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Abstract—An adaptive beamforming technique is proposed
based on directly minimizing the bit-error rate (BER). It is
demonstrated that this minimum BER (MBER) approach utilizes
the antenna array elements more intelligently than the standard
minimum mean square error (MMSE) approach. Consequently,
MBER beamforming is capable of providing significant perfor-
mance gains in terms of a reduced BER over MMSE beamforming.
A block-data adaptive implementation of the MBER beamforming
solution is developed based on the Parzen window estimate of
probability density function. Furthermore, a sample-by-sample
adaptive implementation is considered, and a stochastic gradient
algorithm, referred to as the least bit error rate, is derived. The
proposed adaptive MBER beamforming technique provides an
extension to the existing work for adaptive MBER equalization
and multiuser detection.

Index Terms—Adaptive beamforming, bit-error rate (BER),
mean square error, probability density function (pdf), smart
antenna.

I. INTRODUCTION

THE ever-increasing demand for mobile communication
capacity has motivated the employment of space-divi-

sion multiple access for the sake of improving the achievable
spectral efficiency. A particular approach that has shown real
promise in achieving substantial capacity enhancements is
the use of adaptive antenna arrays [1]–[10]. Adaptive beam-
forming is capable of separating signals transmitted on the
same carrier frequency, provided that they are separated in
the spatial domain. A beamformer appropriately combines the
signals received by the different elements of an antenna array
to form a single output. Classically, this has been achieved by
minimizing the mean square error (MSE) between the desired
output and the actual array output. This principle has its roots in
the traditional beamforming employed in sonar and radar sys-
tems. Adaptive implementation of the minimum MSE (MMSE)
beamforming solution can be realized using temporal reference
techniques [2]–[4], [11]–[14]. Specifically, block-based beam-
former weight adaptation can be achieved, for example, using
the sample matrix inversion (SMI) algorithm [11], [12], while
sample-by-sample adaptation can be carried out using the least
mean square (LMS) algorithm [13], [14].

For a communication system, it is the achievable bit-error
rate (BER), not the MSE performance, that really matters. Ide-
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ally, the system design should be based directly on minimizing
the BER, rather than the MSE. For applications to single-user
channel equalization and multiuser detection, it has been shown
that the MMSE solution can in certain situations be distinctly
inferior in comparison to the minimum BER (MBER) solution,
and several adaptive implementations of the MBER solution
have been studied in the literature [15]–[19]. This contribution
derives a novel adaptive beamforming technique based on di-
rectly minimizing the system’s BER rather than the MSE. For
the sake of notational simplicity and for highlighting the basic
concepts, the modulation scheme is assumed to be binary phase-
shift keying (BPSK), and the channel is assumed to be nondis-
persive with additive Gaussian noise, which does not induce
any intersymbol interference (ISI). Furthermore, narrow-band
beamforming is considered in this paper. It is demonstrated that
the MBER solution utilizes the array weights more intelligently
than the MMSE approach. The MBER beamforming appears
to be “smarter” than the MMSE solution, since it directly op-
timizes the system’s BER performance rather than minimizing
the MSE, where the latter strategy often turns out to be deficient.

An adaptive implementation of the MBER beamforming
technique is investigated in this paper. The classic Parzen
window or kernel density estimation technique [20]–[22] is
adopted for approximating the probability density function
(pdf) of the beamformer’s output, and a block-data adaptive
MBER algorithm is developed, which iteratively minimizes the
estimated BER of the beamformer by adjusting the beamformer
weights using a simplified conjugate gradient optimization
method [23], [19]. Our simulation study shows that this
block-data adaptive MBER algorithm converges rapidly, and
the length of the data block required for achieving an accurate
approximation of the MBER solution is reasonably small.
Sample-by-sample adaptation is also considered and an adap-
tive stochastic gradient MBER algorithm, referred to as the
least BER (LBER) technique, is derived. This LBER algorithm
involves more approximations compared with the one given
in [18] and [19] for equalization and multiuser detection,
but it has a significantly lower computational complexity,
which is comparable to that of the simple least mean square
(LMS) algorithm. Simulation results suggest that the proposed
simplified LBER algorithm has a similar performance to the
full-complexity LBER algorithm of [18], [19] in terms of its
convergence rate and steady-state BER misadjustment.

II. SYSTEM MODEL

It is assumed that the system supports users (signal
sources), and each user transmits a BPSK modulated signal on
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the same carrier frequency of . Let denote the bit
instance. Then, the baseband signal of user is formulated as

(1)

where takes value from the set with equal proba-
bility and denotes the signal power of user . Without loss
of generality, source 1 is assumed to be the desired user and the
rest of the sources are the interfering users. The linear antenna
array considered consists of uniformly spaced elements, and
the signals received by the -element antenna array are given
by

(2)

where is the relative time delay at array element for
source is the direction of arrival for source , and is the
complex-valued white Gaussian noise having a zero mean and
a variance of . The desired user’s signal-to-
noise ratio (SNR) is defined as , and the desired
signal-to-interference ratio (SIR) with respect to user is defined
as , for . In vectorial form, the
array input can be expressed
as

(3)

where has a covariance ma-
trix of with representing the
identity matrix, the system matrix is given by

(4)

the steering vector for source is formulated as

(5)

and the transmitted bit vector is
.

The beamformer’s output is given by

(6)

where is the complex-valued beamformer
weight vector, and is Gaussian distributed having a zero
mean and a variance of . The esti-
mate of the transmitted bit is given by

(7)

where denotes the real part of .
Classically, the beamformer’s weight vector is determined by

minimizing the MSE term of , which leads
to the following MMSE solution:

(8)

with being the first column of . Although the system matrix
is generally unknown, the MMSE solution can be readily re-

alized using the block-data based adaptive SMI algorithm [11],
[12]. The MMSE solution can also be implemented using the
stochastic gradient algorithm known also as the LMS algorithm.

The discrete Fourier transform (DFT) of the beamformer
weights, which is also referred to as the beam pattern, is given
by

(9)

which describes the response of the beamformer to the source
arriving at angle . In traditional beamforming, the magnitude
of is used for characterizing the performance of a beam-
former. Using the amplitude response alone, however, can be
misleading, since both the magnitude and phase of should
be used together for characterizing the beamformer. Ultimately,
it is the pdf of the beamformer’s output which fully character-
izes the true performance of the beamformer.

III. MBER BEAMFORMING SOLUTION

Denote the number of possible transmitted bit se-
quences of as . Further, denote the first
element of , corresponding to the desired user, as . The
array input signal takes values from the signal set defined
as

(10)

This set can be partitioned into two subsets depending on the
specific value of as follows:

(11)

Similarly, the beamformer’s output takes values from
the scalar set . Thus,
the real part of the beamformer’s output can only take
values from the set

(12)

which can be divided into two subsets conditioned on as
follows:

(13)

Note that the term beamforming here in fact refers to linear
beamforming. An implicit assumption is that and
are linearly separable, that is, there exists a weight vector
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such that the two scalar sets and are com-
pletely separable by a linear decision boundary. Otherwise, non-
linear beamforming is required, a situation that is similar to non-
linear single-user equalization and nonlinear multiuser detec-
tion [24]–[26].

It can be readily shown that the conditional pdf of
given is

(14)

where and is the number of

the points in . Thus, it can be shown that the BER of
the beamformer associated with the weight vector is given by

(15)

where

(16)

and

(17)

Similarly, the BER can be calculated using . The
MBER beamforming solution is then defined as

(18)

The gradient of (15) with respect to can be shown to
be

(19)

Given the gradient of (19), the optimization problem (18) can be
solved by iteratively using a gradient-based optimization algo-
rithm. Since the BER is invariant to a positive scaling of , it is
computationally advantageous to normalize to a unit length
after every iteration so that the gradient can be simplified to

(20)

The following simplified conjugate gradient algorithm [23],
[19] provides an efficient means of finding a MBER solution.

Initialization: Choose a step size of and a termination
scalar of (typically, can be set to the machine accuracy);
given and , set the iteration index
to .

Loop: If
: goto Stop. Else

for , goto Loop.
Stop: is the solution.
The step size controls the rate of convergence. Typically,

a much larger value of can be used compared to the steepest
descent gradient algorithm. Occasionally, the search direction

in the above conjugate gradient algorithm may no longer be a
good approximation to the conjugate gradient direction or may
even point to the “uphill” direction when the iteration index be-
comes high. A standard measure to prevent this situation from
happening is to periodically reset to the negative gradient [23].
With a reseting of every iteration, this algorithm reduces to the
steepest descent gradient algorithm.

Unlike the MMSE solution (8), there exists no closed-form
MBER solution. In theory, there is no guarantee that the above
conjugate gradient algorithm can always find a global minimum
point of the BER surface . In practice, we have found
that the algorithm works well and we have never observed any
occurrence of the algorithm being trapped at some local min-
imum solution. This is likely to be a consequence of the specific
shape of the BER surface. Since the BER is invariant to a pos-
itive scaling of , i.e., the size of does not matter (except
zero size), the BER surface has an infinitely long valley, and
any point at the bottom of this valley is a true global MBER so-
lution. For an illustration, see [19]. Once a weight vector is
near the edge of this infinitely long valley, convergence to the
bottom is extremely fast since the slope or gradient is high.

IV. ADAPTIVE MBER BEAMFORMING

The pdf of can be shown to be explicitly given by

(21)

and the BER can alternatively be expressed as

(22)
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where

(23)

and . In reality, the pdf of is un-
known. Hence, we will adopt the temporal reference technique
for supporting the adaptive implementation of the MBER beam-
forming algorithm.

A. Block-Data-Based Gradient Adaptive MBER Algorithm

A widely used approach of approximating a pdf is known as
the kernel density or Parzen window-based estimate [20]–[22].
Given a block of training samples , a kernel
density estimate of the pdf (21) is readily given by

(24)

where the kernel width is related to the standard deviation
of the channel noise. From the standard results [20]–[22],

it is known that the Parzen window estimate (24) is not overly
sensitive to the value of , and appropriate values for lie in
a range of values between some lower and upper bounds. From
this estimated pdf, the estimated BER is given by

(25)

with

(26)

The gradient of is formulated as

(27)

Upon substituting by in the conjugate gra-
dient updating mechanism, a block-data based adaptive algo-
rithm is obtained. The step size and the kernel width are
two algorithmic parameters that have to be set appropriately.

B. Stochastic Gradient-Based Adaptive MBER Algorithm

In the kernel density estimate (24), a variable width of
is used, which depends on the beamformer’s weight

vector. If an approximation is invoked by using a constant width
of in a kernel density estimate, the associated computational
complexity can be considerably reduced. Formally, this leads
to using the kernel density estimate of

(28)

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY PER WEIGHT UPDATE, WHERE

L IS THE DIMENSION OF THE WEIGHT VECTOR

as an approximation to the true density given by (21) and to
using

(29)

with

(30)

as the BER estimate. This approximation is valid, provided that
the width is chosen appropriately. In particular, the appro-
priate values for in (28) are generally different from those used
in (24). Like the kernel density estimate (24), the pdf estimate
(28) is not overly sensitive to the value of . The gradient of

has a much simpler form

(31)

In order to derive a sample-by-sample adaptive algorithm,
adopt a similar single-sample estimate of as used in
[18], namely

(32)

Using the instantaneous stochastic gradient of

(33)

gives rise to a stochastic gradient adaptive algorithm, which we
referred to as the LBER algorithm

(34)

The adaptive gain and the kernel width are the two al-
gorithmic parameters that have to be set appropriately to en-
sure a fast convergence rate and small steady-state BER mis-
adjustment. The computational complexity of this LBER algo-
rithm is compared with that of the LMS algorithm in Table I.
Note that the LBER algorithm (34) has considerably lower com-
plexity than the algorithm given in [18] and [19] because it in-
volves more simplifications. Previous empirical results derived
in a multiuser detection context [27] have shown that this sim-
plified LBER algorithm appears to have a similar convergence
speed to the full LBER algorithm of [18], [19], even though it
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Fig. 1. Comparison of the BER performance of the MMSE and MBER beamformers: (a) SIR = 0 dB for i = 2; 3; 4; 5 and (b) SIR = �6 dB for i = 2; 3; 4; 5.

involves a more coarse approximation and exhibits a lower com-
putational complexity.

V. SIMULATION STUDY

The example used in our computer simulation study consisted
of five signal sources and a two-element antenna array. The an-
tenna array element spacing was with being the wave-
length. The direction of arrival for source 1, the desired user, was
15 , and the directions of arrival for the interfering sources 2, 3,
4, 5 were 30 , 60 70 , and 80 , respectively. Fig. 1 com-
pares the BER performance of the MBER solution with that of
the MMSE solution under two different conditions: (a) the de-
sired user and all the four interfering sources have equal power
and (b) all the four interfering sources have 6-dB higher power
than the desired user. The BER curves in Fig. 1 were computed
using the theoretical BER expression (15) with the MMSE so-
lution given by (8) and the MBER solution obtained by numer-
ical optimization based on the simplified conjugate gradient al-
gorithm portrayed in Section III. For this example, the supe-
rior performance of the MBER beamforming technique over
the MMSE benchmarker scheme becomes evident. The results
shown in Fig. 1 also indicate that the MBER solution is robust
to the near–far effect. This is further confirmed by the result
shown in Fig. 2, which was obtained under the following con-
dition: dB and dB for were
fixed, while was varied.

Fig. 3 compares the beam pattern of the MBER beamformer
to that of the MMSE beamformer under the condition of

dB and dB for , where has
been normalized. Note that the MMSE beamformer appears to
have a better amplitude response than the MBER beamformer.
Specifically, at the four angles corresponding to the four inter-
fering sources indicated by the circles in Fig. 3, the MMSE
beamformer exhibits higher attenuation magnitude responses at

70 , 60 , and 80 , and only a slightly inferior magnitude re-
sponse at 30 , compared to the MBER solution. If the ampli-
tude response alone would constitute the ultimate performance
criterion of a beamformer, the MMSE beamformer would ap-
pear to be more beneficial. However, considering the magni-

Fig. 2. Influence of near–far effect on BER performance of the MMSE and
MBER beamformers for SNR = 10 dB and SIR = 24 dB for i = 3; 4; 5.

tude response alone can be misleading. At the four angles of the
four interfering sources, the phase response of the MBER beam-
former is significantly closer to than that of the MMSE
solution while maintaining a 0 phase for the desired user at the
angle of 15 . Thus, the MBER solution has a significantly better
response in terms of , and this results in an augmented
ability to “cancel” interfering signals. Explicitly, the two beam-
formers optimize the beamformer weights very differently.

It is seen that the operation of the MMSE beamformer ap-
pears to break down under the conditions given in Fig. 1(b) and
exhibits a high BER floor. A first attempt of interpreting this
phenomenon is made by examining the beam patterns of the
two beamformers given dB and dB for

. These two beam patterns, not shown here for rea-
sons of space economy, are found to be similar to those shown
in Fig. 3. Thus, these beam patterns cannot explicitly justify
why the operation of the MMSE solution should break down,
while the MBER solution remains capable of providing an ad-
equate performance. The beam pattern generated is not directly
related to the system’s BER performance, and the conditional
pdf (14) is the best indicator of a beamformer’s BER perfor-
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Fig. 3. Comparison of MMSE and MBER beam patterns for SNR = 10 dB
and SIR = 0 dB for i = 2; 3; 4; 5.

mance. The conditional pdfs of the two beamformers, under the
conditions of maintaining dB and dB
for , are illustrated in Fig. 4. In Fig. 4, the beam-
former’s weight vector has been normalized to a unit length
so that the BER is mainly determined by the minimum dis-
tance of the subset from the decision threshold of

. There are points altogether due to five
users, calculated based on the formula where

is the number of users. By examining Fig. 4, it becomes
clear why the MMSE beamformer has a high BER floor of
around (1.5/16). For the MMSE solution, and

are linearly nonseparable. One of the
points in is on the wrong side of the decision
boundary of and another point is right on . By
comparison, it can be seen from Fig. 4 that the MBER solution
successfully separates and .

Let us now study the performance of the block-data-based
gradient adaptive MBER algorithm employing the conjugate
gradient updating mechanism. Fig. 5 illustrates the convergence
rate of the algorithm under the conditions of dB,

dB, dB, and a block
size of , using two different initial weight vectors,
namely: (a) and (b)

. From Fig. 5, it can be seen that this block-data-based
adaptive algorithm converges rapidly. The effect of the block
size on the performance of the block-data-based adaptive
MBER algorithm was also investigated, and it is seen that in
conjunction with a short block length of , the BER per-
formance of the block-data-based adaptive MBER solution de-
grades only slightly at high SNRs compared to the theoretical

Fig. 4. Conditional pdfs given b (k) = +1 and subsets Y (w) of the
MMSE and MBER beamformers for SNR = 15 dB and SIR = �6 dB for
i = 2; 3; 4; 5: (a) MMSE and (b) MBER.

Fig. 5. Convergence rate of the block-data-based gradient adaptive MBER
algorithm of Section IV-A for a block size of K = 200 under the conditions
SNR = 10 dB, SIR = SIR = �6 dB, and SIR = SIR = 0 dB.
(a) w(0) = [0:1 + j0:00:1 + j0:0] ; � = 0:8 and � = 2� = 0:1. (b)
w(0) = w ; � = 0:5 and � = 2� = 0:1.

MBER solution. When the block length increases to ,
the block-data based adaptive MBER solution closely matches
the performance of the theoretical MBER solution. Space con-
straints preclude a graphical illustration. The performance of
the stochastic gradient-based adaptive MBER algorithm por-
trayed in Section IV-B is investigated next. Fig. 6 shows the
learning curves of the LBER algorithm using two different ini-
tial weight vectors under the conditions of dB,

dB, and dB. It can
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Fig. 6. Learning curves of the stochastic gradient adaptive MBER
algorithm of Section IV-B averaged over 20 runs. SNR = 10 dB,
SIR = SIR = �6 dB, and SIR = SIR = 0 dB. DD denotes
decision-directed adaptation in which b (k) is substituted by its estimate
b̂ (k). Note that in graph (b) decision-directed and training curves are
indistinguishable. (a) w(0) = [0:1 + j0:00:1 + j0:0] ; � = 0:03 and
� = 4� = 0:2. (b)w(0) = w ; � = 0:02 and � = 4� = 0:2.

be seen that this stochastic gradient algorithm converges rea-
sonably fast while maintaining a low steady-state BER misad-
justment.

To explicitly investigate the influence of weight initializa-
tion on the LBER algorithm, 20 uniformly distributed
random initial weight were used, under the conditions of

dB, dB, and
dB. Fig. 7 depicts the learning curves obtained. Note that a vari-
able adaptive step size was used, where over each randomly ini-
tialized run for the first 25 samples we had , which was
reduced to afterward. The need for an adaptive step
size may be explained as follows. When is far from the MBER
solution, the gradient of the BER surface can be very flat and
hence a large adaptive step size is needed to move away from
these flat regions. By contrast, as mentioned at the end of Sec-
tion III, once is near the edge of the “infinitely long MBER
valley,” convergence to the bottom is extremely fast and a small
step-size is required to avoid “over-shooting” the MBER solu-
tion. It is also worth pointing out that the MMSE solution is not
necessarily a “favorable” initial condition for the LBER algo-
rithm. For the example simulated here, the algorithm appeared
to converge well when started from , as can be

Fig. 7. Learning curves of the stochastic gradient adaptive MBER algorithm
of Section IV-B averaged over 20 randomly chosen uniformly distributed initial
weight values w(0). SNR = 10 dB, SIR = SIR = �6 dB, and SIR =
SIR = 0 dB. DD denotes decision-directed adaptation in which b (k) is
substituted by its estimate b̂ (k). Note that the performance curves based on DD
and explicit training are indistinguishable. Furthermore, we had � = 4� =
0:2 and � = 0:2 for the first 25 samples, reducing the step size to � = 0:02
afterwards.

seen from Fig. 6(b). However, as confirmed in many other in-
vestigations not included here due to lack of space, the MMSE
solution often constitutes an undesirable initial condition, which
results in slow convergence and a relatively high steady-state
BER misadjustment. To provide a rule of thumb, if the interfer-
ence scenario encountered is a hostile one due to having a low
angular separation of the interferers, for example, the MMSE
weights would be far from the MBER solution and hence they
would result in slow convergence, potentially arriving at a local
optimum.

VI. CONCLUSION

An adaptive MBER beamforming technique has been devel-
oped. It has been shown that the MBER beamformer exploits
the system’s resources more intelligently than the standard
MMSE beamformer and, consequently, can achieve a better
performance in terms of a lower BER. Simulation results
also suggest that the MBER solution is robust to the near–far
effect. Adaptive implementation of the MBER beamformer has
also been addressed. A block-data-based conjugate gradient
adaptive MBER algorithm has been shown to converge rapidly
while requiring a reasonably small block size for accurately
approximating the theoretical MBER solution. A stochastic
gradient adaptive MBER algorithm, namely the LBER tech-
nique, has also been derived. The results obtained in this
study have demonstrated the potential of the adaptive MBER
beamforming approach. However, several important areas still
warrant further research. These include considering hostile
fading channels, dispersive wideband channels that induce
ISI, and wideband beamforming. Our current research is also
considering the extension of the adaptive MBER beamformer
to other modulation schemes.
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