] pointed out that solving the various combinatorial
problems is a major challenge in wireless network design and
the existing solutions usually rely on information exchange,
thus having to trade off between overhead and system perfor-
mance. The authors of [16] also mentioned that RL as a new
AI paradigm is model-free, and it does not require knowledge
of the interdependencies between different nodes. Therefore,
it is possible to obtain better system performance with reduced
overhead by applying RL. For example, Wang et al. [17] applied
RL to solve the multi-channel access problem with the goal
of maximizing the number of successful transmissions. Luo
et al. [18] proposed a RL based dynamic power control scheme
to maximize the sum rate of the static user equipment (UEs).
Wang et al. [19] used RL to determine the optimal switching
strategy in the Internet of things scenarios. In the scheme of [19],
different motion patterns of the UEs are considered, and the goal
is to reduce the switching frequency while meeting the system
throughput requirement. Both [19] and [20] considered deploy-
ing multiple agents to control over complex communication
systems.

Fig. 1. Illustration of train-ground communication system in HSR scenarios.

At present, there exist a lot of research works on applying
RL to wireless communications but most of the scenarios are
urban cellular networks, where UEs move slowly and the range
is small. A few works did investigate HSR scenarios. Wang
et al. [21] considered multiple track-side BSs in the train-ground
communication system, and implemented dynamic spectrum
management by the interaction between multiple agents, thereby
reducing the failure probability of handover. Cai et al. [22]
realized the adaptive optimization of handover parameters in
LTE-R system based on RL. Xu et al. [23] proposed a multi-
agent-based power allocation algorithm in the HSR scenarios.
In this scheme, the system state is defined as the channel state
information (CSI) and beamforming vector, but the optimal
beam direction is assumed to have been determined in advance.
The article [23] also emphasized that how to design an efficient
and reliable beamforming scheme in the mm-wave train-ground
communication system is an unsolved problem. It can be seen
that the few existing schemes on the application of RL in train-
ground communication systems make decisions based on CSI.
But these works can help us to understand the idea of introducing
RL in HSR communication networks, and are instructive for
designing RL based intelligent beam management schemes in
HSR scenarios.

To sum up, the existing studies have not considered the ap-
plication of combining beamforming and DRL to the mm-wave
based train-ground communication system in HSR scenarios.
Using DRL to improve the beam management of mm-wave
train-ground communication system has great potential, and
this motivates our current work. In this article, we formulate
the problem of RX beamforming in the mm-wave train-ground
communication system in HSR scenarios, and propose a dy-
namic beam management algorithm based on DRL to improve
the downlink SNR.

II. SYSTEM OVERVIEW AND PROBLEM FORMULATION

The train-ground communication in HSR scenarios is illus-
trated in Fig. 1, where both BS and MR are equipped with
antenna arrays for beamforming. When the HST moves, the
beamforming at transmitter aligns the main lobe with the MR.
The beamforming at receiver estimates the arrival angle of the
received signal in advance, and then form a RX beam according
to the propagation direction of the signal. RX beamforming can
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Fig. 2. Illustration of mm-wave train-ground communication system.

further improve the quality of received signals, thereby improv-
ing the throughput and reliability of train-ground communica-
tion system. When the MR receives the signal, the information
is transmitted to the AP inside the carriage through optical fiber.

A. System Model

The infrastructure of the mm-wave train-ground communi-
cation system considered is depicted in Fig. 2, which is also
the only mm-wave communication deployment scheme under
the HSR scenario considered by 3GPP [24], [25]. Specifically,
three remote radio taps (RRHs), denoted by RRH1, RRH2 and
RRH3 in Fig. 2 with adjacent RRHs deployed on different sides
of the rail track, and one baseband processing unit (BBU) are
connected via optical fibers to form a track-side unit. Track-side
units are deployed regularly along the entire rail track line as
illustrated in Fig. 2, where DR represents the minimum distance
between the RRHs, and DS = 3DR is the distance between
the BBUs in adjacent two units. Furthermore, in Fig. 2, Dmin

represents the distance between RRH and the rail, and DT is
the minimum distance between two parallel rail tracks, while
hR is the height of the RRH relative to the rail, and hT is the
height of the train, which is also the height of the MR relative
to the rail. In addition, the velocity of train is v, and ϕ and ϑ
denote the azimuth and downtilt angles of transmit (TX) beam,
respectively.

Since HSR is mainly deployed in suburbs and viaducts, the
signal is rarely blocked by buildings to result in non-LoS trans-
mission, and therefore only the LoS transmission is considered.
In this article, we choose RMa LoS in [26] as the model of path
loss:

PL =

{
PL1, 10 m ≤ d2D ≤ dBP,
PL2, dBP ≤ d2D ≤ 10 km,

(1)

PL1 = 20 log10

(
40πd3D

fGc

3

)
−min

{
0.044h1.72, 14.77

}
+min

{
0.03h1.72, 10

}
log10 (d3D)

+ 0.002 log10(h)d3D, (2)

PL2 = PL1 (dBP) + 40 log10

(
d3D
dBP

)
. (3)

Fig. 3. Definitions of d2D and d3D.

The carrier frequency fGc
in (2) is measured in GHz. The

definitions of d2D and d3D are given in Fig. 3, and h ∈ [5, 50] m
is the average height of buildings in the propagation environ-
ment, while dBP represents the break point distance, which is
calculated according to

dBP = 2πhRhT
fc
c
, (4)

where fc is the carrier frequency in Hz, and c = 3.0× 108 m/s
is the free-space propagation speed of electromagnetic wave.

Next, we set a random shadow Xσ , which is a Gaussian
random variable with zero mean and standard deviation σ. Then,
the large-scale fading model is given by

PL(d) = PL(d) +Xσ [dB]. (5)

In each time slot, the HST can be considered to be stationary.
In order to simplify the analysis, we introduce the concept of
location bin, i.e., when the projection of the MR relative to
the rail is located in a certain location bin [d0 − σD, d0 + σD],
the MR is considered in the same location d0. If the length
of the railway to be observed is d, then the number of location
bins on this railway is L = d

/
2σD. Hence, the algorithm used

for beam management has L observation points. Then, the
received power sequence can be expressed as

PR =
[
P

(1)
R P

(2)
R · · ·P (L)

R

]T
∈ R

L×1. (6)

In addition, we denote the TX antenna gain of the BS by GT

and the RX antenna gain of the MR by GR, which depend on
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their corresponding beam angles and half-power beamwidths,
respectively. Let θi and wi be the Rx beam angle and half-power
beamwidth in the i-th location bin. Then according to [26], the
received power of the MR can be calculated by

P
(i)
R = ‖H(i)‖2

FGT (i)GR(θi, wi)dTR(i)
−γPT , (7)

where PT is the TX power of the BS, H(i) ∈ C
Nr×Nt is the

small-scale fading matrix, which depends on the wavelength,
velocity of HST and Doppler spread, and ‖ · ‖F denotes the
matrix Frobenius norm, while dTR(i) is the transceiver distance
and γ is the large-scale path loss coefficient. Since the BS TX
beam always points to the MR during HST operation and we
further assume that the TX beam has a constant beamwidth, GT

is a function of the HST position i.
Due to the fact that the wireless channel in the train-ground

communication system is fast time-varying, serious Doppler
spread is introduced, which destroys the orthogonality of the
sub-carriers in the OFDM signal, resulting in inter-carrier inter-
ference (ICI). More specifically, the small-scale fading matrix
H(i) can be expressed by

H(i) = gl(i)e
2πjtfd,max cos(ϑl(i))F

(
θTX
l (i), θRX

l (i)
)
, (8)

where gl(i) is the complex small-scale fading gain correspond-
ing to the path l when the MR is at the i-th location bin, and
fd,max = fcv

c is the maximum Doppler spread with fc and c
being the carrier frequency and the light speed, respectively,
whileF (·, ·) ∈ C

Nr×Nt represents the TX and RX beamforming
matrix [27], and ϑl(i) is the arrival angle of the path l relative
to the direction of train movement. Usually, gl(i) is predefined
and its second moment is set to 1 [28].

Consider that the BS and MR both use uniform linear antenna
arrays to transmit and receive signals, with Nt and Nr repre-
senting their numbers of antenna elements, respectively, where
Nr < Nt. Further denote Δt and Δr as the normalized TX and
RX antenna spacings, respectively. Then F (θTX

l (i), θRX
l (i))

can be expressed as

F
(
θTX
l (i), θRX

l (i)
)
= uRX

(
θRX
l (i)

) (
uTX

(
θTX
l (i)

))H
, (9)

where (·)H denotes the conjugate transpose operator,
uTX(θTX

l (i)) ∈ C
NT×1 is the spatial feature vector of the trans-

mitting unit along ΩTX = cos(θTX
l (i)) given by

uTX
(
θTX
l (i)

)
=

1√
Nt

⎡
⎢⎢⎢⎣

1
e−j2πΔtΩ

TX

...
e−j2π(NT−1)ΔtΩ

TX

⎤
⎥⎥⎥⎦ , (10)

and uRX(θRX
l (i)) ∈ C

NR×1 is the spatial feature vector of the
receiving unit along ΩRX = cos(θRX

l (i)) given by

uRX
(
θRX
l (i)

)
=

1√
Nr

⎡
⎢⎢⎢⎣

1
e−j2πΔrΩ

RX

...
e−j2π(NR−1)ΔrΩ

RX

⎤
⎥⎥⎥⎦ . (11)

We use the widely adopted directional antenna model from
IEEE 802.15.3c [29], which includes a linearly scaled Gaussian

main lobe and a constant-level side lobe. Based on this model,
the gain of a directional antenna can be expressed as

G(θ) =

{
G0 − 3.01

(
2θ

θ−3dB

)2
, 0◦ ≤ θ ≤ θml

2 ,

Gsl,
θml

2 ≤ θ ≤ 180◦,
(12)

where G0 = 10 log10(1.6162
/
sin( θ−3dB

2 ))2 is the maximum

antenna gain, θ ∈ [0, π] denotes the beam angle, and
θ−3dB represents the half-power beam angle, while θml =
2.6θ−3dB denotes the main lobe width in degrees, and Gsl =
−0.4111 ln(θ−3dB)− 10.579 is the side lobe gain.

We adopt the widely used ICI approximation model given
in [30] to quantify the ICI power PICI:

PICI =

∫ 1

−1
(1 − |τ |)J0 (2πfd,maxTsτ) dτ, (13)

where Ts denotes the symbol duration and J0(·) denotes the
zero-order Bessel function of the first kind.

B. Problem Formulation

Based on the above model, when the MR is located in the i-th
location bin, the received signal-to-noise ratio (SNR) of receiver
can be expressed as

SNR(i) =
P

(i)
R

N0W + PICI
, (14)

where the received power P (i)
R of the MR in the i-th location bin

is given in (7), N0 is the one-sided power spectral density of the
white Gaussian noise, and W represents the system bandwidth.
Then the downlink instantaneous maximum achievable rate of
the established mm-wave train-ground communication system
can be calculated by

R(i) = W log2(1 + SNR(i)). (15)

Our goal is to maximize the sum
∑L

i=0 SNR(i) of the down-
link SNR sequence for the given TX power PT of the BS,
where SNR(i) is defined in (14), while ensuring the basic QoS
requirements of passengers as well as reducing the complexity
of beam tracking. Therefore, when the length d of the observed
railway and the length 2σD of the location bin are determined,
this optimization problem can be formulated as follows

(P1) max
{θi:1≤i≤L}

L∑
i=0

SNR(i), (16)

s.t. θi ∈ Θ, ∀i = 1, 2, . . . , L, (17)

wi ∈ Ω, ∀i = 1, 2, . . . , L, (18)

ATX
E ≤ ATX

max, (19)

ARX
E ≤ ARX

max, (20)

P
(i)
R ≥ Ptarget, ∀i = 1, 2, . . . , L. (21)

The constraints (17) and (18) are the beam direction and
beamwidth constraints for avoiding large scale adjustments,
where Ω = [−π/2, π/2] and Θ = [−π/2, π/2], and (19) and
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(20) represents the constraints on the maximum beam gain of
an antenna element, in which ATX

E and ARX
E denote the TX and

RX antenna element gains, respective, whileATX
max andARX

max are
the upper bounds of ATX

E and ARX
E , respectively. Furthermore,

Ptarget represents the threshold of downlink received power.
In addition to high throughput, a consistent throughput is

also a measure of quality of experience (QoE). To measure the
stability of the system capacity, we define the RX SNR stability
of a beam management scheme by

S(l) =
|SNR(l)− E[SNR]|

E[SNR]
, (22)

whereSNR(l) is the RX SNR at location l, andE[SNR] denotes
the mean of SNR when HST passes through the whole track
section. The closer S(l) is to 0, the more stable the SNR and
hence the system capacity is.

From the antenna gain model (12), it can be seen that the
RX beam direction is the primary variable that determines the
downlink SNR. Therefore, we fix the beamwidth variable, and
consider the following optimization problem:

(P2) max
{θi:1≤i≤L}

L∑
i=0

SNR(i), (23)

s.t. θi ∈ Θ, ∀i = 1, 2, . . . , L, (24)

wi = w, ∀i = 1, 2, . . . , L, (25)

ATX
E ≤ ATX

max, (26)

ARX
E ≤ ARX

max, (27)

P
(i)
R ≥ Ptarget, ∀i = 1, 2, . . . , L. (28)

L∑
i=0

S(i) ≤ L · Smax (29)

Since both the objective function and the constrains (28) and (29)
contain non-convex mathematical relations, (P2) is a non-convex
nonlinear programming problem. An appropriate value of the
beamwidth w can be determined by experiment.

When researchers solving non-convex problems in the past,
either the objective function or constraints were approximated
to transform the problem to be solved into a convex optimization
problem, or greedy algorithms were used to make the solution
as close as possible to the optimal solution. The essence of
DRL is to search for the optimal solution in all system states
and action spaces, which is an exploration mechanism between
exhaustive and greedy methods. Using DRL to solve non-convex
optimization problems doesn’t require any approximation or
transformation of the objective function or constraints. And the
training of RL does not require a large number of samples and en-
vironmental information, which is an advantage that deep learn-
ing does not have. However, the training process of RL involves
interacting with the environment and learning through policy
updates and exploration, which typically demands more time
and computational resources. Feedback in RL is often sparse
and delayed, making training more challenging. Therefore, the
integration of deep learning and RL, forming DRL, is currently

a hot research topic. This approach leverages the strengths of
deep learning models in perception and decision-making tasks.

III. RX BEAMFORMING OPTIMIZATION VIA DRL

As aforementioned, the route of the HST is fixed and its
operation has certain periodicity. Therefore, the track-side train-
ground wireless communication system exhibits some regular
patterns, and AI is good at capturing these hidden patterns. In
particular, the correlation between the position of the MR and
the optimal beam direction as well as between the optimal beam
direction and the maximum received signal power is such a pat-
tern of the train-ground communication system in space. DRL is
particularly suitable for our application, and we design the RX
beam management scheme in the HSR scenarios based on DRL.
Our proposed solution for solving the optimization (P2) consists
of two parts: a Q-learning algorithm for online adjustment of
beam direction and a convolutional neural network, which is a
variant of deep neural networks (DNN), used to estimate the
Q-values offline.

A. RX Beamforming Based on Reinforcement Learning

RL is an intelligent decision-making paradigm, which can be
implemented with TensorFlow and Keras [31]. The idea is to
use the experience obtained from training to learn the pattern of
a specific Markov process by interacting with the environment
through an agent. In our mm-wave train-ground communication
system, a RL agent is deployed at the MR, whose task is to
perform the training process and output the optimal policy
for adjusting the beam direction with the goal of maximizing
‖PR‖2. The agent interacts with the mm-wave train-ground
communication system for a long time, and performs the action
by observing the current system state. First we introduce the
following three definitions.

1) System State Space: Since the path loss is dominant in
the fading experienced by the signal when the HST moves,
the change of the received power is large when the traveling
distance is long. Hence, there is a certain correlation between
the downlink received power and the train position. Therefore,
the instantaneous received power of the MR can be marked as the
system state, which can be expressed as S = (s1, s2, . . . , sP ),
where P = NBL represents the size of the system state space
with NB denoting the size of the beam codebook.

2) Action Space: When the beam width is determined, the
beam direction of the MR is the optimization variable, and
the action space is defined as A = (a1, a2, . . . , aNB

), i.e., the
absolute adjustment of the beam index is performed in the MR
side between different location bins.

3) Reward Function: Let a reference scheme be specified, in
which the direction of RX beamforming is constant θF . Then,
the reward function is defined as

r
(
sk, ak

)
= PR

(
sk, ak

)− PR

(
sk, θF

)
, (30)

where PR(s
k, ak) denotes the received power of the MR after

the selected action ak is executed in the state sk of the k-th
epoch, and PR(s

k, θF ) is the received power of the MR when
the reference scheme is adopted in the same state.
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Due to the mobility of HST, the state of the train-ground com-
munication system changes with the time and the displacement
of the MR. At the k-th epoch, the agent obtains the state sk

of the system, and derives an optimal policy πk through the
learning. Then, the system executes the action ak of adjusting
the beam direction based on the policyπk, and obtains the reward
r(sk, ak) corresponding to the action ak executed in the state sk

according to (30). Finally, the system advances to a new state
sk+1 and repeats the above operations until the last epoch of
training is completed. In addition, the reward returned by the RL
is the cumulative discount reward Rk, which is used to measure
the pros and cons of executing the action ak in the state sk, and
its calculation is given by

Rk =
T∑
t=0

αr
(
sk+t, ak+t

)
, (31)

where T is the maximum number of epochs, and α ∈ (0, 1] is
the discount factor. Since the goal of the agent is to maximize the
expectation of cumulative rewards, i.e., maxE[Rk|sk], the RL
based algorithm does not only focus on the immediate benefits
obtained after executing action in the current state. Rather it
hopes to maximize the long-term cumulative discounted bene-
fits. In our mm-wave based train-ground communication system,
this is equivalent to maximize the expectation of downlink SNR.

Two widely used approaches to obtain maxE[Rk|sk] are
value function based and policy-based methods. In this article,
we use the value function based algorithm. For such algorithms,
Banach fixed point theorem can be used to prove the uniqueness
and existence of the convergence solution [32].

In order to determine the value function of state-action pairs,
we first define the state value function by Vπ(s

k) = E[Rk|sk],
which is the cumulative reward of the policy πk. The policy πk

can be defined as the probability distribution of the actionaunder
the given state sk, i.e., πk(a|sk) = P (a|sk) or a = πk(s

k). In
our mm-wave based train-ground communication system, the
changes of state are independent, and we can rewrite the state
value function as follows:

Vπ

(
sk

)
= r

(
sk, πk

)
+ α

∑
sk′ ∈S

P
(
sk

′∣∣sk, πk

)
Vπ

(
sk

′
)
,

(32)

where P (sk
′∣∣sk, πk) is the state transition probability when the

strategy πk is adopted. Next, we define the Q-function that
represents the value of state-action pairs to quantify the expected
reward after executing the action ak when the system is in the
state sk and the strategy π is adopted, namely, Qπ(s

k, ak) =
E[Rk|sk, ak]. Since the system state is independent of the ad-
justment of the beam direction, E[Rk|sk, ak] = E[Rk|sk] and
we have Qπ(s

k, ak) = Vπ(s
k), which is defined in (32).

The agent’s goal becomes to maximize this Q-function to
obtain the optimal beam management strategy π�, that is,

π� = arg max
ak∈A

Qπ

(
sk, ak

)
. (33)

Afterward, the agent observes the current state sk and executes
the most valuable action a� according to the optimal policy π�,

Fig. 4. Flowchart of the DRL approach.

which can be expressed as a� = π�(sk). In Q-learning, the Q-
function can be determined recursively according to

Qπ

(
sk, ak

)
= (1 − β)Qπ

(
sk, ak

)
+ β

(
r
(
sk, ak

)

+ α max
a′k∈A

Qπ

(
s
′k, a

′k
))

, (34)

where β represents the learning rate. According to (34), each
state-action pair needs to be visited and evaluated when updating
Qπ(s

k, ak), which leads to huge complexity and slow conver-
gence. In order to solve (P2) effectively, we further introduce a
DNN to achieve more intelligent control.

B. RX Beamforming Based on DQN

In order to speed up the convergence of Q-learning, we
introduce an improved RL algorithm, which is a DQN. This
algorithm uses the sampled data to train a DNN for estimating
Q-values, which maps the inputs of state-action pairs onto their
corresponding Q-values. However, directly applying DNN to
Q-learning may lead to non-convergence due to the correlation
between training samples and the correlation between Q-values
and target values. Therefore, the DQN algorithm is adopted
to reduce these correlations [31]. In this method, the agent
first explores the environment by randomly executing actions
and stores the experiences in the target network, where the set
of experiences includes the current state, the executed action,
the immediate reward, and the next state. Then, we can use
a mechanism called experience replay, by randomly sampling
the data in mini-batch from the target network to break the
correlations in the observation sequence. Using the samples
from the target network, the weight parameters of the DQN
are updated by minimizing the mean squared error of the DQN
and the Q-function of the target network. Usually the stochastic
gradient descent method is used for this optimization.

The flowchart of the DRL method is shown in Fig. 4, and the
parameter updating process of the DQN is detailed as follows.
First, we replace or approximate the value function Qπ(s

k, ak)
with a DQN Q that has the parameters ωk, i.e., Q(sk, ak;ωk) ≈
Qπ(s

k, ak). By setting β = 1, this approximation is used to
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Algorithm 1: Dynamic Beam Management Based on DQN.
Initialization:

Initialize RX beamforming: θRX
l (i) = 0◦,

l = 1, 2, . . . , L, i = 1, 2, . . . , T ;
Initialize action-value function Qπ , target action-value
function Q, and replay memory buffer B;

1: for current location bin l = 1 : L do
2: Initialize state sequence s1

l = 0 dBm;
3: for k = 1 : T do
4: Observe current state skl = P

(l)
R ;

Transition Generating Stage:
5: Select action akl ∈ A based on ε− greedy policy;
6: Execute action akl , receive reward r(skl , a

k
l ) and

next
state sk+1

l ; Store {skl , akl , r(skl , akl ), sk+1
l } into B;

Parameter Updating Stage:
7: Sample randomly minibatch of experience

{sm, am, r(sm, am), sm+1} from B;
8: if k terminates at step m+ 1 then
9: set ym = r(sm, am);

10: else
11: set

ym = r(sm, am) + αmaxa′∈A Qπ(s
m+1, a′);

12: end if
13: Perform gradient descent step to minimize

(ym −Q(sm, am;ωm))2;
14: Every C steps reset Q = Qπ;
15: end for
16: end for
Output:

RX power sequence {P (l)
R }Ll=1; Trained DNN.

define a loss function as:

L
(
ωk

)
= E

[(
r
(
sk, ak

)
+ α max

a′k∈A
Qπ

(
s
′k, a

′k
)

︸ ︷︷ ︸
Target

−Q
(
sk, ak;ωk

)︸ ︷︷ ︸
predicted

)2
]
. (35)

The gradient of L(ωk) with respect to ωk is given by

∂L
(
ωk

)
∂ωk

= − E

[(
r
(
sk, ak

)
+ α max

a′k∈A
Qπ

(
s
′k, a

′k
)

−Q
(
sk, ak;ωk

))∂Q
(
sk, ak;ωk

)
∂ωk

]
. (36)

The iterative process with gradient descent is repeated until the
last epoch is competed. We can update ωk according to the
experience by random sampling from the experience pool to
obtain the optimal strategy of beam management on the MR side.
After the training of the DQN is completed, the agent directly
executes the most valuable action of beam direction adjustment
according to the estimated Q-values.

Fig. 5. Framework of the proposed DRL based algorithm.

As shown in the Fig. 5, we adopt a fully connected neural
network framework in this article, where the input layer is com-
posed of the system states and output layer is the policy π(s, a)
for beam direction adjustment, containing a hidden layer with 10
neurons. Then, we can train the neural network used to estimate
the Q-values based on the loss function shown in the (35).

The pseudo code of the DQN algorithm for beam management
is given in Algorithm 1, where T is the maximum number of
epochs. In each epoch, the algorithm consists of two stages. The
first stage is the transition generating stage, which uses the Q-
learning to adjust the direction of the RX beam. At this stage, the
agent observes the state of the system, randomly selects action
with probability ε or the one most likely to obtain the largest
discount accumulative reward with probability 1 − ε, executes
the selected action, and gets the corresponding reward. Then
the system reaches the next state, and stores this memory into
B as experience. The second stage is the parameter updating
stage. At this stage, the algorithm randomly samples minibatch
of memories from B, and uses the stochastic gradient descent
method to update the parameters of the DNN to make the more
accurate prediction of Q-values.

C. Implementing Proposed DQN-Based Algorithm

The implementation of the proposed DQN-based algorithm
on HST includes offline training and online prediction.

When the HST is in trial operation, the proposed algorithm
is in the offline training mode. After training, a DNN-based
trained model is obtained, which maps the receiving power of
MR and the position of the HST to the optimal beam direction,
as illustrated in Fig. 4. The training complexity can be derived as
follows. Assume that given the RX beam angle, the complexity
of calculating the downlink received power once is CP . Then
the complexity of the first stage of Algorithm 1 is on the order of
O(L · T · CP ), where L is the number of rail location bins and
T is the maximum number of epochs. Further assume that the
size of the data set representing the state-action pairs is D, and
the size of the single sampling ismE. Then the complexity of the
second stage of Algorithm 1 is O(L · T · D

mE
· CP ). Therefore,

the training computational complexity of the proposed DQN-
based algorithm is on the order of O(L · T (1 + D

mE
) · CP ).

After training, HST is in actual operation, and the proposed
algorithm is in the online prediction mode. According to the
DNN obtained in the offline training phase, the agent directly
adjusts the beam direction that is most likely to obtain the optimal
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average SNR. Therefore, when HST is in operation, the proposed
DQN-based algorithm does not traverse any independent vari-
able space. Given the number of location bins L, the online or
operational complexity of the proposed algorithm is on the order
of O(L · CP ).

We now compare the proposed DQN-based algorithm with
the classic Q-learning algorithm, in terms of computation and
storage requirements. Our DQN-based algorithm has one more
stage of parameter updating during offline training, but the intro-
duction of DNN solves the problem of excessive storage space
required by the classic Q-learning to construct a RL model for
large-scale state-action set. Therefore, the proposed algorithm
is advantageous in the storage complexity of both the offline
training and online prediction phases. The proposed DQN-based
algorithm and the traditional Q-learning algorithm both have the
same online computational complexity.

The training of the DRL model proposed in this article utilizes
communication parameters such as MR’s instantaneous receive
power, MR’s beam direction, downlink receive power and SNR.
The main differences between various vehicle-to-ground com-
munication scenarios lie in the physical settings of BSs, railway
tracks, high-speed trains, and the environment. Therefore, the
physical parameters of the vehicle-ground scenarios have a weak
effect on the training of the DRL algorithm in this article,
ensuring the applicability of the DRL algorithm across different
scenarios. Additionally, the communication characteristics of
different scenarios involve choosing between wideband and nar-
rowband mm-wave communication. Wideband communication
is suitable for scenarios requiring high data rates and large
data transmission, while narrowband communication prefers to
scenarios that need to overcome signal fading, anti-multipath
effects and satisfy the requirement of low power consump-
tion [33]. In the narrowband communication systems, since
frequency of all subcarriers are close to the carrier frequency, the
spatial directions are frequency-independent, whereas wideband
mm-wave communication experiences severe beam squint due
to the spatial direction of the beam changing with frequency,
resulting in a significant impact on system performance [34],
[35]. Furthermore, the use of statistical mm-wave CSI for hy-
brid precoding effectively reduces reliance on hard-to-obtain
instantaneous mm-wave CSI, which is a critical consideration
in wideband mm-wave communication [36].

IV. PERFORMANCE EVALUATION

A. Simulation Setup

According to the train-ground communication system mod-
eled in Section II-A, both the BS and MR work in the 30 GHz
mm-wave frequency band. Considering the small coverage of
mm-wave BS, the length of the railway to be observed is set to
d = 500 m, and the BS is located at the leftmost of the railway
in the scenario of Fig. 2. Other simulation parameters are given
in Table I. In order to evaluate the performance of the proposed
DQN-based algorithm, the following four algorithms are chosen
as baseline schemes.

1) FB (fixed Beam): The azimuth of the RX beam is un-
changed during the operation. In this scenario, there exists

TABLE I
SIMULATION SYSTEM PARAMETERS

an azimuth angle θ�FB with which the MR achieves the
highest average received power when passing through the
railway. Assume that this θ�FB has been acquired. We fix
the angle of the RX beam to θ�FB.

2) RT (real-time tracking) [3]: The RX beam is always
aligned with the BS during the HST passing through the
railway to obtain the maximum beam directional gain.
This is the idealized beam management scheme with the
optimal performance, requiring continuous beam switch-
ing.

3) BS-P (beam switching according to the position) [37]:
Given the number of RX beam switching modes Ns, the
length d of the railway is divided into Ns sections, and the
beam switching is executed when the HST enters a section.
The direction in which the midpoint of each section points
to the BS is taken as the direction of the RX beam on this
section of railway.

4) BS-A (beam switching according to the angle) [3] [38]:
The range of the RX beam angle in the length d of the
railway is divided into Ns intervals. When the azimuth of
the line connecting MR and BS enters an angle interval,
the median value of the interval serves as the direction
of the RX beam in this interval.

According to the ICI model (13), for the HTS velocity of
350 km/h, the ICI power is approximately −97 dBm. We fix the
beamwidth to w = 10◦ for our DQN-based scheme.

B. Online Computational Complexity Comparison

Among the four comparison schemes, only the FB scheme
also needs offline training to determine the beam direction
corresponding to the optimal average received power. Its offline
training complexity is on the order of O(L2 · CP + CDS), where
CDS denotes the complexity of a direct sort, while againL is the
number of rail location bins and CP denotes the complexity of
calculating the downlink SNR once given the RX beam angle.
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Fig. 6. Training process of the proposed DQN-based beam management model.

TABLE II
ONLINE COMPUTATIONAL COMPLEXITY COMPARISON

What really matters is the online computational complexity
during the operation of HST. Table II compares the online
complexity of the proposed DQN-based algorithm with those
of the four benchmark schemes. The FB scheme does not adjust
the beam angle during the operation of HST, and it imposes
no online complexity. The idealized RT algorithm needs to
continuously obtain the optimal absolute beam direction during
the operation of HST, which is impossible to realize. Therefore,
we assume that it only tracks the Nr optimal absolute beam
directions in each position bin, where Nr is the number of
MR antennas, and hence its online computational complexity
is O(Nr · L · CP ). Let the number of switching modes for the
BS-P and BS-A schemes be Ns. Then the online computational
complexity of these two beam switching schemes is on the order
of O(Ns · CP ).

C. Training of DQN-Ased Beam Management Model

The training process of our DQN-based beam management
model is shown in Fig. 6. In Fig. 6, each point represents a learn-
ing process, and the depth of the area color represents the degree
to execute actions in that area. When the HST is at the starting
point of the railway, the DQN-based algorithm builds the model
from the empty state, and finds the optimal RX beam index after

about 2000 steps. When the HST advances to the second location
bin, i.e., the travel distance is 1 m, the optimal RX beam index
is found after about 470 steps. Since the DQN-based algorithm
executes absolute beam adjustment, the model training between
different location bins should be independent. But because the
instantaneous received power of the MR is defined as the system
state and it reflects the current position of the HST, the decision-
making process of our algorithm in the previous location bin
can become the subsequent experience. Also we approximate
the downlink received power, i.e., similar values of received
power are marked as the same system state, which deepens the
correlation between the instantaneous received power and the
position information of HST. Wen the HST reaches the third
location bin, a relatively stable strategy is formed after about
50 steps, which benifts from the experience after learning the
decision-making process of the first two episodes.

Theoretically, according to the mm-wave path loss model of
Section II-A, its value generally has a logarithmic relationship
with the travel distance of the HST. Therefore, as the HST moves
away from the BS, the rate of increase in the path loss gradually
becomes slower. Then the correlation between the downlink
received power and the position information of HST is enhanced,
and the experience of the decision-making process from the
previous location bins becomes more relevant for the current
bin. However, in a few positions, such as 16 m and 85 m, it takes
about 1500 steps to form a stable strategy. This may be caused
by more rapid changes of the instantaneous received power near
these location bins, leading to higher changing rate of the path
loss.

D. Simulation Results and Discussions

Fig. 7 compares the downlink SNR obtained by the pro-
posed DQN-based algorithm with those of the four benchmark
schemes, where the number of switching modes for the BS-P
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Fig. 7. RX SNR comparison of different beamforming strategies. Ns = 3 for
BS-P and BS-A.

and BS-A schemes is set to Ns = 3. Since the path loss in-
creases with the distance, the RX SNR decreases as the HST
moves away from the BS. The idealized RT algorithm attains
the best performance as expected, followed by our DQN-based
algorithm, while the third best is the BS-P. It can be seen that the
performance gap between the proposed DQN-based algorithm
and the RT scheme is negligible, which indicates that our scheme
achieves a near-optimal performance. When the MR is located
within 50 m of the BS, the performance of the BS-P scheme is
very poor, similar to that of the FB. As the distance increases
further, the performance of the BS-P scheme recovers quickly,
approaching that of the RT scheme but with a small dip in its
SNR in the region of 150 m to 200 m. As for the BS-A scheme,
when the distance is less than 100 m, it executes multiple beam
switching operations in a short period of time and its perfor-
mance varies dramatically but is generally better than the BP-P
and FB schemes. However, as the distance increases beyond
100 m, the performance of the BP-A deteriorates sharply. For
the FB scheme, its performance is the worst when the distance
is less than 100 m. However, for the region beyond 100 m,
its performance improves quickly and approaches the optimal
performance of the RT scheme.

The results of Fig. 7 confirm that our proposed-DQN scheme
can closely approach the optimal performance of the idealized
RT scheme. Furthermore, the online computational complexity
of our DQN scheme is Nr times lower than that of the RT
scheme. These two facts make our scheme particular suitable
for the mm-wave train-ground communication system. Next we
use our DQN scheme as the performance benchmark to further
investigate the impact of Ns on the achievable performance of
the BS-P and BS-A schemes. Note that the online computational
complexity of our DQN scheme is L

Ns
times higher than that of

the BS-P and BS-A schemes.
Fig. 8 depicts the RX SNR performance obtained by the

BS-P scheme given different numbers of switching modes Ns,
in comparison with the RX SNR achieved by our proposed
scheme. Since the RX SNR curves of the BS-P with differentNs

Fig. 8. RX SNR comparison of our proposed scheme and the BS-P with
different numbers of switching modes Ns.

Fig. 9. RX SNR comparison (zoom on the first 200 m of the railway) of our
proposed scheme and the BS-P with different numbers of switching modes Ns.

become very close when the MR is more than 200 m away from
the BS, we zoom on the first 200 m of the railway and depict
the corresponding results in Fig. 9, in order to clearly show the
influence of Ns on the RX SNR performance of the BS-P. It can
be seen from Fig. 9 that with Ns ≥ 15, the SNR performance
of the BS-P is approaching the performance of the proposed
DQN-based algorithm for the distance over 50 m, but there
still exists a significant performance gap within the first 50 m.
Obviously, increasing Ns leads to better performance at the
cost of higher online computational complexity. On the whole,
setting Ns = 15 is appropriate for the BS-P scheme in this
simulation system. With Ns = 15, the online complexity of the
BS-P is still much lower than that of our DQN-based scheme.

Similarly, Fig. 10 investigates the impact of Ns on the achiev-
able RX SNR of the BS-A scheme, while Fig. 11 zooms on the
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Fig. 10. RX SNR comparison of our proposed scheme and the BS-A with
different numbers of switching modes Ns.

Fig. 11. RX SNR comparison (zoom on the first 200 m of the railway) of our
proposed scheme and the BS-A with different numbers of switching modes Ns.

results for the first 200 m of the railway, where again we use
our DQN scheme as the performance benchmark. It can be seen
from Fig. 11 that with Ns ≥ 10, the RX SNR performance of
the BS-A scheme approach that of the proposed DQN-based
algorithm. Hence, choosing Ns = 10 is cost-effective for the
BS-A scheme. In the remaining simulation experiments, we set
Ns = 10 for the BS-P and BS-A.

The SNR stability results of the five schemes are compared
in Fig. 12. In general, the proposed DQN-based algorithm and
the RT scheme have the best SNR stability, while the FB has
the worst SNR stability. Hence compared with the other three
practical schemes, our DQN-based algorithm offers better QoE
service.

Fig. 13 depicts the trajectories of RX beam azimuth angle
adjustment attained by the five algorithms over the whole section
of the railway, while Fig. 14 compares the same trajectories near

Fig. 12. SNR stability comparison of different beamforming strategies.

Fig. 13. Beam azimuth angle tracking comparison of different beamforming
strategies.

the BS. The trajectory of the idealized RT scheme represents
the optimal beam azimuth angle tracking but it is achieved
by infinitely many beam switching operations with infinitely
high online computational complexity, which is impractical.
Our DQN-based algorithm closely approximates the optimal
trajectory of the idealized RT scheme, particularly at the position
near the BS. The adjustment frequency required by the proposed
algorithm is related to the length of the railwayd and the radius of
the location bin σD. The adjustment frequency of the two beam
switching schemes depends on the number of beam modes Ns,
which is 10. Obviously, the FB scheme does not adjust the RX
beam azimuth angle. It can be seen that the proposed DQN-based
algorithm is capable of attaining a near optimal performance
while imposing an affordable online complexity.

Lastly, we investigate the impact of the beamwidth w on the
achievable RX SNR performance of our proposed DQN-based
scheme in Fig. 15. It can be seen from Fig. 15 that asw decreases,
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Fig. 14. Beam azimuth angle tracking comparison of different beamforming
strategies near BS.

Fig. 15. RX SNR performance of the proposed DQN-based scheme as the
function of beamwidth w, with the idealized RT as the benchmark.

the achievable performance of our DQN-based scheme im-
proves. In particular, when the beamwidth is reduced tow = 10◦,
the performance of our DQN-based scheme approaches the
optimal performance of the idealized RT scheme. This confirms
that the choice of w = 10◦ is appropriate.

V. CONCLUSION

In this article, we have proposed an intelligent beam man-
agement scheme based on the DQN to maximize the downlink
SNR of the mm-wave train-ground communication system. Our
novel idea has been to deploy a reinforcement learning agent
at the MR to perform the beam training by establishing the
DQN based mapping between the HST position and the optimal
beam direction. During the operation of HST, according to
the DNN model obtained in training, the agent can directly

predict the optimal beam direction from the HST position that
is most likely to obtain the maximum downlink SNR. Extensive
simulations have demonstrated that the proposed DQN-based
scheme closely approaches the optimal system performance
of the extremely-high-complexity idealized RT scheme, while
ensuring a certain SNR stability and imposing a low online
computational complexity. The results has also shown that our
DQN-based scheme outperforms three low-complexity bench-
mark schemes. This article therefore has developed the DQN-
based beam management scheme which achieves near-optimal
performance with affordable online computational complexity,
suitable for mm-wave high speed train-ground communications.
In the next phase of our research work, we will focus on wide-
band mm-wave communication, which is one of the hot topics
in future communication. Therefore, we aim to optimize the
current DRL algorithm presented in this article by incorporating
wideband channel model [39]. However, it is essential to address
the challenges posed by beam squint and the difficulty in obtain-
ing instantaneous full-dimensional CSI in wideband mm-wave
communication. To mitigate the effects of beam squint, we will
employ Hybrid Transmit Precoding (TPC) schemes, using either
perfect CSI or low-complexity TPC schemes based on array vec-
tors [34], [35]. Additionally, we will utilize statistical mm-wave
CSI for hybrid precoding design to tackling the challenges in
acquiring full-dimensional instantaneous CSI [36].
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