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Reconfigurable Rateless Codes
Nicholas Bonello, Rong Zhang, Sheng Chen, and Lajos Hanzo

Abstract—We propose novel reconfigurable rateless codes,
that are capable of not only varying the block length but
also adaptively modify their encoding strategy by incrementally
adjusting their degree distribution according to the prevalent
channel conditions without the availability of the channel state
information at the transmitter. In particular, we characterize
a reconfigurable rateless code designed for the transmission of
9,500 information bits that achieves a performance, which is
approximately 1 dB away from the discrete-input continuous-
output memoryless channel’s (DCMC) capacity over a diverse
range of channel signal-to-noise (SNR) ratios.

Index Terms—Reconfigurable rateless codes, adaptive channel
coding.

I. INTRODUCTION

MORE than a decade after the discovery of turbo
codes [1] and the rediscovery of low-density parity-

check (LDPC) codes [2], [3], the problem of operating arbi-
trarily close to capacity using practical encoding and decoding
algorithms is feasible, when assuming perfect channel knowl-
edge. These research advances were achieved with the advent
of high-performance iterative decoders, and design techniques
such as density evolution [4] or extrinsic information trans-
fer (EXIT) [5] charts.

Lately, the community’s interest has been shifted towards
the quest for codes that are capable of maintaining this
excellent performance over channels characterized with widely
varying qualities within a diverse range of signal-to-noise
ratios (SNR) and where the channel state information is
unknown to the transmitter. By employing a conventional
fixed-rate channel code over such channels, we will naturally
be facing the dilemma of opting for high rates to increase the
throughput or to reduce the rate in order to achieve a higher
error resilience. A channel exhibiting time-variant conditions
will therefore necessitate an adaptive channel coding scheme,
which is exemplified by rateless (or fountain) codes, allowing
us to freely vary the block length (and thus the code-rate) in
order to match a wide range of fluctuating channel conditions.

In the context of rateless codes, one must appropriately dis-
tinguish between what we refer to as being the instantaneous
and the effective parameters. The instantaneous parameters, all
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of which will be differentiated by the (⋅) notation, constitute
those which occur during the actual packet’s transmission.
On the other hand, the effective parameters can only be
determined upon the final successful decoding event. Without
delving into the intricate code-design-related details, we define
what we refer to as a generic rateless encoder as an arbitrary
encoder that has the capability of generating “on-the-fly” a
potentially infinite bit stream from any 𝐾 information bits,
which is denoted by the binary bit-vector a= (𝑎1, 𝑎2, . . . , 𝑎𝐾).
Let 𝐶𝑖 be a

(
𝑁 𝑖,𝐾

)
rateless code defined over GF(2), which

is capable of generating a codeword ci=
(
𝑐1, 𝑐2, . . . , 𝑐𝑁𝑖

)
,

c𝑖 ∈ 𝐶𝑖, where 𝑁 𝑖 represents the instantaneous block length
at a particular transmission instant 𝑖 and thus the instantaneous
code-rate is defined by 𝑅𝑖 := 𝐾/𝑁 𝑖. Moreover, the code 𝐶𝑖

will actually be a prefix to all succeeding codes 𝐶𝑖+𝑗 having
code-rates 𝑅𝑖+𝑗 < 𝑅𝑖, for all 𝑗 > 0. A generic rateless
decoder is then defined as an arbitrary decoder, which is
capable of reconstructing the original information bit sequence
a, with a low bit error probability from any received codeword
c𝑖 after 𝑖 transmission instants. The successful decision is then
communicated back to the transmitter in the form of a single-
bit acknowledgment (ACK) using an idealized error-free, zero-
delay feedback channel. Subsequently, the transmitter will
cease transmission of the current information sequence a and
proceeds to the next sequence.

A. Related Work

Rateless codes were originally designed to fill erasures
inflicted by the binary erasure channel, with the Luby trans-
form [6] code being their first practical realization. Metaphori-
cally speaking, rateless codes can be compared to an abundant
water supply (fountain) capable of providing an unlimited
number of drops, i.e redundant packets. Palanki and Yedidia
in [7] were the first to document the achieved performance
of LT codes for transmission over the binary symmetric and
the binary-input additive white Gaussian noise (BIAWGN)
channels. More particularly, it was demonstrated that the bit
error ratio (BER) and block error ratio (BLER) performance
of LT codes over these channels exhibit high error floors [7].
For this reason, LT codes used for transmission over noisy
channels have always been concatenated with other forward
error correction (FEC) schemes, such as iteratively detected
bit-interleaved coded modulation [8], generalized LDPC [9],
and turbo codes [10]. Recently, we have also witnessed the
emergence of Raptor codes [11], which do not share the
error floor problem of their predecessors. In fact, the results
published in [7], [12] attest near-capacity performance and
“universal-like” attributes on a variety of noisy channels.
These benefits were then exploited in a number of practical
scenarios, such as for wireless relay channels [13] as well as
for multimedia transmission [14].
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From another point of view, we can consider the family
of rateless codes for the provision of incremental redun-
dancy (IR) [15]; for example in the context of adaptive-
rate schemes or as an instance of the so-called type-II hy-
brid automatic repeat-request (HARQ) [16] schemes. In such
schemes, the transmitter continues to send additional incre-
mental redundancies of a codeword until a positive ACK is
received or all redundancy available for the current codeword
was sent. The FEC codes that are employed in conjunction
with IR are typically referred to as rate-compatible (RC)
codes [17]. The techniques applied in order to design RC
codes either use puncturing [17] of the parity bits from a low
rate mother code in order to obtain higher rate codes or employ
code extension [18] for concatenating additional parity bits to a
high-rate code in order to create a low-rate code. Both methods
have their own limitations and typically a combination of both
techniques is generally preferred [18]. The striking similarities
of rateless coding with HARQ were first exploited by Soljanin
et al. in [19], who compared the performance of Raptor codes
as well as punctured LDPC codes for transmission over the
BIAWGN channel. Their results demonstrated that the family
of Raptor codes represents a more suitable alternative than
punctured LDPCs for covering an extensive range of channel
SNR (and thus rates).

It is also worth noting that some rateless code families
are closely related to their fixed-rate counterparts. For in-
stance, an LT code [6] is analogous to a non-systematic low-
density generator matrix (LDGM) [20] based code, having a
generator matrix that is calculated online (and thus allowing
adaptive-rate configuration for diverse channel conditions) and
where the LT encoded codeword corresponds to a sequence
of repeated parity-check equation values, each checking the
parity of 𝑑𝑐 information bits. Similarly, we can regard Raptor
codes [11] as a serial concatenation of a (typically) high-rate
LDPC code as the outer code combined with a rateless LDGM
code as the inner code. Both the LT as well as Raptor codes are
decoded using the classic belief propagation (BP) algorithm,
in a similar fashion to the decoding of LDPC codes.

B. Scope and Outline

To the best of our knowledge, the state-of-the-art rateless
codes employ a fixed degree distribution [6]; i.e. the degree
distribution used for coining the degree 𝑑𝑐 for each transmitted
bit is time invariant and thus channel-independent. Conse-
quently, such rateless codes, can only alter the number of
bits transmitted (i.e. the code-rate) in order to cater for the
variations of the channel conditions encountered. However,
it was shown in [21] that a degree distribution designed for
rateless coded transmissions over time-varying noisy channels
will depend on the underlying channel characteristics, and
therefore a fixed degree distribution can never be optimal1

at all code rates.
Motivated by this, we propose novel rateless codes, hereby

referred to as reconfigurable rateless codes that are capable
of not only varying the block length (and thus the rate) but
also adaptively modify their encoding strategy according to

1In this context, we use the adjective ‘optimal’ in terms of attaining a
near-capacity performance.

the channel conditions. We will demonstrate that the proposed
rateless codes are capable of shaping their own degree distri-
bution according to near-instantaneous requirements imposed
by the channel, but without the actual channel knowledge at
the transmitter.

The remainder of the paper is structured as follows. Sec-
tion II introduces the channel and the rateless coding scheme
that were taken into consideration. The analysis of the pro-
posed reconfigurable rateless codes and their adaptive incre-
mental degree distribution is further detailed in Section III.
Our simulation results are then presented in Section IV, while
our concluding remarks are offered in Section V.

II. SYSTEM OVERVIEW

A. Channel Model

The canonical discrete-time complex baseband-equivalent
channel model used is given by 𝑦𝑖 = ℎ𝑥𝑖 + 𝑛𝑖, where 𝑥𝑖,
𝑦𝑖 ∈ ℂ and 𝑛𝑖 ∼ 𝒞𝒩 (0, 2𝜎2

𝑛) denotes the transmitted signal
(i.e. the modulated codeword bit 𝑐𝑖), the received signal and
the complex additive white Gaussian noise (AWGN), respec-
tively, at any transmission instant 𝑖. We consider a quasi-
static fading (QSF) channel having a time-invariant channel
gain ℎ generated according to a complex circularly symmetric
Gaussian distribution having a per-dimension noise variance of
𝜎2
𝑛. This represents a non-frequency selective channel having

a coherence time 𝜏 that is higher than the system’s maximum
affordable codeword length determining the maximum system
delay.

The instantaneous received SNR 𝜓 associated with a partic-
ular channel realization ℎ is then given by 𝜓 := 𝐸𝑠∣ℎ∣2/2𝜎2

𝑛

where 𝐸𝑠 and ∣ℎ∣2 represent the constant energy-per-symbol
and the fading power coefficient, respectively. The average
received SNR is then given by:

𝜓avg :=
𝐸𝑠ℰ(∣ℎ∣2)

2𝜎2
𝑛

=
𝐸𝑠ℰ(∣ℎ∣2)

𝑁0
, (1)

where ℰ(⋅) denotes the expectation operator and 𝑁0 represents
the two-dimensional noise variance. We note furthermore
that all the attributes considered throughout this paper are
computed with respect to 𝑁0 and not to 𝜎2

𝑛. The achievable
rate supported by the arbitrary channel gain ℎ is defined as
𝐶(ℎ) := log2

(
1 + 𝜓

)
bits per channel use.

The most commonly used performance metric for trans-
mission over QSF channels is the outage probability defined
as the likelihood of using an insufficiently low code-rate 𝑅𝑖,
which is above the channel’s capacity. This is formulated
as Prout(𝑅𝑖) = Pr

(
𝑅𝑖 > 𝐶(ℎ)

)
, where 𝑅𝑖 has the same

definition given in Section I. Therefore, given a fixed-rate
code of rate 𝑅𝑥, there exist a fading coefficient ℎ such that
Prout(𝑅𝑥) is non-zero. This also explains the reason why the
design of fixed-rate error correction codes contrived for the
QSF channels is significantly different than that constructed
for the AWGN channel. Fixed-rate channel coding is capable
of averaging out the effects of additive noise, but cannot
counteract that of deep fades corresponding to low values of
𝐶(ℎ). On the other hand, the outage probability Prout(𝑅)
of a rateless scheme may tend to zero independent of the
channel conditions, since the (effective) code-rate 𝑅 is actually
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determined by the decoder (and not the encoder), when the
decoding is terminated after correctly decoding a. Therefore,
rateless coded transmissions over the QSF channel can be
modeled as AWGN channels having an effective SNR equal
to 𝜓avg.

B. Proposed Rateless Coding Scheme

The proposed rateless coding scheme is illustrated in Fig-
ure 1. The rateless encoder performs the four steps succinctly
described below:

1) (Degree Selection) Randomly choose a degree 𝑑𝑐 from
a degree distribution 𝛿𝑖(𝑥) supplied by the degree dis-
tribution selector;

2) (Input bit/s Selection) Randomly choose 𝑑𝑐 input bits
from the information bit sequence a= (𝑎1, 𝑎2, . . . , 𝑎𝐾)
having the least number of connections at the current
transmission instant;2

3) (Intermediate bit calculation) Calculate the value of the
intermediate (check) bit 𝑏𝑞 , 𝑞 = 1, . . . , 𝑁 , by combining
the 𝑑𝑐 input bits selected at the previous step using
modulo-2 addition;

4) (Codeword bit calculation) Determine the value of the
codeword bit 𝑐𝑞 by:

𝑐𝑞 = 𝑏𝑞 𝑞 = 1,

= 𝑏𝑞 ⊕ 𝑐𝑞−1 𝑞 = 2, . . . , 𝑁, (2)

where ⊕ represents the modulo-2 addition operation. The
degree distribution selector located at the transmitter will be
simply denoted by DDST. We also note that the complexity
of this rateless encoding process described in the above steps
is linear in the block length.

Continuing the analogy we have drawn between rateless and
fixed-rate codes in Section I-A, the degree distribution 𝛿𝑖(𝑥)
would then correspond to what is commonly referred to as the
check node distribution. We will assume that all the (check)
degree values of the degree distribution can represented by
d𝑖, where 𝑑𝑐 ∈ d𝑖. Accordingly, the probability generating
function 𝛿𝑖(𝑥) can be represented by means of a polynomial
distribution given by:

𝛿𝑖(𝑥) :=
∑

∀𝑑𝑐∈d𝑖

𝛿𝑑𝑐𝑥
𝑑𝑐−1,

= 𝛿1 + 𝛿2𝑥+ . . .+ 𝛿𝑑𝑐𝑥
𝑑𝑐−1 + . . .+ 𝛿𝐷𝑐𝑥

𝐷𝑐−1, (3)

where the positive coefficients 𝛿𝑑𝑐 , 𝑑𝑐 ∈ d𝑖 denote the
particular fraction of intermediate bits (or check nodes) of
degree 𝑑𝑐 and 𝐷𝑐 = max(d𝑖). The variable or information
node distribution can then be represented by:

𝜐𝑖(𝑥) := 𝑥𝑑𝑖
𝑣−1, (4)

which is regular due to the second step in the encoding
procedure described above.

2This step can be readily carried out by means of storing the number of
events that each specific information bit index has been selected up to the
current transmission instant. By randomly selecting 𝑑𝑐 input bits from those
information bits that have the lowest number of connections at the current
transmission instant, we aim for ensuring that each information bit will more-
or-less have the same pre-defined degree.
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Fig. 1. The proposed rateless coding scheme. The parameter 𝜓𝑖 denotes
to what we refer to as the channel quality estimate at transmission instant 𝑖.
Perfect channel knowledge is assumed at the receiver and so, 𝜓𝑖 represents
the true estimate of the channel quality. On the other hand, the transmitter
does not posses any channel state information and therefore 𝜓𝑖 can only be
an optimistic guess of 𝜓𝑖. However, the transmitter can still incrementally
improve its estimate by observing the feedback channel output (please refer
to Section III-B). It is also implicitly assumed that there is another subsidiary
DDS located at the receiver, namely DDSR, that can replicate the EXIT chart
calculation and thus communicate the distributions 𝛿𝑖(𝑥) and 𝜐𝑖(𝑥) to the
rateless decoder (please refer to Section III-A).

Similarly to [6], we assume that the transmitter and the
receiver have synchronized clocks used for the seed of their
pseudorandom number generators, and therefore the degree
𝑑𝑐 ∈ d𝑖 as well as the specific modulo-2 connections selected
by both the transmitter and the receiver are identical. In order
to provide further insights, below we highlight the differences
between the rateless encoding technique presented above and
the LT encoding method proposed by Luby (cf. Section 1.1
in [6]):

1) The aim of the degree distribution selector is to select
(or compute online) an ‘appropriate’ degree distribution
for reconfigurable rateless codes. The degree distribution
selector is not required in the previously proposed
rateless codes, such as the LT and Raptor codes, since
the degree distribution is predetermined and fixed.

2) In LT codes, the 𝑑𝑐 information bits are selected uni-
formly at random, hence the actual degree 𝑑𝑣 attributed
to each information bit can be modeled as a random
variable 𝑉 , 𝑉 ∼ 𝜋(𝜆), where 𝜋(𝜆) denotes the Poisson
distribution with parameter 𝜆. Therefore, the variable
node distribution of the LT codes can be well approxi-
mated by:

𝜐LT(𝑥) ≈ 𝜋(𝜆) =
𝑁∑

𝑑𝑣=1

𝑒−𝜆𝜆𝑑𝑣

𝑑𝑣!
𝑥𝑑𝑣−1, (5)

with parameter 𝜆 defined by 𝜆 := 𝑑c,avg
𝑁
𝐾 , where 𝐾

and 𝑁 are assumed to be asymptotically large. The
average check node degree 𝑑c,avg is then given by:

𝑑c,avg :=
∑

∀𝑑𝑐∈d

𝛿𝑑𝑐 ⋅ 𝑑𝑐. (6)

This implies that some rows of the LT code generator
matrix have a low weight with a non-negligible probabil-
ity, thus resulting in codes that exhibit high error floors
due to their poor distance properties. Furthermore, the
variable node distribution 𝜐LT(𝑥) represented in (5) is
effectively a function of the block length,3 of the number
of information bits as well as of the degree distribution
of the LT code, 𝛿LT(𝑥). In our system, having such

3As it was mentioned in Section I, the block length of a rateless code is
increasing at every transmission instant, until the receiver acknowledges the
fact that â = a. Therefore, the dependency of 𝜐LT(𝑥) on the block length
suggests that there exist a different 𝜐LT(𝑥) at every transmission instant.
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dependencies would have presented a problem, hence
this issue will be further elaborated on in Section III-B.
On the other hand, the variable node distribution 𝜐𝑖(𝑥)
of the proposed rateless codes represented by (4) does
not exhibit these dependencies. This results from the
second step in our encoding method described above.

3) The potential error floor of LDGM codes may be
mitigated by their serial concatenation with another
code, which is typically another LDGM code [20].
Motivated by this, we have added a fourth step of the
rateless encoding procedure outlined at the beginning
of this section, which essentially represents a unity-rate
precoder (or accumulator).

In this light, the proposed codes can be considered
as precoded LT codes,4 or instances of “rateless repeat-
accumulate (RA)” codes. Establishing this relationship be-
tween fixed-rate and rateless codes will significantly simplify
our forthcoming analysis, since we can conveniently model
the proposed reconfigurable rateless codes as non-systematic
RA codes.

III. SYSTEM DESCRIPTION

The next subsections detail the technique that enables the
proposed reconfigurable rateless codes to adapt their encoding
strategy (and thus modify their configuration) in order to
better match the prevalent channel conditions. This enhanced
adaptivity of reconfigurable rateless codes is attributed to what
we refer to as the degree distribution selector (DDST). Up to
this point in time, the DDST of Figure 1 was treated as a black
box capable of calculating the degree distribution 𝛿𝑖(𝑥) online
by observing the feedback channel’s output. In Section III-A,
we will simplify our analysis by temporarily assuming that
the DDST of Figure 1 is equipped with perfect channel
knowledge and thus is capable of determining the optimal
degree distribution that facilitates a near-capacity performance.
This assumption is then discarded in Section III-A, where we
only assume having perfect channel state information at the
receiver. From Section III-B onwards, the DDST of Figure 1
will only be able to monitor the ACKs received from the
feedback channel.

A. Analysis Under Simplified Assumptions

In this sub-section, we will stipulate the following simplify-
ing assumptions: (a) perfect channel knowledge is available at
both the receiver as well as at the transmitter; (b) the rateless
decoder is not bounded in terms of its complexity and (c) the
decoder is capable of detecting5 whether the decoded â = a.

Using the fixed-rate versus rateless code analogy introduced
in the previous sections, the rateless decoder of Figure 1 is
constituted of two decoders separated by a uniform random
interleaver, where the inner decoder is the amalgam of a
memory-one trellis decoder used for the accumulator and of
a check node decoder (CND), whilst the outer decoder is

4In our case, the intermediate bit 𝑏𝑖 will be identical to the LT encoded
bit, given that 𝛿𝑖(𝑥) = 𝛿LT(𝑥) and 𝜐𝑖(𝑥) = 𝜐LT(𝑥).

5This can be easily achieved by either appending a short cyclic redundancy
check (CRC) to the original bit sequence a, which imposes a negligible rate-
penalty as 𝐾 → ∞.
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Fig. 2. The fraction of check nodes of degree 𝑑𝑐 ∈ d𝑖, 𝛿𝑑𝑐 , with 𝑖 ≥ 0,
calculated by the DDST of Figure 1 under the assumptions detailed in
Section III-A. The degree distribution 𝛿0(𝑥) is covering the SNR values
ranging from 15 to approximately 5 dB. Note that we have purposely reversed
the abscissa axis in order to underline the optimistic philosophy adopted by
the DDST (please refer to Section III-B.)

a variable node decoder (VND). We will assume that the
interleavers have sufficiently high girth to ensure that the non-
negligible correlations between the extrinsic log-likelihood
ratios do not have a severe impact on the decoder.

The convergence behavior of this iterative rateless decoding
process can then be analyzed in terms of the evolution of the
input and output mutual information exchange between the
inner and outer decoders in consecutive iterations, which is
diagrammatically represented using the semi-analytical tool of
EXIT charts [5]. There are three requirements to be satisfied
in order to design a near-capacity system; (a) both the inner
as well as the outer decoder’s EXIT curves should reach
the (1,1) point on the EXIT chart; (b) the inner decoder’s
curve 𝐼𝐴𝐶𝐶&𝐶𝑁𝐷 should always be above the outer decoder’s
curve 𝐼𝑉 𝑁𝐷 and (c) the 𝐼𝐴𝐶𝐶&𝐶𝑁𝐷 curve has to match
the shape of the 𝐼𝑉 𝑁𝐷 curve as accurately as possible, thus
resulting in an infinitesimally low EXIT-chart-tunnel area.
There exists a direct relationship between the two EXIT curves
corresponding to the check and variable node distribution, as
represented by (3) and (4) respectively.

Given the distributions 𝜐𝑖(𝑥) and 𝛿𝑖(𝑥) of (3) and (4),
the two EXIT curves correspond to two EXIT functions
formulated by [5]:

𝐼𝐸,𝑉 𝑁𝐷(𝐼𝐴,𝑉 𝑁𝐷, 𝑑𝑖𝑣) =𝐽
(√

(𝑑𝑖𝑣 − 1) ⋅ 𝐽−1(𝐼𝐴,𝑉 𝑁𝐷)
)
, (7)

where the function 𝐽(⋅) denotes the mutual information,
𝐼𝐸,𝑉 𝑁𝐷(𝐼𝐴,𝑉 𝑁𝐷, 𝑑𝑖𝑣) represents the extrinsic information out-
put of the VND as a function of the its a-priori informa-
tion input 𝐼𝐴,𝑉 𝑁𝐷 and its variable node degree 𝑑𝑖𝑣. Sim-
ilarly, the combined accumulator and CND EXIT function
𝐼𝐸,𝐴𝐶𝐶&𝐶𝑁𝐷(⋅) is then approximated by (8) as explained
in [5], where 𝐼𝐴,𝐶𝑁𝐷 represents the a-priori information input
of the CND and the extrinsic information accumulator output
is denoted by 𝐼𝐸,𝐴𝐶𝐶(𝐼𝐴,𝐴𝐶𝐶), where 𝐼𝐴,𝐴𝐶𝐶 denotes the
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a-priori accumulator information input. The parameter Δ𝑖
𝑑𝑐

corresponds to the specific fraction of edges emanating from
the intermediate bits (or check nodes) of degree 𝑑𝑐 ∈ d𝑖 given
by Δ𝑖

𝑑𝑐
= 𝛿𝑑𝑐 ⋅ 𝑑𝑐

𝑑c,avg
and the average check node degree 𝑑c,avg

is defined in (6). Furthermore, we note that designing the two
EXIT curves determines the two distributions and vice versa.

Consider the scenario of having binary phase-shift key-
ing (BPSK) modulation transmissions over the BIAWGN
channel characterized by SNRs ranging from -10 to 15 dB. If
the DDST of Figure 1 possesses perfect channel knowledge,
then it is capable of computing online the decoder’s EXIT
curves that satisfy the above three requirements, and from
which we can determine the distributions 𝛿𝑖(𝑥) and 𝜐𝑖(𝑥).
The result of this experiment is portrayed in Figure 2, which
shows particular fraction of check nodes of degree 𝑑𝑐, 𝛿𝑑𝑐 ,
that characterize the degree distribution 𝛿𝑖(𝑥) across the range
of SNR values considered. It can be observed from Figure 2
that the characteristics of the degree distribution 𝛿𝑖(𝑥) across
this range of SNRs are so distinctively dissimilar, which also
highlights the inadequacy of a rateless codes having a fixed
degree distribution in the face of time-variant SNRs. For
example, the check degrees 𝑑𝑐 > 2 are the dominant degrees
at high channel SNR values, whilst they are almost extinct
when the channel quality is poor. Furthermore, we note that
at low channel SNR values, the system reduces to a simple
repetition code,6 with the exception of a very small percentage
of nodes having 𝑑𝑐 = 100.

We emphasize that a non-systematic rateless coding scheme
was preferred over its systematic counterpart in order to
completely eliminate the dependency of the variable node
distribution on the channel condition. This can also be verified
from (7). By doing so, the channel dependency has been
confined to only one of the two distributions; i.e. to 𝛿𝑖(𝑥)
corresponding to the 𝐼𝐴𝐶𝐶&𝐶𝑁𝐷 EXIT curve. However, the
outer decoder’s EXIT curve 𝐼𝑉 𝑁𝐷 will now emerge from the
(0,0) point of the EXIT chart and hence a certain percentage
of degree-one check nodes 𝛿𝑑1 is always required in order
to force the 𝐼𝐴𝐶𝐶&𝐶𝑁𝐷 curve to emerge from a higher
initial value than the 𝐼𝑉 𝑁𝐷 curve and thus guarantee that
the iterative decoder begins to converge.7 This percentage
of doped check nodes 𝛿𝑑1 is also dependent on the channel
quality, but the optimal 𝐼𝐴𝐶𝐶&𝐶𝑁𝐷 curve is channel-quality
dependent anyway.

B. The Adaptive Incremental Degree Distribution Without
Idealized Assumptions

In this subsection, we will no longer assume perfect channel
state information at the transmitter, but only a single-bit ACK
transmitted by the receiver on the feedback channel in a similar
fashion to that used in incremental redundancy aided [15]
schemes. We were particularly interested in finding the answer
as to whether it is possible to design a variable incremental
degree distribution, that attempts to imitate the attributes
of the optimal channel-state dependent one. From another

6At very low SNRs, a high percentage of doped check nodes 𝛿𝑑1 is required
in order to lift the 𝐼𝐴𝐶𝐶&𝐶𝑁𝐷 EXIT curve at a higher position than that
of the 𝐼𝑉 𝑁𝐷 EXIT curve.

7This technique is sometimes referred to as code doping and was first
proposed by Brink in [5].

point of view, this question can be restated as to whether
it is possible for the DDST to estimate the inner decoder’s
EXIT curve 𝐼𝐴𝐶𝐶&𝐶𝑁𝐷, so that near-capacity performance is
guaranteed, regardless of the channel conditions encountered.
Once the 𝐼𝐴𝐶𝐶&𝐶𝑁𝐷 EXIT curve is computed, the degree
distribution 𝛿𝑖(𝑥) can be readily calculated and passed on to
the rateless encoder. Hence there is a need for encoders having
the capability of “thinking like decoders” before encoding.

Against this backdrop, we introduce what we refer to as
the adaptive incremental distribution. The DDST of Figure 1
is initialized by making a conjecture of the channel quality.
For example, the initial estimate 𝜓0 provided for the DDST

of Figure 1 can be set to the highest SNR considered, i.e.
15 dB, in an attempt to maximize the achievable throughput.
However, it can be observed from Figure 2 that the rateless
decoder should still be able to successfully decode â = a using
the same distribution 𝛿0(𝑥), even if the receiver experiences
an SNR of as low as 5 dB. Therefore, the estimate 𝜓0 can be
set to the latter value. Then, the rateless encoder employs the
degree distribution 𝛿0(𝑥) designed for a code having a rate
of 0.9681, which is given by 𝛿0(𝑥) = 0.0007 + 0.6781𝑥 +
0.1156𝑥2 + 0.1358𝑥4 + 0.0386𝑥5 + 0.0235𝑥20 + 0.0077𝑥99

and 𝜐0(𝑥) = 𝑥3.
As it was already alluded to in Section III, the DDST

is continuously observing the feedback channel output and
must try its utmost to glean as much information as possible
from it. While it is plausible that the simple ACK feedback is
less beneficial than having complete channel knowledge, the
ACK as well as the absence of the ACK can still prove to be
useful for the DDST to improve the estimate of 𝜓0. Recall
from Section III-A, that if DDST posses a precise estimate
of the channel quality, then the problem is basically solved
since the DDST is capable for calculating the specific degree
distribution that achieves a performance arbitrarily close to
capacity.

To elaborate further, it can be argued that the absence of
a received ACK may indicate two options for the DDST;
either that the estimate of 𝜓0 is correct but the rateless
decoder is unsuccessful in correctly decoding a due to using
an insufficient number of iterations or 𝜓0 is representing
an overly optimistic estimate of the channel conditions. We
note that the first possibility must not to be completely
neglected, especially when considering that the EXIT curves
corresponding to the two distributions are closely matched
in an attempt to maximize the achievable throughput and
therefore a considerable number of iterations is necessary.
If this occurs, then transmitting some additional redundant
bits may make up for the limited number of affordable
iterations. Thus we pay a rate-penalty in exchange for a lower
computational complexity. On the other hand, if the DDST of
Figure 1 has an incorrect estimate of the channel condition
and thus no ACK has been received, two further possibilities
might have occurred. Namely, the rateless decoder may have
either started the decoding but was unsuccessful or else it did
not even attempt to decode the received codeword, because
𝑅 < 𝐶(ℎ). The pictorial representation of all these possible
scenarios is illustrated in Figure 3.

Since the SNR range considered is quite wide, we assume
that the most likely cause of failure is feeding the DDST
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𝐼𝐸,𝐴𝐶𝐶&𝐶𝑁𝐷(𝐼𝐴,𝐶𝑁𝐷,d𝑖, 𝜓avg) ≈
∑

∀𝑑𝑐∈d𝑖

Δ𝑖
𝑑𝑐

[
1− 𝐽

(√
(𝑑𝑐 − 1) ⋅ [𝐽−1(1− 𝐼𝐴,𝐶𝑁𝐷)]

2
+ [𝐽−1(1 − 𝐼𝐸,𝐴𝐶𝐶(𝐼𝐴,𝐴𝐶𝐶))]

2

)]
(8)

B.1: The maximum number of
iterations is exceeded

A.2: Decoding is unsuccessfullEffect: ACK not

Cause A: Most likely

Cause B: Optimistic
Estimate ψ̂i is correct

Estimate ψ̂i is incorrect

received by DDST

A.1: Decoding did not start
(R > C(h))

(â �= a → Prout �= 0)

Fig. 3. The decision tree for the encoding strategy used by the DDST of Figure 1.

with an inaccurate 𝜓0 and so, a modification of the encoding
strategy (thus a modification of the degree distribution 𝛿0(𝑥)
and 𝜐0(𝑥)) is required. Therefore, if an ACK is still not
received after transmitting according to the degree distribution
𝛿0(𝑥), then the DDST of Figure 1 can reasonably assume
that its next estimate is 𝜓1 ≤ 5 dB. This can be verified
from Figure 2, which demonstrates that 𝛿0(𝑥) is the optimal
distribution up to an SNR of about 5 dB. The immediate
problem that has to be tackled by the DDST is that of
calculating an improved degree distribution 𝛿1(𝑥) for the
improved estimate 𝜓1, given that the previous distribution
was 𝛿0(𝑥). This can be viewed as an optimization problem,
i.e. given that having an unsuccessful 𝛿𝑖(𝑥) was attributed to
the inaccurate channel quality estimate 𝜓𝑖, the next degree
distribution 𝛿𝑖+1(𝑥) can be determined by:

𝛿𝑖+1(𝑥) = max
∑

∀𝑑𝑐∈d𝑖+1

𝑑𝑐

Δ𝑖+1
𝑑𝑐

(9)

subject to the equality constraint∑
∀𝑑𝑐∈d𝑖+1

Δ𝑖+1
𝑑𝑐

= 1 (10)

and to the inequality constraints given by

𝐼𝐸,𝐴𝐶𝐶&𝐶𝑁𝐷(ℐ,d𝑖+1, 𝜓𝑖+1) > 𝐼𝐴,𝑉 𝑁𝐷(ℐ, 𝑑𝑖+1
𝑣 ), (11)

and

Δ𝑖+1
𝑑𝑐

∣∀𝑑𝑐∈(d𝑖+1 ∖ d𝑖) > 0, (12)

where d𝑖+1 contains all the parity-check degree values of the
next degree distribution 𝛿𝑖+1(𝑥), d𝑖 ⊆ d𝑖+1, and 𝜓𝑖+1 < 𝜓𝑖

is the new channel quality estimate. In (11), ℐ is a discrete set
of gradually increasing values in the interval [0, 1] over which
the functions 𝐼𝐸,𝐴𝐶𝐶&𝐶𝑁𝐷(⋅) and 𝐼𝐴,𝑉 𝑁𝐷(⋅) = 𝐼−1

𝐸,𝑉 𝑁𝐷(⋅)
(please refer to (8) and (7)) are calculated. The specific value
of 𝑑𝑖+1

𝑣 is selected by considering the smallest variable node
degree value that satisfies both 𝑑𝑖+1

𝑣 > 𝑑𝑖𝑣 as well as (11). We
further note that the maximization of the objective function
in (9) is equivalent to maximizing the code-rate.

An important step to consider is that the newly calculated

degree distribution 𝛿𝑖+1(𝑥) must take into account the previous
𝛿𝑖(𝑥), since the bits connected to the degrees 𝑑𝑐 ∈ d𝑖

coined from 𝛿𝑖(𝑥) have already been transmitted and thus will
still affect the rateless decoding. Due to this, we introduce
an additional inequality constraint, in addition to that given
by (11) and (12), expressed by:

Δ𝑖+1
𝑑𝑐

∣∀𝑑𝑐∈(d𝑖∩d𝑖+1) >
𝑑𝑖v
𝑑𝑖+1
v

⋅Δ𝑖
𝑑𝑐
. (13)

The adaptive incremental distribution denoted by 𝛿adap(𝑥, 𝜓)
employed by the proposed reconfigurable rateless codes in-
stead of a fixed one can be formulated as:

𝛿adap(𝑥, 𝜓) := 𝛿0(𝑥)1
{
𝜓 ≥ 𝜓0

}
+ 𝛿1(𝑥)1

{
𝜓0 > 𝜓 ≥ 𝜓1

}

+ . . .+ 𝛿𝑧(𝑥)1
{
𝜓𝑧−1 > 𝜓 ≥ 𝜓𝑧

}
, (14)

where the DDST channel quality estimate is 𝜓 ∈(
𝜓0, 𝜓1, . . . , 𝜓𝑧

)
and where 1 {⋅} denotes the indicator func-

tion returning a value of one, if the argument is true, and
zero otherwise. As a further example, the next incremental
distribution 𝛿1(𝑥) (and 𝜐1(𝑥)) determined by relying on
the distribution 𝛿0(𝑥), is calculated by solving the linear
programming problem outlined in (9)-(13), which leads to
𝛿1(𝑥) = 0.0010+0.6400𝑥+0.1375𝑥2+0.1281𝑥4+0.0364𝑥5+
0.0188𝑥7 + 0.0023𝑥8 + 0.0221𝑥20 + 0.0138𝑥99 and 𝜐1(𝑥) =
𝑥4.

In conclusion, the adaptive incremental distribution
𝛿adap(𝑥, 𝜓) would then correspond to the particular degree
distribution that yields the Prout tending to zero. From (14),
we also note that in contrast to the conventional rateless codes,
the reconfigurable rateless codes adapt their communication
strategy by shaping their degree distribution in order to better
match the rate requirements imposed by the channel quality
encountered. Furthermore, it can be readily demonstrated that
the more promptly the DDST estimates the channel quality,
the more accurately the adaptive incremental degree distribu-
tion 𝛿adap(𝑥, 𝜓) matches the optimal distribution derived using
the idealized assumptions presented in III-A.
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Fig. 4. Average throughput (bits/channel use) versus SNR (dB) for the
proposed reconfigurable rateless codes as well as for Raptor codes for
transmission using BPSK modulation over the quasi-static fading channel.
The rateless decoder was limited to a maximum of 200 iterations.

IV. SIMULATION RESULTS

The results presented in this section were obtained using
BSPK modulation, when transmitting over QSF channels.
We compared our results to both Raptor codes as well as
to punctured regular and irregular LDPC codes. The Raptor
code [11] was constructed as in [19] by serially concatenating
a regular LDPC outer code described by a PCM having a
column weight of 3 and a row weight of 30 and thus realizing
a rate-0.9 code. This LDPC code was then concatenated with
a non-systematic LT code having a fixed degree distribution
given by 𝛿LT(𝑥) = 0.05𝑥 + 0.5𝑥2 + 0.05𝑥3 + 0.25𝑥4 +
0.05𝑥6 + 0.1𝑥8 [19]. On the other hand, the proposed re-
configurable rateless codes employ an adaptive incremental
degree distribution 𝛿adap(𝑥, 𝜓) represented in (14), which
were initialized with the distributions 𝛿0(𝑥) and 𝜐0(𝑥). The
number of information bits 𝐾 to be recovered was set to 9,500
bits and the incremental redundancy segment used for both
schemes was set to 100 bits.

Figure 4 illustrates the exhibited average throughput perfor-
mance versus the SNR for the proposed reconfigurable rateless
codes. It can be observed that the proposed codes achieve a
performance within approximately 1 dB of the discrete-input
continuous-output memoryless channel’s (DCMC) capacity
across a diverse range of SNRs. Furthermore, it can be verified
that the performance exhibited by the reconfigurable rateless
codes is superior to that of the Raptor code for all SNRs
higher than -4 dB. For example, at -3 dB and 0 dB, the
proposed codes require on average 560 and 730 less redundant
bits than the corresponding Raptor benchmarker code. On the
other hand, Raptor codes excel at low SNR, and are suitable
candidates to be used for signaling when the channel quality
may become very poor [19].

The excellent performance exhibited by the proposed rate-
less reconfigurable codes at medium-to-high SNRs can be
explained by their optimistic philosophy in calculating the
channel quality estimate. The higher the average received
SNR, the faster it is for the DDST to estimate the channel
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Fig. 5. Average throughput (bits/channel use) versus SNR (dB) for the
proposed reconfigurable rateless codes with respect to the maximum allowable
number of iterations, assuming BPSK modulation transmission over the quasi-
static fading channel.

quality and the more accurate the adaptive incremental degree
distribution becomes. The effect is actually reversed, when
the received SNR is very low, since the adaptive incremental
degree distribution 𝛿adap(𝑥, 𝜓) = 𝛿𝑧(𝑥) employed in this case
is still taking into effect the previous distributions 𝛿𝑦(𝑥), for
all 0 ≥ 𝑦 < 𝑧, that were used to transmit a fraction of
𝑁 bits, when the DDST had an optimistic channel quality
estimate 𝜓𝑦 . The effect of previous distributions 𝛿𝑦(𝑥), for
all 0 ≥ 𝑦 < 𝑧 on the adaptive incremental degree distribution
𝛿adap(𝑥, 𝜓) = 𝛿𝑧(𝑥) is that of introducing a slight EXIT curve
matching inaccuracy, thus resulting in a wider open tunnel
between the two decoder’s EXIT curves. However, this effect
is beneficial in terms of reducing the maximum number of
iterations required. In fact, it can be verified from Figure 5
that reducing the maximum number of allowable iterations
from 200 to 30 resulted in a negligible throughput loss in the
low-SNR region.

Soljanin et al. in [19] demonstrated that in the high-SNR
region, the performance exhibited by punctured LDPC codes
is superior to that of Raptor codes. Therefore, it was of interest
to verify, whether the performance of punctured LDPC codes
is also superior to that exhibited by the proposed rateless
reconfigurable codes. We have considered the same scenario
as in [19], i.e. used a high-rate regular LDPC code such as
the previously described rate-0.9 outer LDPC code employed
for the Raptor code as well a rate-0.8 LDPC code having
a PCM of column-weight 3 and row-weight 15. We also
considered a half-rate irregular LDPC code having a variable
node distribution given by 𝜐(𝑥) = 0.2199𝑥 + 0.2333𝑥2 +
0.0206𝑥3 + 0.0854𝑥4 + 0.0654𝑥6 + 0.0477𝑥7 + 0.0191𝑥8 +
0.0806𝑥18 + 0.2280𝑥19 and a check node distribution repre-
sented by 𝛿(𝑥) = 0.6485𝑥7 + 0.3475𝑥8 + 0.0040𝑥9, where
both distributions were optimized using density evolution [4].

Our performance comparison in terms of the average
throughput (bits/channel use) versus SNR (dB) over the BI-
AWGN channel between the proposed reconfigurable rateless
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Fig. 6. Average throughput (bits/channel use) performance for transmission
over the BIAWGN channel versus SNR (dB) using the proposed reconfig-
urable rateless codes as well as for the incremental-redundancy-based HARQ
schemes employing punctured regular LDPC codes having 𝑅 = 0.8 and
0.9 and an optimized [4] punctured half-rate irregular LDPC code. The
rateless decoder was limited to a maximum of 200 iterations. The number
of information bits used for all the simulated schemes was set to 9,500 bits.

codes as well as the incremental-redundancy-based HARQ
schemes using punctured regular and irregular LDPCs is
illustrated in Figure 6. It is demonstrated in Figure 6, that the
performance of the proposed reconfigurable rateless codes is
also superior to that of punctured regular and irregular LDPC
codes.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have proposed novel reconfigurable rate-
less codes, that are capable of not only varying the block
length but also adaptively modify their encoding strategy
according to the channel conditions. We have argued that
the state-of-the-art rateless codes employ a fixed degree dis-
tribution; i.e. the degree distribution used for coining the
degree 𝑑𝑐 for each transmitted bit is time invariant and thus
channel-independent. Consequently, such rateless codes can
only alter the number of bits transmitted in order to cater
for the variations of the channel conditions. However, it was
also demonstrated that the optimal degree distribution, i.e.
the distribution that has the ability to realize a near-capacity
code is actually channel-quality dependent. We have then
analyzed how the characteristics attributed to optimal channel-
quality controlled degree distributions depended on the chan-
nel conditions. Against this backdrop, we have proceeded
to design what we referred to as an adaptive incremental
degree distribution, which allowed the transmitter to imitate
the attributes of the optimal channel-state dependent degree
distributions across a diverse range of channel SNRs. The
main difficulty is related to the fact that the transmitter has to
operate blindly, i.e. calculate a distribution that reproduces the
characteristics of the channel-quality dependent one without
the knowledge of the channel. The only information available
to the transmitter is a single-bit ACK feedback.

The transmitter starts by making an optimistic guess of

the channel quality, denoted by 𝜓0, in an attempt to maxi-
mize the achievable throughput. Following this, 𝑁0 bits are
transmitted using a degree distribution 𝛿0(𝑥) optimized for
the hypothesized estimate 𝜓0. If an acknowledgment is still
not received after this first transmission, the transmitter can
improve the previous channel quality estimate 𝜓0, by making
a improved conjecture 𝜓1, where 𝜓1 < 𝜓0. Based on the new
estimate 𝜓1 and by exploiting the knowledge that the previous
𝑁0 bits were transmitted using an (inappropriate) distribution
𝛿0(𝑥), the transmitter can calculate a new distribution 𝛿1 that
is optimized for achieving a near-capacity performance. From
another perspective, the transmitter has to calculate a new
distribution 𝛿1(𝑥) that will still maintain an infinitesimally-
small but open EXIT tunnel between the inner and outer
decoder curves, given that the previous distribution was 𝛿0(𝑥).
Our method is therefore reminiscent of what is referred to as
EXIT chart matching, however it is now applied in the context
of rateless codes and therefore must also be performed “on-
the-fly”.

In this sense, the proposed rateless codes are capable of
shaping their own degree distribution8 according to require-
ments imposed by the channel and without the availability
of the channel state information at the transmitter. A recon-
figurable rateless code was characterized for transmission of
9500 information bits over quasi-static fading channels and
achieves a performance that is approximately 1 dB away from
the DCMC capacity over a diverse range of channel SNR
ratios.
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