
NONLINEAR AND NON-GAUSSIAN SIGNAL PROCESSING

Adaptive minimum bit-error-rate filtering
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Abstract: Adaptive filtering has traditionally been developed based on the minimum mean square
error (MMSE) principle and has found ever-increasing applications in communications. The paper
develops adaptive filtering based on an alternative minimum bit error rate (MBER) criterion for
communication applications. It is shown that the MBER filtering exploits the non-Gaussian
distribution of filter output effectively and, consequently, can provide significant performance gain
in terms of smaller bit error rate (BER) over the MMSE approach. Adopting the classical Parzen
window or kernel density estimation for a probability density function (pdf), a block-data gradient
adaptive MBER algorithm is derived. A stochastic gradient adaptive MBER algorithm is further
developed for sample-by-sample adaptive implementation of the MBER filtering. Extension of the
MBER approach to adaptive nonlinear filtering is also discussed.

1 Introduction

Adaptive filtering has been an enabling technology for
communications. Traditionally, adaptive filtering has been
developed based on the Wiener or MMSE approach [1, 2].
For a communication system, however, it is the BER, not the
mean square error (MSE), that really matters. In communi-
cation applications, the pdf of an adaptive filter output is
generally a mixed sum of Gaussian distributions. This non-
Gaussian nature can be exploited explicitly, leading to
alternative approaches to the MMSE filtering. For single-
user channel equalisation applications, an adaptive MBER
linear equaliser and a decision feedback equaliser have been
developed [3–10]. Similar approaches have been adopted for
linear multi-user detection in CDMA systems [11–16].
Recently, the MBER beamforming using an antenna array
for wireless communication has been considered [17–19].
These previous studies have demonstrated that the MBER
approach offers potentially significant performance improve-
ment and it provides a viable alternative to the traditional
adaptive filtering based on the MMSE principle.

The main contribution of this paper is to present a unified
framework for adaptive MBER filtering. A linear filtering
model is given in the general communication setting, and the
theoretical MBER filtering solution is derived. To effectively
implement the MBER solution, the non-Gaussian probability
distribution of the filter output needs to be approximated
accurately, and this is achieved by adopting the classical
Parzen window pdf estimate [20–22], which naturally gives
rise to a block-data gradient adaptive MBER algorithm.
Sample-by-sample adaptive implementation of the MBER
filtering is then considered, and a stochastic gradient adaptive
MBER algorithm is derived which has a similar compu-
tational complexity to the very simple least mean square
(LMS) algorithm. Two applications involving channel
equalisation and beamforming with an antenna array are

used to demonstrate the generality and effectiveness of
adaptive MBER filtering. Simulation results obtained
confirm the superior performance of the MBER filtering
over the MMSE one. How to extend this adaptive MBER
approach to nonlinear filtering is also discussed.

2 System model

Consider the general linear filter of the form

yðkÞ ¼
XL�1

l¼0

w�
l xlðkÞ ¼ wHxðkÞ ð1Þ

where L is the filter length, xðkÞ ¼ ½x0ðkÞ x1ðkÞ � � � xL�1ðkÞ�T
is the complex-valued filter input vector and w ¼ ½w0 w1

� � �wL�1�T; the complex-valued filter weight vector. Such a
filter can be found in receivers of various communication
systems. In channel equalisation, for example, x(k) is
generated from a tap-delay-line of the received signal. For
multi-user detection in CDMA systems, x(k) consists of chip
rate received samples. In adaptive beamforming, x(k)
consists of received signals at the elements of the antenna
array. Generally, x(k) can be expressed as

xðkÞ ¼ PbðkÞ þ nðkÞ ¼ �xxðkÞ þ nðkÞ ð2Þ
where the complex-valued Gaussian noise vector nðkÞ ¼
½n0ðkÞ n1ðkÞ � � � nL�1ðkÞ�T has zero mean and covariance
matrix E½nðkÞnHðkÞ� ¼ 2�2

nIL; with IL denoting the L 
 L
identity matrix, the complex-valued system matrix P has
dimension L 
 M; and the information symbol vector bðkÞ
¼ ½b0ðkÞ b1ðkÞ � � � bM�1ðkÞ�T: For single-user applications,
b(k) contains current and previous M�1 transmitted
symbols and, for multi-user applications, b(k) consists of
transmitted different user symbols. Typically, biðkÞ and
bqðkÞ are uncorrelated if i 6¼ q: In this study, the modulation
scheme is assumed to be binary phase and shift keying, that
is, b(k) is real valued with biðkÞ 2 f�1g for 0 � i � M � 1:
The reason for considering the case of binary symbols is to
simplify notations and to concentrate on the basic concepts.
The approach can be extended to multi-level and complex-
valued modulation schemes (see [23–25]).

The purpose of the filter (1) is to enable an estimate of the
‘desired’ symbol bdðkÞ; the dth element of b(k), and this
estimate is given by
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b̂bdðkÞ ¼ sgnðyRðkÞÞ ð3Þ
where sgnð·Þ denotes the sign function, and yRðkÞ ¼ R½yðkÞ�
is the real part of y(k). Note that

�xxðkÞ 2 X ¼D f�xxq ¼ Pbq; 1 � q � Nbg ð4Þ

where Nb ¼ 2M and bq; 1 � q � Nb; are all the possible
sequences of b(k). The vector set X can be divided into two
subsets depending on the value of bdðkÞ:

Xð�Þ ¼D f�xxð�Þ
q 2 X : bdðkÞ ¼ �1g ð5Þ

The filter output y(k) can be expressed as

yðkÞ ¼ wHð�xxðkÞ þ nðkÞÞ ¼ �yyðkÞ þ eðkÞ ð6Þ
where e(k) is Gaussian with zero mean and variance
E½jeðkÞj2� ¼ 2�2

nwHw; and

�yyðkÞ 2 Y ¼D f�yyq ¼ wH �xxq; 1 � q � Nbg ð7Þ

Thus, �yyRðkÞ ¼ R½�yyðkÞ� can only take value from the scalar
set

YR ¼D f�yyR;q ¼ R½�yyq�; 1 � q � Nbg ð8Þ

which can be partitioned into the two subsets conditioned on
the value of bdðkÞ;

Yð�Þ
R ¼D f�yyð�Þ

R;q 2 YR : bdðkÞ ¼ �1g ð9Þ

The classical Wiener solution for the linear filter (1),

wMMSE ¼ ðPPH þ 2�2
nILÞ�1pd ð10Þ

where pd denotes the dth column of P, is generally not the
optimal MBER solution. For wMMSE to be an MBER
solution, the conditional pdf of yRðkÞ given bdðkÞ ¼ þ1
(or bdðkÞ ¼ �1Þ should be Gaussian. However, this is
obviously not the case. The so-called zero-forcing (ZF)
solution wZF; on the other hand, does achieve a Gaussian
conditional pdf, since the combined impulse response of the
ZF filter and the system matrix cZF ¼ wH

ZFP has all zero
elements except the dth element cd: That is, the ZF filter
output is

yðkÞ ¼ cdbdðkÞ þ eðkÞ ð11Þ
However, the ZF filter suffers from a problem of serious
noise enhancements and, consequently, its performance is
much inferior compared with the MMSE filtering, in terms
of both the MSE and BER. Since the BER is the true
performance indicator of the system, it is desired to consider
the optimal MBER filter solution.

3 Minimum bit error rate filtering solution

To derive the BER expression for the linear filter with a
weight vector w, first note that the pdf of yRðkÞ is a mixed
sum of Gaussian distributions:

pðyRÞ ¼
1

Nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�2

nwHw
p XNb

q¼1

exp �
ðyR � �yyR;qÞ2

2�2
nwHw

 !
ð12Þ

By exploiting the symmetric distributions of YR; it can be
shown that the BER is given by

PEðwÞ ¼
1

Nsb

XNsb

q¼1

Qðgq;þðwÞÞ ð13Þ

where Nsb ¼ Nb=2 is the number of the points in YðþÞ
R ;

gq;þðwÞ ¼
sgnðbq;dÞ�yy

ðþÞ
R;q

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ¼
sgnðbq;dÞR½wH �xx

ðþÞ
q �

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ð14Þ

�yy
ðþÞ
R;q 2 YðþÞ

R and bq;d is the dth element of bq corresponding to
the desired symbol bdðkÞ: Note that the BER is invariant to a
positive scaling of w. Alternatively, the BER can be
calculated using the other subset Yð�Þ

R : A proof of the
BER formula (13) is given in the Appendix, where it can
also be seen that the BER can be expressed as

PEðwÞ ¼
1

Nb

XNb

q¼1

QðgqðwÞÞ ð15Þ

with

gqðwÞ ¼
sgnðbq;dÞ�yyR;q

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ¼
sgnðbq;dÞR½wH �xxq�

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ð16Þ

and the calculation being over all the �yyR;q 2 YR:
The MBER filtering solution is then defined as

wMBER ¼ argmin
w

PEðwÞ ð17Þ

Unlike the unique MMSE solution, there exists no close-
form solution for wMBER; and there are an infinite number of
MBER solutions. In fact, if wMBER is a MBER solution, then
awMBER are all MBER solutions for any a > 0: The gradient
of PEðwÞ with respect to w is

HPEðwÞ ¼
1

2Nsb

ffiffiffiffiffiffi
2p

p
�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p
XNsb

q¼1

exp �
�yy
ðþÞ
R;q

� �2

2�2
nwHw

0
B@

1
CA


 sgnðbq;dÞ
�yyþR;qw

wHw
� �xxðþÞ

q

� �
ð18Þ

With the gradient, the optimisation problem (17) can be
solved for iteratively using a gradient-based optimisation
algorithm. It is also computationally advantageous to
normalise w to a unit length after every iteration, so that
the gradient can be simplified as

HPEðwÞ ¼
1

2Nsb

ffiffiffiffiffiffi
2p

p
�n

XNsb

q¼1

exp �
�yy
ðþÞ
R;q

� �2

2�2
n

0
B@

1
CA


 sgnðbq;dÞ �yy
ðþÞ
R;q w � �xxðþÞ

q

� � ð19Þ

The following simplified conjugate gradient algorithm [26,
16] provides an efficient means to find a MBER solution.
The algorithm is summarised:

Initialisation: Choose step size m > 0 and termination scalar
b > 0; given w(0) and dð0Þ ¼ �HPEðwð0ÞÞ; set iteration
index � ¼ 0:

Loop: If kHPEðwð�ÞÞk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHPEðwð�ÞÞÞHHPEðwð�ÞÞ

q
<b:

goto Stop.
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wð�þ1Þ¼wð�Þþmdð�Þ

wð�þ1Þ¼ wð�þ1Þ
kwð�þ1Þk

��¼
kHPEðwð�þ1ÞÞk2

kHPEðwð�ÞÞk2

dð�þ1Þ¼��dð�Þ�HPEðwð�þ1ÞÞ

�¼�þ1; goto Loop.
Stop: wð�Þ is the solution.

At a minimum we have kHPEðwÞk ¼ 0: Hence the
termination scalar b determines the accuracy of the solution
obtained. The step size m controls the rate of convergence.
Typically, a much larger value of m can be used compared to
the steepest-descent gradient algorithm. As the BER surface
PEðwÞ is highly nonlinear, occasionally the search direction
d may no longer be a good approximation to the conjugate
gradient direction or may even point to the ‘uphill’
direction, when the iteration index becomes large. It is
thus advisable to periodically reset d to the negative gradient
in the above conjugate gradient algorithm.

4 Adaptive minimum bit error rate filtering

In reality, the pdf of yRðkÞ is unknown. The key to adaptive
implementation of the MBER filtering solution is an
effective estimate of the pdf (12). The Parzen window or
kernel density estimate [20–22] is the best known method
for estimating a probability distribution. The Parzen
window method estimates a pdf using a window or block
of yRðkÞ by placing a symmetric unimodal kernel function
on each yRðkÞ: Kernel density estimation is capable of
producing reliable pdf estimates with short data records and
in particular is extremely natural when dealing with
Gaussian mixtures, such as the one given in (12). In our
particular application, it is obvious and natural to choose a
Gaussian kernel function with a kernel width rn

ffiffiffiffiffiffiffiffiffiffi
wHw

p
that

is similar in form to the noise standard deviation �n

ffiffiffiffiffiffiffiffiffiffi
wHw

p
:

4.1 Block-data gradient adaptive MBER
algorithm

Given a block of K training samples fxðkÞ; bdðkÞg; a Parzen
window estimate of the pdf (12) is readily given by

p̂pðyRÞ ¼
1

K
ffiffiffiffiffiffi
2p

p
rn

ffiffiffiffiffiffiffiffiffiffi
wHw

p
XK

k¼1

exp �ðyR � yRðkÞÞ2

2r2
nwHw

� �
ð20Þ

where the radius or scaling parameter rn is related to the
standard deviation �n of the system noise. Accuracy
analysis of the Parzen window density estimate is well
documented in the literature. The pdf estimate (20) is known
to possess a mean integrated square error convergence rate
at order K�1 [20]. Some examples of accurate pdf estimates
using (20) with short data records can be seen in [10, 16].

In [21], a lower bound rn ¼ 4=3Kð Þ1=5�n is suggested. In
practice, rn can often be chosen from a large range of
values.

From this estimated pdf, the estimated BER is given by

P̂PEðwÞ ¼
1

K

XK

k¼1

QðĝgkðwÞÞ ð21Þ

with

ĝgkðwÞ ¼
sgnðbdðkÞÞyRðkÞ

rn

ffiffiffiffiffiffiffiffiffiffi
wHw

p ð22Þ

The gradient of P̂PEðwÞ is

HP̂PEðwÞ ¼
1

2K
ffiffiffiffiffiffi
2p

p
rn

ffiffiffiffiffiffiffiffiffiffi
wHw

p
XK

k¼1

exp � y2
RðkÞ

2r2
nwHw

� �


 sgnðbdðkÞÞ
yRðkÞw
wHw

� xðkÞ
� �

ð23Þ

By substituting HPEðwÞ with HP̂PEðwÞ in the conjugate
gradient updating mechanism, a block-data gradient adap-
tive MBER algorithm is readily obtained. The step size m
and radius parameter rn are the two algorithm parameters
that need to be chosen.

4.2 Stochastic gradient adaptive MBER
algorithm

In the Parzen window estimate (20), the kernel width
rn

ffiffiffiffiffiffiffiffiffiffi
wHw

p
depends on the filter weight vector w. In a general

density estimate, there is no reason why the kernel width
should be chosen in such a way except that we notice the
dependency of the noise standard deviation on w in the true
density (12). However, the BER is invariant to wHw: To fully
take advantage of this fact, a constant width rn in density
estimate can be used. One advantage of using a constant

width rn; rather than a variable one, rn

ffiffiffiffiffiffiffiffiffiffi
wHw

p
; in the density

estimate is that the gradient of the resulting estimated BER
has a much simpler form, which leads to considerable
reduction in computational complexity. This is particularly
relevant in the derivation of stochastic gradient updating
mechanisms. Adopting this approach, an alternative Parzen
window estimate of the true pdf (12) is given by

�ppðyRÞ ¼
1

K
ffiffiffiffiffiffi
2p

p
rn

XK

k¼1

exp �ðyR � yRðkÞÞ2

2r2
n

� �
ð24Þ

and an approximation of the BER is

P̂PEðwÞ ¼
1

K

XK

k¼1

Qð~ggkðwÞÞ ð25Þ

with

~ggkðwÞ ¼
sgnðbdðkÞÞyRðkÞ

rn

ð26Þ

This approximation is valid provided that the width rn is
chosen appropriately.

To derive a sample-by-sample adaptive algorithm,
consider a single-sample estimate of pðyRÞ; namely

~ppðyR; kÞ ¼ 1ffiffiffiffiffiffi
2p

p
rn

exp �ðyR � yRðkÞÞ2

2r2
n

� �
ð27Þ

Conceptually, from this one-sample pdf ‘estimate’, we have
a one-sample or instantaneous BER ‘estimate’ ~PPEðw; kÞ:
Using the instantaneous stochastic gradient of

H ~PPEðw; kÞ ¼ � sgnðbdðkÞÞ
2
ffiffiffiffiffiffi
2p

p
rn

exp � y2
RðkÞ
2r2

n

� �
xðkÞ ð28Þ

gives rise to the following stochastic gradient adaptive
MBER algorithm:

wðk þ 1Þ ¼ wðkÞ þ m
sgnðbdðkÞÞ
2
ffiffiffiffiffiffi
2p

p
rn

exp � y2
RðkÞ
2r2

n

� �
xðkÞ ð29Þ

This adaptive algorithm has a similar computational
complexity to the very simple LMS algorithm, which is
given by
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wðk þ 1Þ ¼ wðkÞ þ mðbdðkÞ � yðkÞÞx�ðkÞ ð30Þ
It is interesting to see some analogy between the traditional
adaptive filtering approach based on the MMSE criterion
and the proposed adaptive MBER filtering approach. The
second-order statistics required to compute the Wiener
solution can be estimated using a block of samples, and, by
considering a single-sample estimate, a stochastic gradient
adaptive MMSE algorithm, namely the LMS, is derived.
The pdf required to determine the MBER solution can be
approximated with a kernel density estimate based on a
block of samples, and by considering a single-sample
density estimate, a stochastic gradient adaptive MBER
algorithm is formulated. The adaptive gain m and kernel
width rn for the adaptive algorithm (29) should be chosen
appropriately to ensure good performance in terms of
convergence speed and steady-state BER misadjustment.
Note that the adaptive algorithm (29) belongs to the general
stochastic gradient-based adaptive algorithm investigated in
[27]. Therefore, the results of convergence analysis
presented in [27] can readily be applied here.

5 Application examples

The effectiveness of the proposed adaptive MBER filtering
approach is demonstrated using two applications.

5.1 Single-user channel equalisation

In the single-user communication system involving a
dispersive channel, the received signal sample can be

expressed as

xðkÞ ¼
Xna�1

i¼0

aibðk � iÞ þ nðkÞ ð31Þ

where na is the length of the channel impulse response,
ai are complex-valued channel taps, and {b(k)} is the
transmitted data symbol sequence. The linear equaliser at
the receiver is a linear filter in the form of (1), where xðkÞ ¼
½xðkÞ xðk � 1Þ � � � xðk � L þ 1Þ�T with L known as the
equaliser order. The L 
 M system matrix P in (2) has the
form

P ¼

a0 a1 � � � ana�1 0 � � � 0

0 a0 a1 � � � ana�1
. .
. ..

.

..

. . .
. . .

. . .
.

. . . . .
.

0

0 � � � 0 a0 a1 � � � ana�1

2
66664

3
77775 ð32Þ

with M ¼ L þ na � 1; and the symbol vector bðkÞ ¼
½bðkÞ bðk � 1Þ � � � bðk � L � na þ 2Þ�T: The equaliser pro-
vides an estimate b̂bðk � dÞ of the transmitted symbol
bðk � dÞ; where the integer d is called the equaliser delay.
The system signal to noise ratio (SNR) is defined as SNR ¼
aHa=2�2

n; where a ¼ ½a0 a1 � � � ana�1�T is the channel tap
vector.

In the simulation study, the following three-tap channel,

aT ¼ ½�0:5 þ j0:4 0:7 þ j0:6 0:4 þ j0:3� ð33Þ
and a five-tap ðL ¼ 5Þ equaliser were used. For this
example, it was found that the optimal equaliser delay is
d ¼ 3: Figure 1 compares the BER performance of the
MMSE equaliser with that of the MBER one. Table 1 lists
the MMSE and MBER solutions, wMMSE and wMBER;

Fig. 1 Bit error rate performance comparison of the MMSE and
MBER equalisers

Table 1: Weight vectors and BERs of the MMSE and
MBER equalisers given SNR 5 12 dB

MMSE MBER

w �0:162742 þ j0:084336 �0:008256 � j0:008298

0:082974 þ j0:365218 0:131712 þ j0:175459

0:635619 þ j0:194423 0:636324 þ j0:349129

�0:338643 þ j0:022754 �0:535888 þ j0:292630

0:151703 þ j0:010665 0:212291 � j0:083981

BER 4:15 � 10�5 2:49 � 10�7

The weight vector has been normalised to a unit length

Fig. 2 Conditional probability density functions and subsets

YðþÞ
R of the MMSE and MBER equalisers for SNR ¼ 12 dB

The equaliser weight vector has been normalised to a unit length
a MMSE
b MBER
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together with the associated BERs given SNR ¼ 12 dB:
From Table 1, it can be seen that wMMSE and wMBER are very
different. The conditional pdf of the real part of the MMSE
equaliser output, given bðk � dÞ ¼ þ1 and with a SNR ¼
12 dB; is compared with that of the MBER equaliser in
Fig. 2. For this example, the subset YðþÞ

R contains Nsb ¼ 64
points. In Fig. 2 the equaliser weight vector has been
normalised to a unit length, so that the BER is mainly

determined by the minimum distance from the subset YðþÞ
R

to the decision threshold yR ¼ 0: It can be seen from Fig. 2
that the minimum distance between yR ¼ 0 and YðþÞ

R for the
MMSE equaliser is smaller than that for the MBER
equaliser. Also, the density distribution of yRðkÞ for the
MMSE equaliser is broader than that for the MBER
equaliser. This means that the noise e(k) at the MMSE
equaliser output has a larger variance. These two factors
explain why the MMSE equaliser has a higher BER than the
MBER equaliser.

The performance of the block-data based adaptive MBER
algorithm employing the conjugate gradient updating
mechanism, as described in Section 4.1, was next studied.
Figure 3 illustrates the convergence rate of the algorithm
under SNR ¼ 12 dB and given two different initial weight
vector conditions, where the block size was K ¼ 200: From
Fig. 3, it can be seen that the convergence speed of this
block-data gradient adaptive MBER algorithm is rapid. The
performance of the stochastic gradient adaptive MBER
algorithm discussed in Section 4.2 was then investigated.
Figure 4 shows the learning curves of the algorithm

averaged over 30 runs, given SNR ¼ 12 dB and two
different initial weight vector conditions. From Fig. 4, it
can be seen that this stochastic gradient adaptive MBER
algorithm has a reasonable convergence rate. There are in
fact two learning curves in each of Figs. 4a and 4b,
corresponding to training and decision directed (DD)
adaptation in which bðk � dÞ is substituted by the
equaliser’s estimate b̂bðk � dÞ: In Fig. 4a, the initial BER
is well below the level of 10�4; and the two learning curves
are indistinguishable. It can also be seen that, once the BER
is below a certain level (typically 0.01), decision-directed
adaptation can be applied with little performance degra-
dation, as is confirmed in Fig. 4b.

5.2 Adaptive beamforming assisted receiver

The ever-increasing demand for mobile communication
capacity has motivated the employment of space division
multiple access for the sake of improving the achievable
spectral efficiency. A particular approach that has shown
real promise in achieving substantial capacity enhance-
ments is the use of adaptive antenna arrays. Adaptive
beamforming is capable of separating signals transmitted on
the same carrier frequency, provided that they are separated

Fig. 3 Convergence rate of the block-data gradient adaptive
MBER algorithm for the equalisation example given SNR ¼ 12 dB;
and with a block size K ¼ 200; step size m ¼ 0:9 and square width
r2

n ¼ 3�2
n � 0:14

a wð0Þ ¼ wMMSE

b wð0Þ ¼ ½0:1 þ j0:0 0:1 þ j0:0 0:1 þ j0:0 0:1 þ j0:0 0:1 þ j0:0�T

Fig. 4 Learning curves of the stochastic gradient adaptive
MBER algorithm averaged over 30 runs for the equalisation
example given SNR ¼ 12 dB; where DD denotes decision directed
adaptation with b̂bðk � dÞ substituting bðk � dÞ
In a, the two learning curves corresponding to training and DD adaptation
are indistinguishable
a wð0Þ ¼ wMMSE; step size m ¼ 0:1 and square width r2

n ¼ 3�2
n � 0:14

b wð0Þ ¼ ½0:1 þ j0:0 0:1 þ j0:0 0:1 þ j0:0 0:1 þ j0:0 0:1 þ j0:0�T;
step size m ¼ 0:3 and square width r2

n ¼ 4�2
n � 0:19
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in the spatial domain. Consider the system that supports M
users (sources) which transmit on the same carrier
frequency o ¼ 2pf ; and assume that the channel is
narrowband which does not induce intersymbol

interference. The linear antenna array considered consists
of L uniformly spaced elements, and the signals received by
the L-element antenna array can be expressed in the form of
(2), where the L 
 M system matrix P is defined by

P ¼ ½A0s0 A1s1 � � �AM�1 sM�1� ð34Þ

A2
i denotes the signal power of user i, and the steering vector

for source i is given by

si ¼ ½expð jot0ð	iÞÞ expð jot1ð	iÞÞ � � � expð jotL�1ð	iÞÞ�T

ð35Þ

with tlð	iÞ being the relative time delay at array element l for
source i and 	i the direction of arrival for source i. The
transmitted user symbol vector is bðkÞ ¼ ½b0ðkÞ b1ðkÞ � � �
bM�1ðkÞ�T: Without any loss of generality, source 0 is
assumed to be the desired user and the rest of the sources are
the interfering users. The desired user’s signal to noise ratio
is defined as SNR ¼ A2

0=2�2
n and the desired signal to

interference ratio with respect to interfering user i is defined
as SIRi ¼ A2

0=A2
i for 1 � i � M � 1: The beamformer at the

receiver is a linear filter in the form of (1) with d ¼ 0 in the
decision rule (3).

The simulation example used consisted of six signal
sources and a three-element antenna array. Figure 5 shows
the locations of the desired source and the interfering
sources graphically. Figure 6 compares the BER perform-
ance of the MMSE beamforming solution with that of the
MBER one under two different conditions: (a) the desired
user and all the five interfering sources had equal power, and
(b) the desired user and the interfering sources 1, 3, 4, 5 had
equal power, but the interfering source 2 had 6 dB higher
power than the desired user. Note that when the 2nd
interfering user’s power is increased by 6 dB, the MMSE
beamformer’s performance breaks down, while the per-
formance of the MBER beamformer remains almost
unchanged. Thus, the MBER beamformer is robust to the
so-called near–far effect. Tables 2 and 3 list the MMSE and
MBER solutions together with the associated BERs given a
fixed SNR ¼ 14 dB and under the two given SIR conditions,
respectively. Examining the two weight vectors for the

Table 2: Weight vectors and BERs of the MMSE and
MBER beamformers given SNR 5 14 dB and SIRi 5 0 dB
for 1 � i � 5

MMSE MBER

w 0:170769 � j0:053050 0:448072 � j0:060545

0:186144 � j0:000000 0:783087 � j0:035493

0:170769 þ j0:053050 0:425536 þ j0:000000

BER 1:00 � 10�2 5:40 � 10�8

The weight vector has been normalised to a unit length

Table 3: Weight vectors and BERs of the MMSE and
MBER beamformers given SNR 5 14 dB; SIRi 5 0 dB for
i 5 1; 3; 4; 5; and SIR2 5 � 6 dB

MMSE MBER

w 0:159405 þ j0:009740 0:450894 � j0:057414

0:120395 � j0:000000 0:783001 � j0:030264

0:159405 � j0:009740 0:423547 � j0:000000

BER 1:25 � 10�1 5:60 � 10�8

The weight vector has been normalised to a unit length

Fig. 5 Locations of the desired source and the interfering
sources with respect to the three-element linear antenna array
having l=2 element spacing, where l is the wavelength

Fig. 6 Bit error rate performance comparison of the MMSE and
MBER beamformers

a SIRi ¼ 0 dB for 1 � i � 5
b SIRi ¼ 0 dB for i ¼ 1; 3; 4; 5; and SIR2 ¼ �6 dB
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MBER solution under the two different conditions, they are
very similar. However, differences between the two weight
vectors of the MMSE solution can be clearly seen from
Tables 2 and 3. Figures 7 and 8 depict the conditional pdfs
of the MMSE and MBER beamformers given b0ðkÞ ¼ þ1
together with the associated subsets YðþÞ

R ; under the same

two conditions as given in Tables 2 and 3. Again, in these
two figures, the beamformer weight vector had been
normalised to a unit length. It is interesting to see that,
given SNR ¼ 14 dB; SIRi ¼ 0 dB for i ¼ 1; 3; 4; 5 and SIR2

¼ �6 dB; the resulting Yð�Þ
R and YðþÞ

R for the MMSE
beamforming becomes linearly inseparable. There are Nsb

¼ 32 points in YðþÞ
R ; and a cluster of four points is on the

wrong side of the decision boundary yR ¼ 0 for the MMSE
beamforming, giving rise to a high BER floor 4=32 ¼
0:125:

Performance of the block-data gradient adaptive MBER
algorithm portrayed in Section 4.1 was next tested. Figure 9
illustrates the convergence rates of the algorithm given SNR
¼ 14 dB and SIRi ¼ 0 dB for 1 � i � 5; and with the two
different initial weight vectors. It can be seen that this block-
data adaptive MBER algorithm generally converges rapidly.
As the BER surface is highly complicated, the initial
condition will influence convergence rate. It has been found
out in a variety of applications that the MMSE solution
wMMSE is typically not a good initial choice for the adaptive
MBER algorithm in terms of convergence rate. PerformanceFig. 7 Conditional probability density functions and subsets

YðþÞ
R of the MMSE and MBER beamformers given SNR ¼ 14 dB

and SIRi ¼ 0 dB for 1 � i � 5

The beamformer weight vector has been normalised to a unit length
a MMSE
b MBER

Fig. 8 Conditional probability density functions and subsets YðþÞ
R

of the MMSE and MBER beamformers given SNR ¼ 14 dB;
SIRi ¼ 0 dB for i ¼ 1; 3; 4; 5; and SIR2 ¼ �6 dB

The beamformer weight vector has been normalised to a unit length
a MMSE
b MBER

Fig. 9 Convergence rate of block-data gradient adaptive MBER
algorithm for the beamforming example given SNR ¼ 14 dB and
SIRi ¼ 0 dB for 1 � i � 5; and with a block size K ¼ 200; step size
m ¼ 0:6 and a square width r2

n ¼ 4� 2
n � 0:08

a wð0Þ ¼ wMMSE

b wð0Þ ¼ ½0:1 þ j0:0 0:1 þ j0:0 0:1 þ j0:0�T
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of the stochastic gradient adaptive MBER algorithm
described in Section 4.2 was also investigated. Figure 10
shows the learning curves of the algorithm under the same
conditions of Fig. 9, where DD denotes decision-directed
adaptation with b̂b0ðkÞ; substituting b0ðkÞ as the desired
response. It can be seen that this stochastic gradient adaptive
MBER algorithm has a reasonable convergence speed. Note
that the steady-state BER misadjustment is higher when the
initial weight vector is set to wMMSE; compared with the
other initial weight condition.

6 Extension to nonlinear filtering

For a linear filter to work satisfactorily in a communication
application, an implicit assumption is that XðþÞ and Xð�Þ

defined in (5) are linearly separable. That is, there exists a
weight vector w such that the two resulting scalar sets YðþÞ

R

and Yð�Þ
R are completely separated by the decision threshold

yR ¼ 0: Otherwise nonlinear filtering is required. Examples
of such a nonlinear filtering includes nonlinear single-user
equalisation and nonlinear multiuser detection [28–31]. If
the linear restriction is removed, it can readily be shown that
the true optimal filtering solution in terms of BER is the
maximum a posteriori probability or Bayesian one, which is
formulated as

yBðkÞ ¼
1

Nbð2p�2
nÞL

XNb

q¼1

sgnðbq;dÞ exp
�kxðkÞ � �xxqk2

2�2
n

 !

ð36Þ

where �xxq 2 X and sgnðbq;dÞ acts as a class label. Note that
yBðkÞ is real-valued due to its pdf interpretation, but x(k) and
�xxq are complex-valued. Because the number of vector states
Nb is generally very large, this optimal Bayesian filtering
solution is computationally very expensive. In an adaptive
implementation, all the states �xxq have to be identified by
some means.

Consider the general nonlinear filter, which takes the
form

yðkÞ ¼ f ðxðkÞ;wÞ ð37Þ

where the nonlinear map f is generally complex-valued and
is realised, for example, by a neural network, and the vector
w consists of all the adjustable parameters of the nonlinear
filter. Classically, adaptive training of such a nonlinear
structure is based on the MMSE principle. For example,
sample-by-sample adaptation is typically implemented
using the LMS algorithm

yðkÞ ¼ f ðxðkÞ;wðk � 1ÞÞ
wðkÞ ¼ wðk � 1Þ þ mðbdðkÞ � yðkÞÞ @f �ðxðkÞ;wðk�1ÞÞ

@w

�
ð38Þ

However, the true performance criterion of the system is the
BER, and ideally the system design should be based on
minimising the BER.

By linearising the nonlinear filter (37) around �xxðkÞ; it can
be approximated as

yðkÞ � �yyðkÞ þ eðkÞ ð39Þ

where

�yyðkÞ ¼ f ð�xxðkÞ;wÞ ð40Þ

can only take the value from the set

~YY ¼D f~yyq ¼ f ð�xxq;wÞ; 1 � q � Nbg ð41Þ

and

eðkÞ ¼ @f ð�xxðkÞ;wÞ
@x

� �H

nðkÞ ð42Þ

is Gaussian with zero mean and variance

~rr2
nðwÞ ¼

2�2
n

Nb

XNb

q¼1

@f ð�xxq;wÞ
@x

� �H @f ð�xxq;wÞ
@x

ð43Þ

The pdf of yRðkÞ can then be approximated by

pðyRÞ �
1

Nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p ~rr2

nðwÞ
p XNb

q¼1

exp �
ðyR � ~yyR;qÞ2

2 ~rr2
nðwÞ

 !
ð44Þ

and the BER of the nonlinear filter is

PEðwÞ �
1

Nb

XNb

q¼1

QðgqðwÞÞ ð45Þ

with

gqðwÞ ¼
sgnðbq;dÞ~yyR;q

~rrnðwÞ
¼

sgnðbq;dÞfRð�xxq;wÞ
~rrnðwÞ

ð46Þ

Using the kernel density estimate in the form of (24) with a
constant r2

n to approximate the density (44) naturally leads
to a block-data based gradient adaptive near the MBER
algorithm for training the nonlinear filter (37). This can be
further simplified to give rise to a stochastic gradient
adaptive near MBER algorithm in the form:

Fig. 10 Learning curves of stochastic gradient adaptive MBER
algorithm averaged over 30 runs for the beamforming example
given SNR ¼ 14 dB and SIRi ¼ 0 dB for 1 � i � 5; where DD
denotes decision directed adaptation with b̂b0ðkÞ substituting b0ðkÞ
a wð0Þ ¼ wMMSE; step size m ¼ 0:03 and square width r2

n ¼ 2�2
n � 0:04

b wð0Þ ¼ ½0:1 þ j0:0 0:1 þ j0:0 0:1 þ j0:0�T; step size m ¼ 0:02 and
square width r2

n ¼ 4�2
n � 0:08
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yðkÞ ¼ f ðxðkÞ;wðk � 1ÞÞ
wðkÞ ¼ wðk � 1Þ þ m sgnðbdðkÞÞ

2
ffiffiffiffi
2p

p
rn

exp � y2
RðkÞ
2r2

n

� �
@fRðxðkÞ;wðk�1ÞÞ

@w

)

ð47Þ
for a sample-by-sample adaptation. The derivative @fR=@w
depends on the particular nonlinear map employed.
Previous studies [32–34] have applied this adaptive near
MBER nonlinear filtering approach to equalisation and
multiuser detection applications.

7 Conclusions

A general adaptive filtering technique has been proposed for
applications to communication systems based on the novel
MBER principle. It has been demonstrated that the MBER
filtering is capable of achieving significant performance
gains in terms of reduced BER over the traditional MMSE
filtering. Adaptive implementation of the proposed MBER
filtering has been developed based on the classical Parzen
window estimation for the pdf of the filter’s output. A block-
data based conjugate gradient adaptive MBER algorithm
has been shown to converge rapidly and requires a
reasonably small data block size to accurately approximate
the theoretical MBER solution. An LMS-style stochastic
gradient adaptive MBER algorithm has been shown to
perform well, and the algorithm has similar computational
requirements to the low-complexity LMS algorithm.
Extension of this adaptive MBER filtering approach to
nonlinear filtering has been discussed.
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10 Appendix

The conditional pdf of yRðkÞ given bdðkÞ ¼ þ1 is

pðyRjþÞ ¼ 1

Nsb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�2

nwHw
p XNsb

q¼1

exp �
yR � �yy

ðþÞ
R;q

� �2

2�2
nwHw

0
B@

1
CA
ð48Þ

where �yy
ðþÞ
R;q 2 YðþÞ

R : Thus the conditional BER of the linear
filter (6) given bdðkÞ ¼ þ1 is

PE;þðwÞ ¼
Z 0

�1
pðyRjþÞdyR ¼ 1

Nsb

XNsb

q¼1

Qðgq;þðwÞÞ ð49Þ

with
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gq;þðwÞ ¼
�yy
ðþÞ
R;q

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ¼
sgnðbq;dÞ�yy

ðþÞ
R;q

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p

¼
sgnðbq;dÞR½wH �xx

ðþÞ
q �

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ð50Þ

QðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

x
exp � u2

2

� �
du ð51Þ

Similarly, the conditional pdf of yRðkÞ given bdðkÞ ¼ �1 is

pðyRj�Þ ¼ 1

Nsb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�2

nwHw
p XNsb

q¼1

exp �
yR � �yy

ð�Þ
R;q

� �2

2�2
nwHw

0
B@

1
CA
ð52Þ

where �yy
ð�Þ
R;q 2 Yð�Þ

R ; and the conditional BER given bdðkÞ ¼
�1 is

PE;�ðwÞ ¼
Z 1

0
pðyRj�ÞdyR ¼ 1

Nsb

XNsb

q¼1

Qðgq;�ðwÞÞ ð53Þ

with

gq;�ðwÞ ¼ �
�yy
ð�Þ
R;q

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ¼
sgnðbq;dÞ�yy

ð�Þ
R;q

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p

¼
sgnðbq;dÞR½wH �xx

ð�Þ
q �

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ð54Þ

Because of the symmetric distribution of YR;PE;�ðwÞ ¼
PE;þðwÞ: This proves that the BER of the linear filter with a
weight vector w is given by

PEðwÞ ¼
1

2
PE;þðwÞ þ

1

2
PE;�ðwÞ

¼ 1

Nsb

XNsb

q¼1

Qðgq;þðwÞÞ ð55Þ

It is also obvious that the BER can be expressed as

PEðwÞ ¼
1

Nb

XNb

q¼1

QðgqðwÞÞ ð56Þ

where

gqðwÞ ¼
sgnðbq;dÞ�yyR;q

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ¼
sgnðbq;dÞR½wH �xxq�

�n

ffiffiffiffiffiffiffiffiffiffi
wHw

p ð57Þ

and the calculation is over all the �yyR;q 2 YR:
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