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Abstract— Integrated sensing and communication (ISAC) has
opened up numerous game-changing opportunities for realizing
future wireless systems. In this paper, we propose an ISAC
processing framework relying on millimeter-wave (mmWave)
massive multiple-input multiple-output (MIMO) systems. Specif-
ically, we provide a compressed sampling (CS) perspective to
facilitate ISAC processing, which can not only recover the
high-dimensional channel state information or/and radar imaging
information, but also significantly reduce pilot overhead. First,
an energy-efficient widely spaced array (WSA) architecture is
tailored for the radar receiver, which enhances the angular
resolution of radar sensing at the cost of angular ambiguity. Then,
we propose an ISAC frame structure for time-varying ISAC
systems considering different timescales. The pilot waveforms
are judiciously designed by taking into account both CS theories
and hardware constraints induced by hybrid beamforming (HBF)
architecture. Next, we design the dedicated dictionary for WSA
that serves as a building block for formulating the ISAC
processing as sparse signal recovery problems. The orthogonal
matching pursuit with support refinement (OMP-SR) algorithm
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is proposed to effectively solve the problems in the existence of
the angular ambiguity. We also provide a framework for estimat-
ing the Doppler frequencies during payload data transmission
to guarantee communication performances. Simulation results
demonstrate the good performances of both communications and
radar sensing under the proposed ISAC framework.

Index Terms— Integrated sensing and communication (ISAC),
dual-functional radar-communication (DFRC), mmWave, mas-
sive MIMO, compressive sensing (CS), hybrid beamforming
(HBF) architecture.

I. INTRODUCTION

AS TWO representative applications of radio technol-
ogy, wireless communications and radar sensing have

respectively achieved remarkable results over the past few
decades. Given the spectrum crunch caused by ever-increasing
connected devices and applications, integrated sensing and
communication (ISAC) has attracted great research interest
recently [1], [2], [3], [4], [5], [6]. On the one hand, ISAC
allows communication systems and radar systems to share
the scarce spectrum and expensive hardware resources, saving
a large amount of cost. On the other hand, some critical
scenarios in beyond fifth-generation (B5G) and even 6G,
such as autonomous driving [7], Wi-Fi sensing [8], and
extended reality [9], require resilient communications together
with high-precision environment sensing ability provided by
advanced radar techniques. Therefore, ISAC is expected to
benefit both communication and radar communities in the near
future.

In this paper, we focus on combining radar systems
with state-of-the-art wireless communications. Specifically,
millimeter-wave (mmWave) massive multiple-input multiple-
output (mMIMO) system, which is the backbone of
physical-layer techniques in 5G and beyond, is also an attrac-
tive solution for radar sensing. Capitalizing on the high angular
resolution of mmWave mMIMO, the shapes of the targets can
be clearly identified by exploiting the radar echo signals from
different directions. Hence, target imaging (rather than simply
detecting the existence of a target) via radio frequency (RF)
signals can be realized [10]. As such, we aim to integrate radar
sensing into the mmWave channel estimation (CE).

Despite the ambitious visions, a critical issue in
mMIMO-aided ISAC systems is that a massive number of
antennas introduce a significant computational burden on
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the signal processing for both communications and radar
sensing. This issue becomes more pronounced when target
imaging is considered, since a radar system needs to recover
the high-dimensional imaging information instead of esti-
mating a few parameters of the targets. Besides, low pilot
overhead is a prerequisite for effective time-varying CE so
that high-mobility users in ISAC scenarios can be reliably
served. Given these challenges, compressed sampling (CS),
also known as compressive sensing, which can recover signals
from reduced measurements by leveraging the intrinsic spar-
sity [11], is a promising solution for ISAC systems. Although
CS techniques have already spread rapidly in many disciplines,
it is necessary to further study their applications to ISAC
systems.

A. Prior Work

Radar systems assisted by antenna arrays are usually
divided into two basic types, phased-array radar and MIMO
radar [12], based on whether the transmit waveforms at differ-
ent antennas are coherent or not. To combine the advantages
of these two types of radars, the authors of [13] proposed the
concept of phased-MIMO radar, which can achieve both the
waveform diversity and coherent processing gain. Moreover,
sophisticated antenna array forms, such as virtual uniform lin-
ear array (ULA) [14], nested array [15], or co-prime array [16],
have been proposed and deployed at radar transceivers for
enhancing the degrees of freedoms. As an example, the virtual
ULA [14] considered a radar array with NT transmit antennas
and NR receive antennas, both uniformly spaced. It was
shown that by widening the antenna spacing of transmit array,
a virtual array with NTNR effective aperture can be obtained
with NT + NR antennas. This architecture has been realized
in practical radar chips for commercial use (cf. [10, Fig. 2]).
However, this widely-spaced transmit array is unsuitable when
communication functionality is needed, since it will cause
the spatial aliasing due to sub-Nyquist spatial sampling [19],
introducing the interferences for beamforming design. Links
between radars and CS have been explored in [17], [18], [19],
[20], [21], and [22]. The motivation behind CS approaches
is that the intrinsic “sparse” nature exists in many radar
problems (e.g., the limited number of interested targets, or the
compressibility of radar images). On that basis, the CS algo-
rithms have been applied to the parameter estimation under
the single-input single-output radar [17], the MIMO radar with
Nyquist spatial sampling array [18], or the MIMO radar with
sub-Nyquist spatial sampling array [19], [20], and to the radar
image reconstruction under synthetic aperture radar (SAR)
systems [21], [22].

In the theory and practice of communications, mmWave
mMIMO with hybrid beamforming (HBF) architecture [23]
has been considered as a key enabler for 5G/B5G. By con-
necting large-scale array with a few RF chains (RFCs) through
a fully or partially connected phase shifter network, the
HBF architecture realizes the trade-off between the hardware
complexity and the system performance. Nevertheless, this
hybrid architecture significantly decreases the dimension of
the received signals, imposing great challenges to CE for
mmWave mMIMO. As a remedy, a hardware solution was

introduced in [24], where a fully-digital receiver with low-
resolution analog-to-digital converters (ADCs) is employed to
reserve the high-dimensional received signals at the cost of
severe quantization noises. Moreover, CS techniques have also
been widely adopted for wireless communications. Based on
the sparsity of mmWave channels in the angular domain [25],
[26], [27], the delay domain [28], or a mixture of both [29],
[30], the literature [25], [26], [27], [28], [29], [30] formulated
the mmWave CE as the corresponding sparse signal recovery
problems, using off-the-shelf CS-based algorithms. In addition
to CE, beamforming design can also be well supported by
CS techniques. The authors of [31] proposed a beamforming
scheme for mmWave mMIMO with HBF architecture. In par-
ticular, the CS-based algorithm was exploited to reconstruct
both the RF precoder and the baseband precoder so that
their combination can mimic the optimal fully-digital precoder.
Since then, the idea of [31] has further extended to more
communication scenarios, e.g., [32], [33]. However, these
CS-based methods are dedicated only for communications,
and they may not be straightforwardly applicable in ISAC
scenarios.

For ISAC applications, research efforts towards dual-
functional radar-communication (DFRC) are well underway.
In the literature [34], [35], [36], [37], [38], [39], [40], DFRC
integrates radar and communication signals in the temporal,
the frequency, or the spatial domain, which is deemed more
beneficial than its single constituent part (communications or
radar). A demonstration of airborne MIMO radar was pre-
sented in [35], and the field test was conducted to validate the
feasibility of joint communication and SAR imaging. In [36],
the authors investigated a radar-assisted predictive beamform-
ing design for vehicular networks. The information obtained
by radar sensing is fed to the design of communication beam
tacking, to improve the performance. Also, the authors of [37]
optimized the DFRC transmit sequences with one-bit digital-
to-analog converters (DACs) to ensure the performances of
both symbol demodulation and radar detection. Unfortunately,
the works [35], [36], [37] do not consider the advanced HBF
architecture, which has been regarded as a promising candidate
for ISAC. In fact, the concept of HBF is quite similar to that
of phased-MIMO radar. Inspired by this observation, a com-
prehensive ISAC framework based on HBF architecture was
initially proposed in [4]. An orthogonal waveform was applied
in [4] to minimize the Cramér-Rao bound (CRB) of parameter
estimation. Yet, it imposes unaffordable pilot overhead and
ignores the practical hardware constraint of HBF architecture.
The application of CS to ISAC can be found in [38], [39],
and [40], which provides insight in reducing the pilot overhead
for ISAC processing. In [38], an ISAC framework relying
on analog beamforming was proposed. With the designed
multibeam for both communications and radar sensing, the
authors of [38] adopted multiple measurement vector (MMV)
CS to estimate the parameters of radar targets. Later, the
authors of [39] studied radar sensing with one-dimension (1D)
to 3D CS techniques, using the signals compatible with 5G
standards. This work [39] has been extended in [40], where
a background subtraction method was proposed to reduce
the clutter in the input signals, benefiting CS algorithms
further. However, [38], [40] were based on the impractical
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TABLE I

THE SUMMARY OF LITERATURE REVIEW

on-grid parameter model, and [38], [39], and [40] did not
consider the mmWave mMIMO with HBF architecture and
the corresponding waveform design.

B. Our Contributions

Based on the aforementioned discussions, it is evident that
the applications of mmWave mMIMO and CS techniques to
ISAC scenarios are still at an early development stage. In this
work, we focus on the ISAC systems relying on mmWave
mMIMO and the application of advanced CS techniques.
A brief summary of the existing and our proposed works is
presented in Table I. To be specific, our main contributions
can be summarized as follows.

• We propose a DFRC transceiver architecture based on
mmWave mMIMO. The proposed architecture consists
of one communication unit (CU) and one radar unit (RU).
A critically spaced array (CSA) with the HBF architecture
is adopted at the CU, while a widely spaced array (WSA)
with low-resolution ADCs is designed for the RU to
receive the radar echo signals. The proposed architecture
guarantees both the energy-efficient communications and
the high angular resolution for radar sensing, at the cost
of the angular ambiguity.

• We study the integration of radar sensing into the
CE of the conventional cellular communications by
proposing an ISAC frame structure and a waveform
design scheme tailored for HBF architecture and
CS processing. By considering different timescales, the
proposed frame structure can cope with fast time-varying
environments, where high-mobility targets can be tracked
and high-mobility users can be served. The proposed pilot
waveform design not only sufficiently diversifies the pilot
waveform, as required by CS theory, but also satisfies the
hardware constraints imposed by the HBF architecture.

• We propose a dedicated CS-based algorithm to over-
come the angular ambiguity brought by the WSA.
By leveraging the natural spatial consistence, i.e., the

co-located CU and RU observe targets at the same direc-
tions, we propose the orthogonal matching pursuit with
support refinement (OMP-SR) algorithm for radar sens-
ing. The main idea is that in each iteration, we eliminate
the ambiguity of the finer angle estimation based on the
coarse angle estimation, and then refine the corresponding
column of the sensing matrix.

• We provide a framework of estimating the Doppler
frequencies to support target speed measurement
and payload data demodulation. During the payload
data transmission, a small amount of pilot signals are
inserted between the adjacent data frames to estimate the
Doppler frequencies (i.e., velocities) of targets and users.
The Doppler estimation and compensation are vital for
the data demodulation in communication-centric ISAC
systems, which is, however, often sidestepped in the
earlier works on ISAC.

C. Notations

Column vectors and matrices are denoted by lower- and
upper-case boldface letters, respectively, while (·)∗, (·)T, (·)H,
and (·)† denote the conjugate, transpose, conjugate transpose,
and pseudo-inverse operators, respectively. C and Z are the
sets of complex-valued numbers and integers, respectively.
0M×N and IN are the M × N all-zero-element matrix and the
N × N identity matrix, respectively. CN and U denote the
complex Gaussian distribution and the uniform distribution,
respectively. [a]i denotes the i-th element of vector a, while
[A]i,j represents the i-th row and j-th column element of
matrix A. [A]I ([a]I) denotes the submatrix (subvector)
consisting of the columns (elements) of A (a) indexed by
the ordered set I. ‖·‖p and ‖·‖F are the lp-norm and the
Frobenius norm, respectively. ⊗ stands for the Kronecker
product and vec(·) is the vectorization operation according
to the columns of the matrix. mod(k,N), where k,N ∈ Z,
is the remainder after k is divided by N . �x� returns the
smallest integer that is not smaller than x. card(I) is the
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Fig. 1. The model of an ISAC system assisted by mmWave mMIMO:
(a) An ISAC scenario where high-speed UTs are served, (b) the hardware
architectures of the CU and RU at the DFRC station, and (c) Tx/Rx-RFC vs.
Rx-RFC.

cardinality of the set I. ΞN (x) is the N -order Dirichlet kernel
function given by ΞN (x) = sin(Nx/2)

N sin(x/2) for x �= 2 kπ and

ΞN (2 kπ) = (−1)k(N−1) for k ∈ Z. E{·} is the statistical
expectation operator. The variables/notations associated with
the radar system are overlined, e.g., N , to distinguish them
from the communication counterparts, e.g., N .

II. SYSTEM DESCRIPTION

AND CHANNEL MODEL

In this section, we present the generic model of a mmWave
mMIMO ISAC system. The channels associated with the
communications and radar are respectively modeled.

A. System Model

Consider a mmWave mMIMO ISAC system shown in
Fig. 1 (a), where a DFRC station serves multiple user-terminals

(UTs) in a time division duplex (TDD) mode. This model
can be applied to various ISAC scenarios. For instance,
in vehicle-to-infrastructure (V2I) [36] or vehicle-to-everything
(V2X) systems [7], the road side units (RSUs) play the
role of DFRC station, which needs to sense the environment
and to provide vehicles the predictive alarm to avoid traffic
accident. The center-carrier frequency of the system is fc
with the corresponding wavelength λ. Each UT is equipped
with a uniform-planar-array (UPA) with M = Mx × My

antennas, where Mx and My are the numbers of antennas
along azimuth and elevation directions, respectively. Since UT
is usually energy-constrained, analog beamforming technique
is considered at each UT, i.e., there is only one RFC connected
to M antennas via M phase shifters. The DFRC station
consists of one CU and one RU, both equipped with UPAs.
The CU is responsible for the communication tasks including
information transmission and reception (Tx/Rx), while the RU
only receives the echo signals for radar sensing. Compared
to some previous works [4], [34] using a single array at the
DFRC station for simultaneously transmitting and receiving,
the proposed scheme provides a more hardware-feasible ISAC
architecture with no need for full-duplex capability. The
numbers of antennas at the CU and RU are N = Nx × Ny

and N = Nx × Ny , respectively, where Nx (Nx) and Ny

(Ny) are the numbers of antennas along azimuth and elevation
directions, respectively. The arrays of the CU and RU are
co-located and are parallel to each other so that they see the
targets at the same propagation directions [13], [14]. We refer
to this property as spatial consistency.

To achieve desired trade off of the power consumption,
hardware cost, and system performance, we consider a ded-
icated DFRC architecture as shown in Fig. 1 (b). At the
CU, we employ the CSA with HBF architecture, where
only NRF � N Tx/Rx-RFCs are connected to N antennas
through a fully-connected phase shifters network, while at the
RU, we consider the low-resolution ADC architecture [24]
with WSA. The antenna spacing of the CSA is half of the
wavelength dcri = 0.5λ, while that of the WSA is set to
d > dcri so that Nxd > Nxdcri and Nyd > Nydcri, resulting
in a larger spatial aperture. For each receive antenna at the
RU, a dedicated Rx-RFC is deployed, as shown in Fig. 1 (c).
Although this architecture requires the number of Rx-RFCs
to be equal to that of antennas at the RU, i.e., fully-digital
receiver, it is feasible for the following reasons: (i) compared
to the Tx/Rx-RFC at the CU, no energy-hungry power ampli-
fier (PA) is used in the Rx-RFC;1 (ii) low resolution ADC
is used in the Rx-RFC, which reduces power consumption
and cost [24]; and (iii) a moderate number of antennas at the
RU will be sufficient to achieve higher angular resolution and
better radar sensing performance relying on WSA, and this
point will be detailed in the sequel.

B. Time-Varying Communications and Radar Channel
Models

In this subsection, we formulate the time-varying channel
models for both the communications and radar. For the

1According to [41], the power of a PA is 138 mW, while that of a low noise
amplifier is 39 mW, both in the mmWave band.
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communications, we consider the Rician fading channel model
with one line-of-sight (LoS) path and a few clustered non-LoS
(NLoS) paths. Taking a downlink channel from the CU to a
UT (user index is omitted for notation simplification) as an
example, we have

H(τ ; t) = HLoS(t)p (τ − τLoS(t) − τp)

+
NC∑
c=1

NP∑
l=1

Hc,l(t)p (τ − τc,l(t) − τp) , (1)

with

HLoS(t) = gLoS(t)aM

(
θaziLoS(t), θeleLoS(t)

)
× aH

N

(
ϕazi

LoS(t), ϕele
LoS(t)

)
, (2)

Hc,l(t) = gc,l(t)aM

(
θazic,l (t), θ

ele
c,l (t)

)
× aH

N

(
ϕazi

c,l (t), ϕ
ele
c,l (t)

)
. (3)

In (1), t and τ are the time and delay variables, respectively,
NC and NP are the number of clusters and the number of
paths in each cluster, respectively, while τLoS(t) and τc,l(t)
are the delay-offsets of the LoS path and the (c, l)-th NLoS
path, respectively. Furthermore, p(τ) is the pulse shaping filter
function, and τp is the single side duration of p(τ), i.e.,
p(τ) = 0 when |τ | > τp. In (2) and (3), gLoS(t) and gc,l(t) are
the channel coefficients of the LoS path and the (c, l)-th NLoS

path, respectively,
{
θaziLoS(t), θeleLoS(t)

}
and

{
θazic,l (t), θ

ele
c,l (t)

}
are the angles-of-arrival (AoAs) of the LoS path and the
(c, l)-th NLoS path, respectively, while

{
ϕazi

LoS(t), ϕele
LoS(t)

}
and

{
ϕazi

c,l (t), ϕ
ele
c,l (t)

}
are the angles-of-departure (AoDs)

of the LoS path and the (c, l)-th NLoS path, respectively.
Note that each AoA or AoD in (2) and (3) contains the
azimuth part (superscripted by “azi”) ranging in [0, 2π) and
the elevation part (superscripted by “ele”) ranging in [0, π/2)
(see Fig. 1 (b)). The steering vector aN

(
ϕazi, ϕele

) ∈ CN×1

is given by

aN

(
ϕazi, ϕele

)
= a (μϕ;Nx) ⊗ a (νϕ;Ny) , (4)

where μϕ = cosϕazi sinϕele, νϕ = sinϕazi sinϕele, and

a (μϕ;Nx) =
1√
Nx

[
1 e−jπμϕ · · · e−jπ(Nx−1)μϕ

]T
∈ C

Nx×1,

(5)

a (νϕ;Ny) =
1√
Ny

[
1 e−jπνϕ · · · e−jπ(Ny−1)νϕ

]T
∈ C

Ny×1.

(6)

Furthermore, aM

(
θazi, θele

)
= a (μθ;Mx) ⊗ a (νθ;My) can

be formulated similarly to (5) and (6).
On the other hand, the channel for radar sensing (from the

CU to the target and then back to the RU) can be formulated
as

H(τ ; t) =
NC∑
c=1

NP∑
l=1

Hc,l(t)p (τ − τ c,l(t) − τp) , (7)

where

Hc,l(t) = gc,l(t)aN

(
θ
azi

c,l (t), θ
ele

c,l (t)
)

aH
N

(
θ
azi

c,l (t), θ
ele

c,l (t)
)
.

(8)

In (7), NC is the number of radar targets of interest, NP is
the number of resolvable paths induced by a target, and τ c,l(t)
is the delay of the l-th echo signal of the c-th target. In (8),
gc,l(t) is the coefficient of the l-th path of the c-th target, which
accounts for the free space propagation loss and the radar cross
section (RCS) of the target, while

{
θ
azi

c,l (t), θ
ele

c,l (t)
}

represents
the angle (also including the azimuth part and elevation
part like those in (2) and (3)) of the l-th path of the c-th
target. Note that due to the aforementioned spatial consistency,{
θ
azi

c,l (t), θ
ele

c,l (t)
}

is shared by the transmitter and the receiver
in (8). Also note that we ignore the multi-hop signals in (8).
The steering vector of WSA aN

(
θ
azi
, θ

ele
)
∈ CN×1 can be

formulated with the parametrized antenna spacing d as

aN

(
θ
azi
, θ

ele
)

= a
(
μθ;Nx

)⊗ a
(
νθ;Ny

)
, (9)

where μθ = cos θ
azi

sin θ
ele

, νθ = sin θ
azi

sin θ
ele

, and

a
(
μθ;Nx

)
=

1√
Nx

[
1 e−j 2πd

λ μθ · · · e−j 2πd
λ (Nx−1)μθ

]T

,

(10)

a
(
νθ;Ny

)
=

1√
Ny

[
1 e−j 2πd

λ νθ · · · e−j 2πd
λ (Ny−1)νθ

]T
.

(11)

It is worth noting that by taking into account the high
angular resolution offered by mmWave mMIMO, we formulate
each target as a cluster with multiple resolvable paths in (7).
Compared with some previous literature [4], [38], [39], [40]
assuming that each target contributes only a single path (i.e.,
point target, corresponding to the case ofNp = 1), our channel
model (7) facilitates target imaging through the mmWave
RF signals [10]. In other words, by estimating the channels
in the angular domain and identifying the shape (geometric
information) of each cluster, the imaging information of the
targets can be obtained, even when the targets are covered
by materials that can easily block the visible light and laser
signals [10]. This may extend the scope of target imaging when
traditional imaging methods, e.g., camera or LiDAR [7], fail,
and thus may improve the efficiency, reliability and safety in
future ISAC scenarios.

III. FRAME STRUCTURE AND WAVEFORM DESIGN

In this section, we design a transmission frame structure
for the ISAC system, which considers different timescales.
Moreover, we formulate the input-output signal models in the
ISAC system, and propose a waveform design, which not only
guarantees the performance of CS-based algorithms but also
meets the practical hardware constraints imposed by the HBF
architecture.

A. Frame Structure Design

Although the channel models (1) and (7) are time-varying,
some or all of their parameters may be reasonably assumed to
be time-invariant under different timescales. More specifically,
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Fig. 2. The proposed transmission frame structure of the ISAC system. The guard interval (GI) is inserted between the pilot signals and payload data to
avoid inter-frame interference.

• In a small timescale that is much shorter than the channel
coherence time,2 the whole channel can be assumed to be
time-invariant. Therefore, we can drop the time index t
in (1) and (7), i.e., H(τ ; t) = H(τ) and H(τ ; t) = H(τ),
in this case.

• In a moderate timescale, the velocities and the positions
of scatters or targets are relatively stable. Hence, the
delays, angles and Doppler frequencies of scatters or
targets can be assumed to be time-invariant, as their
changes may be regarded as negligible. Yet, the channel
coefficients

{
gLoS(t), gc,l(t), gc,l(t)

}
may vary signifi-

cantly due to the Doppler effect.
• In a large timescale, the environment may experience

dramatic changes, and the channels become significantly
different from the previously acquired channel informa-
tion. A new CE and radar sensing stage should be carried
out to capture the changes.

Based on the analysis above, we illustrate our proposed
transmission frame structure in Fig. 2. In the initial joint CE
and radar sensing stage, the CU transmits the pilot signals for
both CE and radar sensing, i.e., ISAC signals. By leveraging
the received pilot and the echo signals, the UT and the RU
conduct the CE and radar sensing, respectively. Then, the CU
and the UT formulate the transmit and receive beamformer
based on the results from CE and radar sensing in order to
guarantee the quality of the following payload data communi-
cations and target tracking. Besides, pilot signals with a very
short duration are inserted between two adjacent payload data
blocks to estimate the potential Doppler components of the
served UTs or the targets of interest.

B. Problem Formulation and Waveform Design

We focus on the initial joint CE and radar sensing stage in
Fig. 2. Note that the duration of this stage or pilot duration
is much shorter than the channel coherence time so that
the channels can be seen as time-invariant, i.e., the time

index t can be dropped. Let L =
⌈

max
c,l

{τc,l,τc,l}+2τp

Ts

⌉
+ 1

be the maximum delay spread (in samples) where Ts

is the sampling period of the system. The channel impulse
response (CIR) of the communication channel can be written
as

Hl =

{
H (lTs) , l = 0, 1, . . . , L− 1,
0M×N , Others.

(12)

The CIR of the radar channel Hl, l = 0, 1, . . . , L− 1, can be
formulated similarly.

2The channel coherence time can be predicted based on Doppler spread.
According to [43] and [42], the channel coherence time is Tcoh ≈�

9/(16πf2
max), where fmax is the maximum Doppler frequency shift.

Consider that the CU transmits the pilot signals with length
P , i.e., pp ∈ CN×1, p = 0, 1, . . . , P − 1, which are known
to both the transmitters and receivers. We define pp = 0N×1

for p < 0 and p ≥ P , since a sufficiently long zero guard
interval (GI) should be inserted between the pilot signals
and payload data to avoid the inter-frame interference and to
provide enough time for reconfiguring the RF circuits [30].
Thus the pilot signals received by the RU and the UT with
noise in the n-th time slot can be obtained respectively based
on linear convolution as

yn = Q

{
L−1∑
l=0

Hlpn−l + nn

}
, (13)

yn = wH
n

L−1∑
l=0

Hlpn−l + wH
n nn, (14)

respectively, where Q{·} is the quantization function
caused by the low-resolution ADCs at the RU,3 nn ∼
CN (

0N×1, σ
2
nIN

)
and nn ∼ CN (

0M×1, σ
2
nIM

)
are the

additive white Gaussian noise (AWGN) vectors at the RU and
UT, respectively, while wn ∈ CM×1 is the analog weight
vector at the UT. Note that according to the property of
linear convolution, the length of the sequence yn (or yn) is
Q

Δ=P + L− 1, i.e., yn = 0 (or yn = 0) if n < 0 or n ≥ Q.
At the RU, by collecting all the measurements {yn}Q−1

n=0 ,
we have

Y =
[
y0 y1 · · ·yQ−1

]
= Q

{
HSDΦ + N

}
, (15)

where HSD =
[
H0 H1 · · ·HL−1

] ∈ CN×LN is the
effective CIR in the spatial-delay (SD) domains, N =
[n0 n1 · · ·nQ−1] ∈ C

N×Q is the effective noise matrix, and
Φ ∈ CLN×Q is the known effective measurement matrix with
the block-Toeplitz property. Specifically, the q-th column of
Φ, 1 ≤ q ≤ Q, can be expressed as[

Φ
]
{q} =

[
pT

q−1 pT
q−2 · · ·pT

q−L

]T
, (16)

with pp = 0N×1 for p < 0 and p ≥ P . Similarly, at the UT,
we collect {yn}Q−1

n=0 to obtain

y = [y0 y1 · · · yQ−1]
T = Φ vec (HSD) + n, (17)

where HSD = [H0 H1 · · ·HL−1] ∈ CM×LN and n =[
wH

0 n0 wH
1 n1 · · ·wH

Q−1nQ−1

]T ∈ C
Q×1, while

Φ =
[
b1 ⊗ w∗

0 b2 ⊗ w∗
1 · · · bQ ⊗ w∗

Q−1

]T ∈ C
Q×LMN ,

(18)

3We adopt high-resolution ADCs at the UT for reliable communications,
so the quantization function is ignored in (14).
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in which bq =
[
Φ
]
{q} as formulated in (16). Note that the

radar CIR in the spatial-delay domain HSD contains useful
information (e.g., initial positions and shapes) of the targets.
In this paper, we focus on estimating HSD accurately for the
initial radar sensing. The further data processing for extracting
the features of the targets from HSD however is beyond the
scope of this paper. Interested readers can see the examples
in [10] for more information.

From (15) and (17), it is seen that HSD and HSD are
observed via the linear systems (temporarily ignoring Q{·} for
simplicity) with additive noise, which is a canonical form of
CS problems [11]. By leveraging channel sparsity and sophis-
ticated CS-based algorithms, high-accuracy channel recovery
can be achieved even with under-determined measurements
(i.e., NQ < LNN and Q < LMN ), and we will discuss
this point in the next subsection. Given that the accuracy
of CS-based algorithms depends heavily on the structure of
measurement matrices (i.e., Φ and Φ), we propose a pilot
waveform design scheme by taking into account both the
CS theories and hardware constraints. The pilot waveform
pp can be expressed as a product of the analog precoder
Fp ∈ CN×NRF and the baseband pilot symbols sp ∈ CNRF×1

as

pp = Fpsp, (19)

where the elements of Fp satisfy
∣∣∣[Fp]i,j

∣∣∣2 = N−1, 1 ≤ i ≤
N , 1 ≤ j ≤ NRF, owing to the constant-modulus property of
phase shifters. Note that the elements of analog combiner wn

also satisfy the constant-modulus constraint.
Remark 1: Since the under-determined estimation problems

are considered in (15) and (17), the orthogonal waveform
design which minimizes the CRB of parameter estimation [4]
is not applicable. Indeed, the pilot waveform should be
carefully designed under the CS theoretic framework and
hardware constraints. Particularly, in HBF architecture, the
switch of phase shifter will take non-negligible reconfiguring
time [30]. During this time, the phase value of each phase
shifter is uncertain and thus the transmit/receive pilot signals
generated by analog phase shifters in this period are unpre-
dictable. Thus it is impractical to use two different analog
precoders (combiners) for two adjacent transmit (receive) pilot
signals, as done in [4]. Instead, sufficient idle time between
switching two different analog precoders or combiners should
be reserved. At the same time, the invalid receive pilot signals
caused by the uncertain analog combiners should be removed
from the measurements at the UT.

Taking both the pilot diversity and the hardware feasibility
into account, the proposed pilot waveform design can be
summarized as follows. First, we define TCU

RF and TUT
RF as

the durations of applying the same precoder and combiner at
the CU and UT, respectively, and TGI < min{TCU

RF , T
UT
RF }

as the required GI for reconfiguring RF circuits (all in
samples). Next, we induce a codebook of the precoder{
FCB

n ∈ CN×NRF
}NCB

n=1
and a codebook of the combiner{

wCB
n ∈ CM×1

}MCB

n=1
, where NCB =

⌈
P/TCU

RF

⌉
and MCB =⌈

Q/TUT
RF

⌉
. Then, the analog precoder Fp, 0 ≤ p < P , and the

analog combiner wn, 0 ≤ n < Q, are designed respectively
as (20) and (21), shown at the bottom of the page.

This design scheme is intuitively explained in Fig. 3. At the
CU, the pilot signals are divided into NCB sub-frames, and
the signals in each sub-frame share the same analog precoder.
In the last TGI samples of the first (NCB − 1) sub-frames,4

the precoder is switched to a different one, which results in
uncertain values of phase shifters. During this reconfiguring
time, zero baseband signals are transmitted, as indicated
in (22), shown at the bottom of the page. That is to say, the
actual transmit pilot signals are also zero. This all-zero GI
does not mean that there is no pilot signal received at the
receivers, since TGI � L and thus the tail part of the previous
pilot signals can be received by the receivers contributing
to the effective measurements for CE.5 Similarly, at the UT,
MCB analog combiners are assigned to MCB sub-frames of
receive pilot signals, and a TGI-length GI is inserted into
each sub-frame (except for the last sub-frame) in order to
reconfigure the phase shifters. Moreover, given the uncertain
analog combiners, the receive pilot signals during each GI
should be removed from the measurements in (17), which
yields

yvalid = Φvalid vec (HSD) + nvalid, (23)

where yvalid = [y]Ivalid
, nvalid = [n]Ivalid

, Φvalid = [Φ]Ivalid
,

and the ordered set

Ivalid =
{
n+1

∣∣0 ≤ n < Q, mod
(
n, TUT

RF

)
<
(
TUT

RF −TGI

)
or

⌈
(n+ 1)/TUT

RF

⌉
=MCB

}
.

4The last sub-frame does not need the extra reconfiguring time, since the
RF circuits can be reconfigured during the GI inserted before the next frame
(see Fig. 2).

5Due to the existence of tail part, we do not require perfect alignment
between the GIs of the transmitter and receiver, However, the perfect align-
ment will render the best performance of CE, and it can be guaranteed by the
reliable frame synchronization based on preambles with good auto-correlation
property (e.g., Zadoff-Chu sequence).

Fp =

⎧⎨⎩FCB

�(p+1)/TCU
RF �, mod

(
p, TCU

RF

)
<
(
TCU

RF − TGI

)
or

⌈
(p+ 1)/TCU

RF

⌉
= NCB,

uncertain, otherwise,
(20)

wn =

⎧⎨⎩wCB

�(n+1)/TUT
RF �, mod

(
n, TUT

RF

)
<
(
TUT

RF − TGI

)
or

⌈
(n+ 1)/TUT

RF

⌉
= MCB,

uncertain, otherwise.
(21)

sp = 0NRF×1 when mod
(
p, TCU

RF

) ≥ (
TCU

RF − TGI

)
and

⌈
(p+ 1)/TCU

RF

⌉ �= NCB. (22)
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Fig. 3. The proposed waveform design which considers both the pilot diversity and the hardware feasibility. Since the tail parts at the receive antennas are
also valid measurements of channels, we do not require perfect alignment between the GIs of the transmitter and receiver.

In the next subsection, we will focus on recovering the
channels in (15) and (23) via CS-based algorithms. Note
that by setting different NCB (MCB), higher pilot diversity
can be achieved under the practical HBF architecture, and
it is expected to benefit the CE and radar sensing from
the perspective of CS [26]. Furthermore, compared with
the previous work [4] which designs different precoders for
each symbol, the proposed pilot waveform design imposes
dramatically lower storage requirements for the pre-defined
codebooks, since we have NCB � P and MCB � Q.

The specific design of the codebooks is detailed as follows.
The baseband pilot symbols sp are randomly drawn from the
symbol set with normalized transmit power. In this paper,
we consider binary phase shift keying (BPSK) symbols for the
initial CE and radar sensing stage, and thus each element in
those pilot symbols sp �= 0NRF×1 is equiprobably drawn from

the set
{
−
√

PDL
NRF

,
√

PDL
NRF

}
, where PDL is the total transmit

power of downlink pilot signals. In addition, randomized
phase shifts [26] are employed for the precoder and combiner
codebooks, i.e., each element of FCB

p (wCB
n ) is set to 1√

N
ejφ

( 1√
M
ejφ) with the random variable φ ∼ U [0, 2π).

IV. COMPRESSIVE SENSING FOR ISAC
AND DOPPLER ESTIMATION

In this section, we formulate the CE and radar sensing
as the sparse signal recovery problems with the designed
dictionaries for WSA. A CS-based algorithm is proposed by
taking into account the spatial consistency in order to solve
the problems and obtain higher angular resolution. We also
provide a framework for estimating the Doppler frequencies
of UTs/targets.

A. Dictionary Design

As mentioned previously, the same channel angles are
experienced by the CU and RU due to spatial consistency.
Also, different angular resolutions are imposed by the CSA
at the CU and the WSA at the RU. These two properties
motivate us to design a dedicated CS-based algorithm to
obtain robust radar sensing performance against the angular
ambiguity. We first investigate the angular-domain channel
associated with WSA. Without loss of generality, we focus on
a single steering vector of WSA aN

(
θ
azi
, θ

ele
)

given in (9).

The analysis can be readily extended to multi-path scenarios
as in (7). A direct method for estimating angle {θazi, θele}
is to find the peak of the correlation function between
aN

(
θ
azi
, θ

ele
)

and a probing vector aN (x, y). By defining
α = cosx sin y and β = sinx sin y, the correlation function
can be expressed as [44]

R(α, β) =
∣∣∣aH

N̄ (x, y)aN̄

(
θ
azi
, θ

ele
)∣∣∣

=
∣∣∣∣ΞN̄x

(
2πd
λ

(
α−μθ

))∣∣∣∣× ∣∣∣∣ΞN̄y

(
2πd
λ

(
β−νθ

))∣∣∣∣ .
(24)

We refer to μθ and νθ as the virtual azimuth angle and the
virtual elevation angle, respectively, while R(α, β) can be
viewed as the absolute value of the angular-domain channel.
Note that there is a one-to-one mapping between {μθ, νθ} and

{θazi, θele}, and therefore estimating {θazi, θele} is equivalent

to estimating {μθ, νθ}. Taking Rx(α)Δ=
∣∣ΞN̄x

(
2πd
λ

(
α− μθ

))∣∣
in (24) as an example, we report a tangible Rx(α) in Fig. 4
and compare it with that of the CSA (d = dcri = 0.5λ).
Accordingly, we summarize the following two properties of
the WSA.

1) Angular Ambiguity: Since Rx(α) attains its maximum
value of 1 when α = μθ , it is intuitive to obtain an estimation
of μ ∈ (−1, 1) by determining an α within the range of
(−1, 1) for maximizing Rx(α). However, this approach is
unable to acquire the actual angle μθ for WSA. This is
because Rx(α) is periodic with the period λ

d , i.e., Rx(α) =
Rx

(
α+ λ

d

)
, ∀α. Therefore, the points within α ∈ (−1, 1)

which maximize Rx(α) can be collected as

Imax,μ
Δ=
{
α

∣∣∣∣arg max
α∈(−1, 1)

Rx(α)
}

=
{
μθ +

kλ

d

∣∣∣∣k ∈ Z and −1<μθ +
kλ

d
<1

}
. (25)

For WSA with d > 0.5λ, there always exist some values of
μθ that yield card

(Imax,μ

)
> 1. Worse still, when d > λ,

card
(Imax,μ

)
> 1 for all μθ ∈ (−1, 1). This implies that

we cannot determine the exact azimuth angle μθ from the
multi-element set Imax,μ. A similar discussion can be made
for the elevation angle νθ . Therefore, an ambiguity inherently
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Fig. 4. An example of the correlation function Rx (α) associated with the WSA, where Nx = 16, d = 1.5λ and μθ = 0.5, in comparison with the case
of the CSA (d = dcri = 0.5λ).

exists in determining {θazi, θele}, which will cause excessive
missed detections or false alarms for radar sensing.

2) Higher Angular Resolution: Let us consider one period
of Rx(α) without angular ambiguity, e.g., the region
of 0 ≤ α < 2

3 in Fig. 4. By letting Rx(α) = 0, we have

α = μθ +
kλ

Nxd
, k ∈ Z, mod(k,Nx) �= 0. (26)

It indicates that the angular resolution of the WSA is λ
Nxd

.
In other words, any two targets with different μθ and μ′

θ

satisfying
∣∣∣μθ − μ′

θ

∣∣∣ ≥ λ
Nxd

can be well separated by the
WSA, as the mainlobes of their correlation functions would
not influence each other. It can also be seen that as long as
Nxd > Nxdcri, a better angular resolution can be achieved by
the WSA over the CSA even with a moderate Nx. Moreover,
it can be observed from Fig. 4 that in the non-ambiguity
region, the sidelobe amplitudes of Rx(α) associated with the
WSA are much smaller than the corresponding sidelobe asso-
ciated with the CSA. Similarly, the higher angular resolution
of the WSA in elevation angle also inherently exists. This
property of the WSA facilitates the CS-based algorithms for
sparse signal recovery, since it suppresses the power leakage
phenomenon [27] and thus the associated angular-domain
channels will be sparser in the non-ambiguity region.

It can be seen that the application of WSA is benefi-
cial for achieving better angular resolution, provided that
its inherent angular ambiguity is eliminated. We derive an
improved CS-based channel reconstruction algorithm, which
is tailored for the WSA to eliminate the angular ambiguity.
To improve the sparse CE performance, one viable approach
is to quantize the angular domain with different levels, and the
task becomes identifying which sample is the closest to the
real channel angle. These predefined levels form the so-called
dictionary [27], which transforms the spatial domain to the
angular domain. Taking the azimuth direction as an example,
we design the samples in the angular domain as

ψ
azi

g = −1 +
gλ

Gxd
, g = 0, 1, . . . , Gx − 1, (27)

which is an equally-spaced sampling within
[−1, −1 + λ

d

)
,

where Gx ≥ Nx is the number of azimuth samples. Accord-
ingly, the dictionary matrix of the WSA along the azimuth

direction Aazi ∈ CNx×Gx is given by

Aazi =
[
a
(
ψ

azi

0 ;Nx

)
a
(
ψ

azi

1 ;Nx

)
· · ·a

(
ψ

azi

Gx−1;Nx

)]
.

(28)

The expression of a
(
ψ

azi

g ;Nx

)
is given in (10). Note that

Aazi will be a unitary matrix when Gx = Nx, which
although guaranteeing the uniqueness of the angular-domain
representation, suffers from limited resolution. To improve the
sensing performance, we can set Gx > Nx to increase the
number of samples in the angular domain. With increased Gx,
the real channel angles are more likely to be close to some
predefined samples in (27), so that they can be estimated more
accurately. We refer to Aazi as redundant dictionary when
Gx > Nx [27]. Similarly, the dictionary matrix along the
elevation direction can be obtained as Aele ∈ CNy×Gy , where
Gy ≥ Ny is the number of elevation samples. The overall
dictionary matrix for the WSA is obtained as A = Aazi ⊗
Aele ∈ CN×GxGy . Furthermore, the dictionary design in (27)
and (28) can be directly applied to the CSA by considering
d = dcri = 0.5λ. Let GCU

x (GUT
x ) and GCU

y (GUT
y ) be the

azimuth dimension and elevation dimension of the angular-
domain channels, respectively, associated with the CU (UT).
We can design the dictionary matrices ACU ∈ C

N×GCU
x GCU

y

and AUT ∈ C
M×GUT

x GUT
y for the CU and the UT, respectively.

Although the dictionary designs for the WSA and CSA
are semblable, it is necessary to highlight their differences,
as illustrated in Fig. 5. Unlike the dictionary for the CSA
which covers the whole angular range

[− 1, −1 + λ
dcri

)
, i.e.,[ − 1, 1

)
, the dictionary for the WSA in (27) only covers a

smaller angular range
[− 1, −1 + λ

d

)
, d > λ/2, to guarantee

only one peak for each channel angle component in the angular
domain at the cost of angular ambiguity. Also observe from
Fig. 5 that the angular-domain channel is likely to be sparser
by using the WSA with higher angular resolution, as detailed
in previous text.

Based on the designed dictionary matrices, the CIRs Hl

and Hl, 0 ≤ l < L, can be respectively represented as [27]
and [30]

Hl ≈ AH
A

l AH
CU, (29)

Hl ≈ AUTHA
l AH

CU, (30)
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Fig. 5. The dictionary design and the associated angular-domain channels for radar sensing. We consider 2 point targets marked by ① and ② respectively
in the figure. Gx = Gy = Nx = Ny = 16, d = dcri for the CSA, and d = 2dcri = λ for the WSA. Each real angle {μreal, νreal} and its corresponding
false angle {μfalse, νfalse} satisfy μfalse = μreal + k1λ

d
and νfalse = νreal + k2λ

d
, where k1, k2 ∈ Z so that μfalse, νfalse ∈ [−1, −1). It is observed that

by using the WSA, the power leakage phenomenon is suppressed, and thus the angular-domain channel is sparser, at the cost of angular ambiguity.

where H
A

l ∈ C
GxGy×GCU

x GCU
y and HA

l ∈ C
GUT

x GUT
y ×GCU

x GCU
y

are the angular-domain channels. By substituting (29) and (30)
into (15) and (23) respectively, we have

Y ≈ Q
{
AHAD

(
IL ⊗ AH

CU

)
Φ + N

}
, (31)

yvalid ≈ Φvalid ((IL ⊗ A∗
CU) ⊗ AUT) vec

(
HAD

)
+ nvalid,

(32)

where HAD =
[
H

A

0 H
A

1 · · ·HA

L−1

]
and HAD =[

HA
0 HA

1 · · ·HA
L−1

]
are the angular-delay (abbreviated as the

subscript “AD”) domain channels to be estimated, and they are
sparse due to the well-known dual sparsity in both the angular
domain and delay domain [25], [26], [27], [28], [29], [30].

B. The Proposed CS-Based Algorithms

We now detail our proposed CS-based algorithms for solv-
ing the radar sensing problem (31) and the CE problem (32),
respectively.

1) Radar Sensing Problem: As mentioned previously, the
radar CIR HSD, or equivalently HAD, is estimated at the
DFRC station which has sufficient computing power. We can
formulate this radar sensing problem as a sparse signal recov-
ery problem as follow:

min
HAD

∥∥Y − AHAD

(
IL ⊗ AH

CU

)
Φ
∥∥2

F
,

s.t.
∥∥HAD

∥∥
0
< ε, and spatial consistency holds, (33)

where ε is the threshold defining the stop criterion. Our
proposed OMP-SR algorithm for solving the optimization

in (33) is summarized in Algorithm 1, which takes advantage
of the spatial consistency and the mixed angular resolutions
induced by the WSA and CSA. For notational convenience,
the function [I, J ] = ind2sub ([X,Y ] , Z) in Algorithm 1 is
defined here:

I = Z − (�Z/X� − 1)X,
J = �Z/X� , (34)

which helps to extract the indices of the azimuth angle, the
elevation angle, and the delay-offset based on the selected
atom (see, e.g., steps 5–8 of Algorithm 1).

The main differences between Algorithm 1 and the tradi-
tional OMP algorithm [25] lie in the following two aspects:
(i) By identifying the atom position with the most significant
correlation (step 3), we obtain an estimation of delay, a coarse
estimation of angle μ̂C, and a finer estimation of angle μ̂F (but
with ambiguity). Given the fact that μ̂C and μ̂F correspond
to the same angle component due to the spatial consistency,
we refine μ̂F by adding a term of λ

d multiplied by an integer to
it so that it approaches the coarse estimation μ̂C, and finally
obtain the finer estimation of angle without ambiguity (step
12). (ii) With the finer angle estimation, we reconstruct the
steering vector at the CSA side (step 16) and replace the
corresponding column in the sensing matrix Ψ by using this
refined steering vector (step 17). The sensing matrix after
refinement will better model the angular-domain channel. The
refined sensing matrix Ψ is used for the following subspace
project (step 18) and residual update (step 19). By setting
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Algorithm 1 Orthogonal Matching Pursuit With Support
Refinement (OMP-SR)

Input: Echo pilot signals Y (after quantized by low-resolution
ADCs), measurement matrix Φ, dictionary matrices A and
ACU, and stop criterion.

1: Initialization: Ψ =
[
Φ

T
(IL ⊗ A∗

CU)
]
⊗A, r = vec

(
Y
)
,

and I = Id = Iazi = Iele = ∅.
2: while stop criterion is not met, do
3: isupp = argmax

i

∣∣[ΨHr
]
i

∣∣;
4: I = I ∪ {isupp};

% Function “ind2sub” below defined in (34).
5: Obtain iAoA and iaux via [iAoA, iaux] =

ind2sub
([
GxGy, LG

CU
x GCU

y

]
, isupp

)
;

6: Obtain iAoD and id via [iAoD, id] =
ind2sub

([
GCU

x GCU
y , L

]
, iaux

)
;

7: Obtain iaziAoD and ieleAoD via
[
ieleAoD, i

azi
AoD

]
=

ind2sub
([
GCU

y , GCU
x

]
, iAoD

)
;

8: Obtain iaziAoA and ieleAoA via
[
ieleAoA, i

azi
AoA

]
=

ind2sub
([
Gy, Gx

]
, iAoA

)
;

9: Idelay = Idelay∪{(id−1)Ts−τp}; % Delay Estimation.
% Angle Estimation (steps 10–15):

10: μ̂C = −1 + 2
(
iaziAoD − 1

)
/GCU

x ;
11: μ̂F = −1 +

(
iaziAoA − 1

)
λ/Gxd;

12: μ̂F = μ̂F + kλ
d , where k ∈ Z is the integer closest to

(μ̂C − μ̂F) d
λ ; % Spatial Consistency.

13: Iazi = Iazi ∪ {μ̂F};
14: Obtain finer estimation of elevation angle ν̂F similarly

to steps 10–12;
15: Iele = Iele ∪ {ν̂F};

% Support Refinement (steps 16–17):
16: aaux = a

(
μ̂F;Nx

) ⊗ a
(
ν̂F;Ny

)
, Φaux =[

Φ
T
]
{[(id−1)N+1]:idN}

, and aaux = A{iAoA};

17: Replace isupp-th column of Ψ by q =
(
Φauxa∗

aux

) ⊗
aaux;

18: ĝ = [Ψ]†I vec
(
Y
)
;

19: r = vec
(
Y
)− [Ψ]I ĝ;

20: end while
21: Reconstruct estimate ĤSD of HSD via (7) and (12) based

on Id, Iazi, Iele, and ĝ;

Output: Estimate ĤSD of HSD, estimated target delays Id,
estimated azimuth angles Iazi, and estimated elevation angles
Iele.

an appropriate stop criterion, our OMP-SR algorithm will
output the estimates of HSD and the parameters of interest
Id, Iazi, and Iele. Note that for point target identification,
the parameter estimates Id, Iazi, and Iele are vital, while for
radar imaging application, the estimate of HSD can provide
more information, e.g., the shapes and types of the targets of
interest.

As for the stop criterion of Algorithm 1, a widely-
adopted method is comparing the energy of residual with a
pre-defined threshold [25]. However, the optimal threshold
of this residual-based criterion is hard to obtain, especially
in the high-dynamic ISAC scenarios. With an inappropriate
threshold, the number of algorithm iterations may be either

Algorithm 2 Low-Complexity Channel Estimation at UT
Input: Receive pilot signals yvalid, measurement matrix
Φvalid, dictionaries AUT and ACU.
1: isupp = arg max

i

∣∣[((IL ⊗ AT
CU

)⊗ AH
UT

)
ΦH

validyvalid

]
i

∣∣;
% Function “ind2sub” below defined in (34).

2: Obtain iUT and iaux via [iUT, iaux] =
ind2sub

([
GUT

x GUT
y , LGCU

x GCU
y

]
, isupp

)
;

3: Obtain iCU and id via [iAoD, id] =
ind2sub

([
GCU

x GCU
y , L

]
, iaux

)
;

4: Obtain iaziCU and ieleCU via
[
ieleCU, i

azi
CU

]
=

ind2sub
([
GCU

y , GCU
x

]
, iCU

)
;

5: Obtain iaziUT and ieleUT via
[
ieleUT, i

azi
UT

]
=

ind2sub
([
GUT

y , GUT
x

]
, iUT

)
;

6: μ̂UT = −1 + 2
(
iaziUT − 1

)
/GUT

x , ν̂UT = −1 + 2
(
ieleUT −

1
)
/GUT

y , μ̂CU = −1+2
(
iaziCU−1)

/
GCU

x , and ν̂CU = −1+
2
(
ieleCU − 1

)
/GCU

y ; % Angle Estimation.
7: τ̂ =

{(
id − 1

)
Ts − τp

}
; % Delay Estimation.

Output: Estimates of LoS (virtual) angles {μ̂UT, ν̂UT} at UT
side and {μ̂CU, ν̂CU} at CU side, and estimate of LoS delay-
offset τ̂ .

too large (with unaffordable computational burden) or too
small (sufficient precision cannot be guaranteed). A practical
alternative is setting a maximum number of iterations [44],
which makes both the running time and performance of the
algorithm predictable. In view of this, we will adopt the stop
criterion in [44], where the maximum number of iterations
will be experimentally obtained (see Fig. 7).

2) CE Problem: Since the analog architecture is deployed,
the dimension of the received pilot signals in each time
slot is limited to 1 at the UT, which decreases the number
of measurements and makes it hard to recover the whole
communication CIR. Moreover, the energy-constrained UT has
limited computational capability compared with the DFRC
station. Given the above two limitations, only the LoS angles,{
θaziLoS, θ

ele
LoS

}
,
{
φazi

LoS, φ
ele
LoS

}
, and the LoS delay τLoS in HSD

are estimated via (23) at the UT. After performing the estima-
tion, the UT needs to feed the estimate of

{
φazi

LoS, φ
ele
LoS

}
back

to the CU. The UT and CU then conduct beamforming based
on the estimated

{
θaziLoS, θ

ele
LoS

}
and

{
φazi

LoS, φ
ele
LoS

}
, respectively,

to guarantee reliable data transmission.
The procedure of the CE is summarized in Algorithm 2,

which is a single correlation step of the OMP framework,
and it returns the position of the most significant atom (i.e.,
the LoS path component) in HAD. This single step solution
has low computational complexity and makes it practical
for implementation at the UT. Note that one can readily
extend Algorithm 2 to recover the whole channel HAD

for more sophisticated beamforming methods. However, it is
more practical for the energy-constrained UT to conduct
the beamforming based on the LoS angles obtained by the
low-complexity CE methods such as Algorithm 2.

C. Doppler Estimation Framework

The Doppler estimation and compensation are essential
for effective communication-centric ISAC systems. We focus
on the Doppler estimation for uplink communication, and
the proposed method can be directly applied to the speed
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estimation of radar targets. With the estimates obtained at
the previous stage, the DFRC station will first conduct a
UT scheduling, i.e., choose at most NRF UTs which are
well-separated in either the angular-domain or the delay-
domain to serve, in order to avoid the severe inter-user
interference (IUI). In the rest of this subsection, the index
u, 1 ≤ u ≤ U , is introduced to represent the u-th UT out
of U scheduled UTs. Without loss of generality, we assume
the number of served UTs to be that of RFCs at the CU,
i.e., U = NRF. We assume that only the channel coefficients{
gLoS(t), gc,l(t), gc,l(t)

}
vary over different pilot signals for

Doppler estimation (see the discussion in Subsection III-A).
During the payload data transmission, the analog beamformer
of the u-th UT wD,u ∈ CM×1 is given as

wD,u = a (μ̂UT,u,Mx) ⊗ a (ν̂UT,u,My) , (35)

which is a commonly-used beam steering scheme [4], [36] to
obtain the highest beamforming gain at certain direction, while
the hybrid beamformer at the CU FD ∈ CN×NRF is given by

FD = [fD,1 · · · fD,U ] , (36)

where fD,u = a (μ̂CU,u, Nx) ⊗ a (ν̂CU,u, Ny).
As illustrated in Fig. 2, a small amount of pilot signals are

inserted between the data frames to estimate the Doppler fre-
quencies. These pilot signals are depicted in Fig. 6. Each UT
emits an uplink impulse pilot signal (marked by green pulse
in Fig. 6) between every two data frames, and each data frame
has the duration NDTs. The zero-padding of duration LTs is
added on both sides of the impulse pilot signal to eliminate the
inter-frame interference. With this arrangement, the received
n-th pilot signal yD(τ, tn) ∈ CNRF×1 is expressed as

yD(τ, tn)=FT
D

U∑
u=1

√
PUT

u HT
u (τ, tn)w∗

D,u+FT
DnD(τ, tn),

(37)

where tn is the time index of the n-th impulse, HT
u (τ, tn) ∈

CN×M is the uplink communication channel of the u-th UT
(the channel reciprocal in TDD mode is considered), PUT

u

is the transmit power of the u-th UT, and nD(τ, tn) ∼
CN (

0N×1, σ
2
nIN

)
is the AWGN vector.

Remark 2: Due to the high path loss of NLoS paths in
the mmWave band, the NLoS paths contribute little for the

Fig. 6. The detailed payload data transmission frame structure in Fig. 2.

communication applications in the presence of the strong LoS
path. For example, the Rician factor is considered as 20 dB in
the mmWave band [26]. Moreover, the beam steering towards
the LoS direction in (35) and (36) will significantly suppress
the signals from the NLoS paths, benefiting from the asymptotic
orthogonality of massive MIMO [36, Lemma 1].

According to Remark 2, we can safely treat the influence of
the NLoS paths as some negligible noises after beamforming.
Hence, we can re-write (37) as (38), where GUT

u is the transmit
beamforming gain at the u-th UT, and gCU

LoS,u is given in (39).
Both (38) and (39), shown at the bottom of the page.

Note that only the LoS components in HT
u (τ, tn) are

kept in (38). Furthermore, by utilizing the estimated LoS
delay-offset τ̂u of the u-th UT’s channel from Algorithm 2,
we obtain the received pilot signal in the delay domain which
corresponds to the LoS path as (40), shown at the bottom of
the page. It can be seen that in (40) the IUI is significantly
suppressed. This is because given the well-separated UTs after
scheduling, we usually can guarantee[
gCU

LoS,u′
]
u
≈ 0 and/or p (τ̂u − τLoS,u′ − τp) ≈ 0,

for ∀u′ �= u. (41)

The formula in (40) motivates us to estimate the Doppler
frequencies in a UT-wise manner, where the IUI can be treated
as noise for each UT. By collecting

{[
yD (τ̂u, tn)

]
u

}PD

n=1
in

PD successive impulse pilot signals, we obtain a time series
yD

u ∈ C
PD×1 as

yD
u =

[[
yD (τ̂u, t1)

]
u
· · · [yD (τ̂u, tPD)

]
u

]T
= Au [gLoS,u (t1) · · · gLoS,u (tPD)]T + neff

u , (42)

where Au =
√
PUT

u GUT
u

[
gCU

LoS,u

]
u
p (τ̂u − τLoS,u − τp) is a

constant, neff
u ∈ CPD×1 is an effective noise vector includ-

ing both the IUI and AWGN in (40), and tn − tn−1 =
(2L+ND) Ts, n > 1. The time series yD

u can be viewed as

yD(τ, tn) ≈
U∑

u=1

√
PUT

u FT
Da∗

N

(
ϕazi

LoS,u, ϕ
ele
LoS,u

)︸ ︷︷ ︸
gCU
LoS,u

aT
M

(
θaziLoS,u, θ

ele
LoS,u

)
w∗

D,u︸ ︷︷ ︸
GUT

u

× p (τ − τLoS,u − τp) gLoS,u (tn) + FT
DnD(τ, tn)

=
U∑

u=1

√
PUT

u GUT
u gCU

LoS,up (τ − τLoS,u − τp) gLoS,u (tn) + FT
DnD (τ, tn) . (38)

gCU
LoS,u =

[
aH

N

(
ϕazi

LoS,u, ϕ
ele
LoS,u

)
fD,1 · · ·aH

N

(
ϕazi

LoS,u, ϕ
ele
LoS,u

)
fD,U

]T
. (39)[

yD (τ̂u, tn)
]
u

=
√
PUT

u GUT
u

[
gCU

LoS,u

]
u
p (τ̂u − τLoS,u − τp) gLoS,u (tn)

+
∑
u′ �=u

√
PUT

u′ GUT
u′

[
gCU

LoS,u′
]
u
p (τ̂u − τLoS,u′ − τp) gLoS,u′ (tn)

︸ ︷︷ ︸
IUI term

+fT
DnD (τ̂u, tn) . (40)
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the noisy uniformly-spaced samples of a single-tone complex
sinusoid, whose frequency is the Doppler frequency of the u-th
UT. The sampling interval is TD

Δ= (2L+ND)Ts. Many off-
the-shelf techniques can be used for estimating the Doppler
frequency via yD

u . We resort to the weighted normalized
auto-correlation linear predictor (WNALP) [45] for its near-
optimal performance.

Remark 3: The proposed Doppler estimation framework for
multi-user uplink communications can be directly applied to
the speed estimation of radar targets. In the context of radar,
the CU and RU align the beams towards the targets of interest
by using the estimation results at the initial stage, as done
in (36). During the target tracking, the CU emits the impulse
pilot signal with an appropriate repetitive interval, and the
RU receives the corresponding echo signals for the Doppler
estimation, as done in (37)-(42). The Doppler estimation for
communications and radar sensing can be conducted in a
time-division manner to avoid cross interference between the
uplink communication signals and radar echo signals.

D. Computational Complexity Analysis

In this subsection, we analyse the computational complexity
of the proposed ISAC scheme as follows.

• OMP-SR in Algorithm 1 has four major parts:
correlation (step 3), support refinement (steps 16–17),
project subspace (step 18), and residual update (step
19), and the computational complexity of each part
is O (

QNLGxGyG
CU
x GCU

y

)
, O (

QN + (Q+ 1)N
)
,

O (
I3 + 2QNI2 +QNI

)
, and O (

QNI
)
, respectively,

where I stands for the current number of iterations.
• Low-complexity CE scheme in Algorithm 2

has the overall computational complexity of
O (

NvalidG
CU
x GCU

y GUT
x GUT

y

)
, where Nvalid is the

dimension of yvalid.
• The proposed Doppler estimation framework has the

computational complexity of O (UPD).

V. SIMULATION RESULTS

In this section, we present numerical results to evaluate the
performance of the proposed ISAC scheme, and compare it
with existing counterparts in the literature.

A. Experimental Setting

We consider a vehicular network with a DFRC station as
the RSU [36]. Since in this case, the system only needs
to acquire the information of horizontal obstacles to avoid
collision, we focus only on the azimuth angles of UTs and
targets by setting Ny = Ny = 1. Note that our ISAC scheme
is also valid for the full-dimensional CE and radar sensing.
In our simulation system, we set Nx = 16, NRF = 4,
Nx = Mx = 8, fc = 77GHz, Ts = 5 × 10−9 s (bandwidth
BW = 200MHz), L = 32, and TGI = 10 [30]. Each
ADC at the RU uniformly quantizes the receive signals to
2B levels with B quantization bits. The raised cosine filter
with a roll-off factor of 0.8 and single side duration τp = 6 Ts

is adopted as p(τ). The noise-power spectral density at the
receivers is NPSD = −174dBm/Hz, and the power of AWGN

σ2
n is thus σ2

n = NPSD × BW ≈ −91dBm. The number
of sub-path components in each clustered target or scatter
is NP = NP = 15, and the central azimuth angle, central
elevation angle, and central delay-offset of each cluster follow
U [0, 2π), U [0, π/3], and U [0, (L− 1)Ts − 2τp], respectively.
Each cluster is generated with an angle spread 7.5◦ and a delay
spread 0.3Ts. The time-varying channel coefficients gLoS(t),
gc,l(t), and gc,l(t) are given as

gLoS(t) =
λejθ

4πdUT
ej2πfDt, (43)

gc,l(t) =
|gLoS(t)| ejθc,l

√
KfNCNP

ej2πfD,ct, (44)

gc,l(t) =

√
σcλ2

NP(4π)3d
4

c

ejθc,lej2πfD,ct, (45)

where dUT (dc) is the distance between the UT (the
c-th target) and the DFRC station, θ, θc,l, and θc,l are the
phase-shifts induced by the corresponding channel paths,
while fD, fD,c, and fD,c are the Doppler frequencies of
the UT, the c-th scatter, and the c-th target, respectively. Kf

is the Rician factor, and σc is the RCS of the c-th target.
We set dUT ∼ U [10, 20]m, dc ∼ U [5, 10]m, θ, θc,l, θc,l ∼
U [0, 2π), fD, fD,c, fD,c ∼ U [−7.1, 7.1]kHz (corresponding
to a maximum radical velocity 100km/h), Kf = 20dB, and
σc ∼ U [0.5, 5] m2. The length of each payload data frame
is ND = 1024 (see Fig. 6), and without loss of generality
we set t1 = 0 in (42) for the Doppler estimation. Unless
stated otherwise, P = 200, PDL = 60dBm, NC = NC = 6,
d = 1.5λ, Gx/Nx = 2, B = 5, TCU

RF = TUT
RF = 30, and the

number of iterations is set to 150 in Algorithm 1.

B. Numerical Results

1) Radar Sensing Performance: For radar sensing, the
dimension of the dictionary for the CU is fixed to
GCU

x = Nx. In Figs. 7 to 10, we investigate the perfor-
mance of the proposed radar sensing scheme by evaluating
the normalized mean square error (NMSE) between the real
radar CIR HSD and its estimate ĤSD, which is given by

E

{����HSD−HSD

���
2

F

‖HSD‖2

F

}
.

Specifically, Fig. 7 depicts the convergence of the OMP-SR
algorithm under different channel conditions. It can be seen
that Algorithm 1 converges reasonably fast and it achieves
good NMSE performance under different channel conditions.
In particular, Fig. 7 reveals that initially the NMSE decreases
rapidly as the iteration increases. After reaching the mini-
mum NMSE value, further increase in the algorithm iteration
degrades the NMSE performance, as too many iterations make
the algorithm incapable of fitting the sparsity level of the actual
CIR. The results of Fig. 7 also provide insight in choosing
appropriate stop criterion for the OMP-SR algorithm. In par-
ticular, for scenarios where the CIR exhibits extreme sparsity,
such as aerial target detection or satellite communications,
the number of iterations should be small, while for terrestrial
scenarios with more targets or scatters, the number of iterations
should be moderately large.
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Fig. 7. The convergence of OMP-SR algorithm. Three different environmen-
tal conditions are compared.

Fig. 8. The performance of the proposed scheme vs. the inter-element spacing
of WSA. The number of iterations is 100.

Fig. 8 reports the NMSE performance as the function of
inter-element spacing of the WSA d under different dictionary
dimensions Gx, where Nxd > Nxdcri, i.e., d > λ. Observe
that within certain regime, e.g., Gx/Nx < 1.5, increasing Gx

and d significantly improves the NMSE performance of radar
sensing, since larger Gx or d results in finer angular resolution
according to (27). By contrast, for Gx/Nx ≥ 1.5, the
NMSE performance exhibits no improvement with increasing
d. Note that increasing Gx enlarges the dimension of the CS
problem (33), while increasing d would lead to bulky antenna
array. Therefore, the values of Gx and d should be carefully
chosen to strike a balance between system performance and
hardware complexity.

To investigate the proposed pilot waveform design, we plot
the NMSE performance as the function of the codebook size
NCB in Fig. 9. We also depict the idealized case where
the analog precoders could change in each sample without
reconfigurable time, i.e., NCB = P , as done in [4], which
forms the lower bound of the NMSE.6 As expected, the radar
sensing suffers from the limited pilot diversity whenNCB = 1,
since the beam pattern produced by a single analog precoder
during radar sensing is very likely to miss the real position of
targets. Hence, it is necessary to increase NCB to obtain higher
pilot diversity for better sensing performance, as shown in
Fig. 9. For typical values of P , e.g., 120 and 240, the sensing
performance improves with NCB quickly, reaching the NMSE

6In practice, this idealized lower bound is unrealizable, see Remark 1.

Fig. 9. The radar sensing performance with the proposed waveform design.
The idealized case having no configurable time [4] is considered as the lower
bound.

Fig. 10. Performance comparison of different radar CIR recovery algorithms,
including the proposed OMP-SR, the original OMP [25], and the block
OMP [28], with P = 290.

performance very close to the idealized lower bound. However,
for small P , e.g., 60, increasing NCB may cause performance
loss. This is because larger NCB would require more zero
pilot signals (see Fig. 3) and thus degrade the received power.
In practice, we can choose some appropriate value of NCB,
e.g., 3, for not only achieving good sensing performance but
also alleviating the storage burden at the DFRC station.

Fig. 10 compares the performance of the proposed OMP-SR
algorithm with two existing schemes, the original OMP algo-
rithm [25] without the support refinement, and the block-OMP
algorithm [28] which only utilizes the delay-domain sparsity.
The number of iterations for the original OMP is set to that
of the OMP-SR for fare comparison, while the number of
iterations for the block OMP is fixed to 10, as it only considers
the delay sparsity but not angular sparsity. The impact of
low-resolution ADCs is also investigated in Fig. 10. It can
be seen that the OMP-SR outperforms the other two schemes
significantly in the whole range of downlink transmit power
and for different quantization bits, as it takes full advantage
of the higher angular resolution of the WSA and the spatial
consistency. Moreover, Fig. 10 indicates that the performance
loss caused by low-resolution ADC is acceptable for our OMP-
SR algorithm. For example, the sensing performance with
practical 5-bit ADCs can well approach that with the ideal
infinite-resolution ADCs (the black dotted line), and this fur-
ther validates the effectiveness of our proposed radar receiver.
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Fig. 11. A visualization of radar sensing performance. When plotting
the estimated positions of targets, we only reserve the components whose
amplitudes are larger than σn√

NC
. The CIRs in the spatial-delay domains are

also presented.

Also note that P = 290 in Fig. 10 makes the dimension of
measurements QN = 2568 much smaller than that of actual
CIR LNN = 4096. Consequently, the matrix Φ

H
Φ is not

invertible, and thus the conventional linear estimation methods,
such as least squares, fail to work properly. This reveals the
necessity of CS in the face of under-determined measurements.

To intuitively show the performance of radar sensing,
we compare the estimated results to the true values of the angle
and range (delay) parameters for a single channel realization
in Fig. 11. For clearness purpose, we consider point targets,
i.e., NP = 1, and set the number of iterations to 20 for
Algorithm 1. It can be seen from Fig. 11 (a) that by using
our OMP-SR algorithm, all the targets’ angles and delays
(ranges) can be accurately estimated. By contrast, if we only
use the angle estimation from step 10 of Algorithm 1 without
support refinement, i.e., use the original OMP, although the
delay estimation is as accurate as that obtained by OMP-SR
algorithm, the angle estimation exhibits severe blurring due to
the angular ambiguity induced by the WSA, as can be seen
clearly from Fig. 11 (b). This blurring will result in missing
detection and/or false alarm in radar sensing, putting the
served UTs at risk of collision and/or sudden stop. Therefore,
the proposed support refinement procedure is necessary when
WSA is considered.

Fig. 12. ASE performance versus downlink transmit power.

2) Communication Performance: Next, we investigate the
communication performance under the proposed ISAC frame-
work. We adopt the average spectral efficiency (ASE) to
evaluate the LoS angle estimation performance of the low-
complexity Algorithm 2. The ASE is defined by

ASE=E
{

1
ND

ND∑
n=1

log2

(
1+

PDL

σ2
nNRF

× ∣∣[âH
UTHSF (IND ⊗ âCU)

]
n

∣∣2 )} [bit/s/Hz], (46)

where âUT = a (μ̂UT;Mx) and âCU = a (μ̂CU;Nx)
are the steering vectors towards the estimated LoS
directions μ̂UT and μ̂CU, respectively, HSF =[
HSD 0Mx×(ND−L)Nx

]
(FDFT ⊗ INx) is the spatial-

frequency (SF)-domain channel, and FDFT is the ND × ND

DFT matrix. We also define rdic
Δ=GCU

x /Nx = GUT
x /Mx as a

dictionary design parameter.
To validate the effectiveness of the proposed low-complexity

CE scheme, Fig. 12 depicts the ASE performance, based on the
estimated LoS angles, as a function of the downlink transmit
power, against various values of rdic. It can be seen that
compared with the non-redundant dictionary (rdic = 1), our
redundant dictionary design (ddic > 1) significantly improves
the ASE performance given the same pilot overhead. With
P = 300 and rdic = 2, the ASE performance well approaches
that with the perfect LoS angles. Due to its superior perfor-
mance, we adopt rdic = 2 to investigate the impact of our
pilot waveform design. Fig. 13 plots the ASE performance as
the function of UT codebook size MCB. For simplicity, we fix
Q for each curve in Fig. 13 and vary TUT

RF to obtain different
MCB. Similar to Fig. 9, Fig. 13 shows that a single analog
combiner (MCB = 1) leads to poor ASE performances, while
increasingMCB significantly improves the ASE performances.
The results of Figs. 9 and 13 confirm that our pilot waveform
design is effective and necessary for HBF-aided ISAC systems
to realize pilot diversity under practical hardware constraint.

We further investigate the effectiveness of the proposed
Doppler estimation scheme. Note that we only reserve the
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Fig. 13. ASE performance versus UT codebook size MCB.

Fig. 14. Doppler estimation performance. For the initial CE, P = 300. For
multi-UT Doppler estimation, U = 4, and the transmit power of each UT is
equal (denoted as PUT).

results for those UTs with
∥∥yD

u

∥∥
2

≥ 10
√
PDσn.7 Fig. 14

compares the average MSE performance of Doppler estima-
tion with or without IUI. The average MSE is defined as

E
{

U∑
u=1

∣∣∣2πTD

(
f̂D,u − fD,u

)∣∣∣2} [45], [46], where fD,u is the

Doppler frequency of the u-th UT and f̂D,u is its estimate.
We also plot the CRB of the single-tone frequency estimation
problem [46, (12)] in Fig. 14. It can be seen that for PD = 2,
the influence of IUI is not serious and it hardly affects the
Doppler estimation. Hence, the MSE performance with IUI
can attain the CRB, particularly in the low transmit power
regime of PUT < 10dBm. By contrast, for larger PD, e.g.,
PD = 4, the MSE performance deviates from the CRB as
PUT increases, leading to an error floor. However, this MSE
gap only makes negligible influence on the real communication
performance as will be seen next.

Fig. 15 plots the downlink bit-error-rate (BER) performance
with or without Doppler compensation. We consider the
orthogonal frequency division multiplexing (OFDM) trans-
mission with ND = 1024 sub-carriers between the CU
and UTs. The estimated Doppler frequency obtained by the
proposed scheme with PUT = 23dBm and PD = 4 is
used to compensate for the Doppler effect of the LoS path.

7This is because the very low energy of yD
u in (42) may indicate the

unreliable CE results at the initial estimation stage. In such a case, re-
estimation of angles and delays is necessary before conducting Doppler
estimation.

Fig. 15. Downlink BER performance. The same scenario in Fig. 14 is
considered. The estimation results with PUT = 23 dBm and PD = 4 are
adopted for Doppler compensation.

It can be seen from Fig. 15 that the BER with the estimated
Doppler compensation is almost the same as that with the
perfect Doppler compensation, even though the MSE perfor-
mance cannot achieve the CRB, as shown in Fig. 14. With-
out Doppler compensation, severe inter-carrier interference
caused by Doppler effect [43] degrades the BER dramatically.
Specifically, it can be seen from Fig. 15 that with Doppler
compensation, there is about 10dB gain at the BER of 10−4

for uncoded 16-QAM modulation scheme. This means that the
proposed scheme for Doppler estimation and compensation
is vital for combating time-varying mmWave channels in
communication-centric ISAC systems.

VI. CONCLUSION

We have investigated the ISAC system aided by mmWave
mMIMO with HBF architecture. First, we have introduced
an energy-efficient WSA architecture as the radar receiver to
enhance the angular resolution of radar sensing. Then, we have
designed an ISAC frame structure for time-varying ISAC
systems, which facilitates the estimation of angles, delays,
and the Doppler frequencies. In particular, the pilot wave-
forms have been designed to meet the hardware constraints
induced by HBF array. In order to reduce the pilot overhead,
we formulated the ISAC processing as sparse signal recovery
problems with dedicated dictionaries, to utilize advanced
compressive sensing techniques. Specifically, we have pro-
posed the orthogonal matching pursuit with support refinement
algorithm, which can cope with angular ambiguity and achieve
better recovery performance than its traditional counterparts.
We also provided a framework of estimating the Doppler
frequencies of users/targets, which is essential for both speed
measurement and payload data demodulation. Possible future
research directions based on this paper include the study of
robust quantized CS methods, the interaction between the radar
sensing algorithm and CE algorithm, the beamforming design
for the proposed transceiver architecture, the analysis of near-
field effect, and the proof-of-concept field experiments.
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