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Abstract
It is anticipated that 6G wireless networks will 

accelerate the convergence of the physical and 
cyber worlds and enable a paradigm-shift in the 
way we deploy and exploit communication net-
works. Machine learning — in particular deep 
learning (DL) — is expected to be one of the key 
technological enablers of 6G by offering a new 
paradigm for the design and optimization of net-
works with a high level of intelligence. In this arti-
cle, we introduce an emerging DL architecture, 
known as the transformer, and discuss its potential 
impact on 6G network design. We first discuss the 
differences between the transformer and classical 
DL architectures, and emphasize the transformer’s 
self-attention mechanism and strong representation 
capabilities, which make it particularly appealing 
for tackling various challenges in wireless network 
design. Specifically, we propose transformer-based 
solutions for various massive multiple-input multi-
ple-output (MIMO) and semantic communication 
problems, and show their superiority compared 
to other architectures. Finally, we discuss key chal-
lenges and open issues in transformer-based solu-
tions, and identify future research directions for 
their deployment in intelligent 6G networks.

Introduction
The sixth generation (6G) of wireless cellular 
networks is expected to connect the cyber and 
physical worlds, allowing humans to seamlessly 
interact with a variety of devices in a mixed real-
ity metaverse through connected intelligence. 
These new and fascinating applications impose 
challenging requirements and constraints on com-
munication networks, including ultra-high reliabil-
ity, ultra-low latency, extremely high data rate, 
substantially high energy and spectral efficiency, 
ultra-dense connectivity, and a high level of intelli-
gence. These stringent demands of 6G have driv-
en researchers to look for sophisticated physical 
layer techniques that would go beyond the cycle 
of incremental improvements. Current wireless 
networks have been largely designed as a com-
bination of dedicated processing blocks, such as 
channel estimation, equalization, coding/decod-
ing blocks, where each block is designed sepa-

rately on the basis of mathematical models that 
define the statistical behavior of the wireless chan-
nels and the underlying data traffic. However, this 
model-driven and block-based design approach is 
facing increasing challenges in the complex and 
diversified scenarios in which 6G networks are 
expected to operate. The anticipated diversity of 
devices and hardware technologies, increasing 
co-existence requirements, and a variety of traffic 
and service demands make such a model-driven 
approach difficult and inaccurate. In addition, with 
the deployment of ultra-massive multiple-input 
multiple-output (MIMO) systems, the optimization 
of physical layer functionalities based on math-
ematical models and solutions will become pro-
hibitive due to the computational complexity and 
associated control overhead. Therefore, it is antici-
pated that conventional mathematical models and 
solutions will not be able to provide the required 
dramatic enhancement in the capacity and perfor-
mance of future wireless networks.

Recently, machine learning, in particular deep 
learning (DL), has emerged as a powerful alter-
native for the design and optimization of wireless 
networks by learning underlying statistical structure 
from data instead of building and employing accu-
rate mathematical models [1]. The potential impact 
of DL-based solutions has already been shown in 
a variety of challenging wireless communication 
problems, in which it is either difficult to obtain 
a model of the system, or the complexity of the 
model does not lend itself to tractable solutions 
with feasible computational complexity [1, 2].

While DL-based solutions are appealing, the 
actual deployment is still challenging as they require 
architecture and hyperparameter optimization for 
each specific task. Therefore, proposing a more 
efficient and widely applicable DL architecture is 
essential for solving complex communication prob-
lems. A novel deep neural network (DNN) struc-
ture, called the transformer, has emerged recently, 
and achieved remarkable success in a variety of 
natural language processing (NLP) and computer 
vision (CV) tasks [3]. The transformer architecture 
is built upon the self-attention mechanism, which 
relates different parts of a data sequence for a 
more accurate representation of the sequence. 
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Self-attention layers in the transformer architecture 
enable a global receptive field, and the multi-head 
mechanism ensures that the network can pay atten-
tion to multiple discriminative parts of the inputs. 
By highlighting the transformer’s multi-model fusion 
and feature representation capabilities, we explore 
its application in 6G intelligent network design, and 
propose a new transformer-based intelligent pro-
cessing architecture. We focus on massive MIMO 
and semantic communication applications; howev-
er, we expect the transformers to find applications 
in many other components of future data-driven 
6G networks.

The rest of the article is organized as follows. 
The following section briefly introduces the appli-
cation of DL in wireless communications. Then, we 
introduce the transformer architecture. Next, we 
present a transformer-based architecture for 6G 
intelligent processing, and study its performance 
in various wireless communication problems. We 
then discuss open research issues in transform-
er-empowered 6G intelligent networks and con-
clude the article.

Overview of Deep Learning and the 
Transformer Architecture

DL is a powerful computational tool for under-
standing complex data representations and pat-
terns, and as such, offers a new paradigm to 
tackle complicated problems in communication 
network design. In this section, we briefly provide 
some background on popular DNN architectures 
and their applications in wireless communications.

Common DNN Architectures
Classic neural network architectures include 
multi-layer perceptrons (MLPs), convolutional 
neural networks (CNNs), recurrent neural net-
works (RNNs), and stacked autoencoders (SAEs).

An MLP is an artificial neural network that con-
sists of at least three layers of fully-connected neu-
rons, parameterized by a substantial number of 
connection weights. Under the premise of keeping 
the same input and output dimensions, the com-
putational complexity of the fully-connected layer 
is given by O(n2 · d2),1 where the input vector  
x  R1nd is reshaped from the two-dimension-
al sequence X  Rnd. MLP-based solutions have 
been developed to address various wireless com-
munication problems, such as channel estimation 
and beamforming [2]. It has been observed that 
deeper networks typically provide better gener-
alization; however, training fully-connected deep 
networks suffers from high complexity and low 
convergence efficiency.

To reduce the training complexity, CNNs employ 
a set of locally connected kernels, rather than ful-
ly-connected layers, to capture local correlations 
between different data regions. Compared with 
MLPs, CNNs reduce the number of model param-
eters significantly and maintain affine invariance by 
leveraging three important ideas: sparse interactions, 
parameter sharing, and equivariant representations. 
The computational complexity for the convolution-
al layer is given by O(k · n· d2), where k  d is the 
kernel size to adapt sequential processing [3]. By 
treating the channel matrices as two-dimensional 
images, CNNs have shown great potential for tasks 
such as channel estimation, channel state informa-

tion (CSI) feedback, beamforming [2], as well as 
semantic image transmission [4].

RNNs constitute another class of DNN architec-
tures that exploit sequential correlations between 
samples. At each step, it produces the output via 
recurrent connections between hidden units. How-
ever, the traditional RNN architecture is slow to 
train, and suffers from vanishing and exploding 
gradients. Long short-term memory (LSTM) archi-
tecture mitigates these problems by introducing a 
set of gates, which allow memory to be restored 
across longer sequences. The computational com-
plexity for the recurrent layer is given by O(n · d2) 
[3]. Recently, there have been several works utiliz-
ing LSTMs to extract temporal correlations across 
data, (e.g., in channels with memory) for communi-
cation system design [2].

SAE architecture consists of hierarchically con-
nected multiple autoencoders. Its basic compo-
nent, autoencoder, contains two parts: an encoder 
that acquires a low-dimensional representation of 
input, and a decoder that reconstructs the input 
from the compressed vector. SAEs are widely used 
to extract features and patterns that contain essen-
tial and compressed information about data. From 
a learning perspective, the entire communication 
system can be viewed as an end-to-end SAE, and 
its multiple sub-modules can also be viewed as 
SAEs, including pilot design and channel estima-
tion, CSI feedback, and semantic communications 
[2, 4]. Thus, the SAEs are core DNN structures for 
many of the current DL-based communication sys-
tem components.

Self-Attention and Transformer
Although MLPs, CNNs, RNNs, and SAEs have 
been widely utilized in DL-based communication 
system design with some success, efforts continue 
to push the boundaries of DL models in practical 
communication systems. Recently, the evolution 
of DNN architectures in NLP has led to a prev-
alent architecture known as the transformer [3]. 
We argue that the transformer holds a great 
potential also in the design of intelligent commu-
nication systems.

As shown in Fig. 1, the transformer is a 
sequence-to-sequence DNN model and consists 
of an encoder and a decoder module with several 
encoder/decoder layers of the same architecture. 
The input and output sequences are converted to 
vectors of dimension d by embedding and position-
al encoding layers. Each encoder/decoder layer has 
the same structure, and is mainly composed of a 
self-attention sub-layer followed by a position-wise 
MLP sub-layer, while each decoder also contains 
a masked attention sub-layer before the self-atten-
tion sub-layer. For building a deep model, a residual 
connection is employed around each sub-layer, fol-
lowed by a layer normalization module.

Self-attention mechanism relates different posi-
tions in a single sequence to compute a represen-
tation of the sequence, which can also be regarded 
as a non-local filtering operation. In a single-head 
self-attention layer, the input sequence X  Rnd is 
first transformed into three different sequential vec-
tors: the query Q  Rndk, the key K  Rndk and 
the value V  Rndv by three different linear matri-
ces, which are obtained through training. Here, dk 
and dv are the dimensions of query (key), and value 
subspaces, respectively. Subsequently, as shown in 

DL is a powerful 
computational tool for 
understanding complex 
data representations 
and patterns, and as 
such, offers a new 
paradigm to tackle 
complicated problems 
in communication net-
work design.

1 Note that, a two-dimen-
sional sequence X  Rnd 
is used to analyze the com-
plexity of different DNN 
structures, where n is the 
sequence length, and d is the 
representation dimension.
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Fig. 1, the scale dot-production attention operation 
generates the attention weights by aggregating the 
query and the corresponding key. The resulting 
weights are assigned to the corresponding value, 
yielding the output vectors. To facilitate the com-
plexity analysis, we assume that query, key, and 
value matrices have the same dimension as the 
input sequence, that is, dk = dv = d. Thus, the com-
plexity of self-attention layer can be expressed as 
O(n2 · d) [3]. In terms of computational complex-
ity, self-attention layers are signifi cantly faster than 
fully-connected layers, and are faster than recurrent 
layers when the sequence length n is smaller than 
the representation dimensionality d. The training 
efficiency of recurrent layers is much lower than 
that of the self-attention layers due to the sequen-
tial processing. Furthermore, since convolutional 
layers are generally more complex than recurrent 
layers, by a factor of k, their complexity is also 
higher than the self-attentive layer. Instead of per-
forming single-head self-attention with query, key, 
and value, multi-head attention allows the model 
to jointly attend to information from diff erent rep-
resentation subspaces at different positions. Spe-
cifi cally, diff erent heads use diff erent three group 
linear matrices, and these matrices can project the 
input vectors into multiple feature subspaces (i.e., 
{Qi}h

i=1, {Ki}h
i=1, and {Vi}h

i=1, where h is the number 
of heads) and processes them by several parallel 
attention heads (layers). The resulting vectors are 
concatenated and mapped to the fi nal output.

The position-wise MLP sub-layer is a fully-con-
nected feed-forward module that operates sepa-
rately and identically on each position. This module 
consists of two linear transformations with ReLU 
activation, where the parameters are shared across 
different positions, and the complexity is O(n · 
d2) [3]. Since the transformer does not introduce 
recurrence or convolution, it has no knowledge of 
positional information (especially for the encoder). 
Thus, additional positional information is introduced 
through positional encoding in order to model the 
relative positions of the input sequences.

Compared with CNN/RNN models, the trans-
former makes few assumptions about the under-
lying structure of data, which makes it a universal 
and fl exible architecture. The non-sequential nature 
of the transformer architecture allows it to capture 
long-range dependencies in the input data through 
self-attention. Not surprisingly transformers have 
also shown remarkable success in semantic com-
munications [5] for the transmission of text over 
noisy channels. In this article, we show that trans-
formers can have a critical role in other communi-
cation tasks as well.

trAnsformer for 6g InteLLIgent processIng
Massive MIMO is an essential physical layer tech-
nology to accommodate the exponential growth 
of mobile data traffi  c. Figure 2a illustrates a gener-
ic communication system, divided into two parts: 
the MIMO processing part, and the source and 
channel coding part. The former includes pilot 
design, channel estimation, CSI feedback, and 
hybrid beamforming (HBF). The latter is com-
posed of source coding and channel coding. We 
seek to expand the applicability of the transform-
er to serve as a general-purpose backbone for 
these crucial modules. In particular, as illustrated 
in Fig. 2b, we propose a novel 6G intelligent pro-

cessing architecture employing transformer for 
both the massive MIMO intelligent processing 
blocks and the newly emerging semantic commu-
nication blocks.

chAnneL estImAtIon
Accurate CSI at the base station (BS) is critical 
for beamforming and signal detection in mas-
sive MIMO systems. However, CSI acquisition 
overhead of conventional orthogonal pilot-based 
approaches increases linearly with the number of 
antennas. To reduce the pilot overhead, existing 
5G NR standard limits the number of pilots to be 
signifi cantly smaller than the number of antennas. 
However, it is challenging to accurately estimate 
high-dimensional channels with few pilots. By 
exploiting the sparsity of the channels in the angu-
lar and/or delay domains, compressive sensing 
(CS)-based solutions have been proposed to over-
come this issue. Nevertheless, since the dimen-
sion of the CSI to be estimated is extremely large, 
the involved matrix inversion operations and the 
iterative nature of CS-based techniques result in 
prohibitively high computational complexity and 
storage requirements.

More recently, researchers have resorted to DL 
techniques to overcome the aforementioned chal-
lenges. A learned approximate message passing 
(LAMP) network is proposed in [6] to mitigate the 
performance degradation of the original AMP algo-
rithm, since a priori model may not always be con-
sistent with the actual system. Further, by exploiting 
the channels’ structured sparsity, an improved 
multiple-measurement-vector LAMP (MMV-LAMP) 
network [7] can jointly recover multiple subcarri-
ers’ channel conditions with improved accuracy. 
The authors of [8] propose an end-to-end DNN 
architecture to jointly design the pilot signals and 
channel estimator. A CNN module combined with 
non-local attention layer is employed in [9] to exploit 
longer range correlations in the channel matrix.

Nevertheless, most existing DL-based channel 
estimation solutions are based on the MLP and 
CNN architectures. Here, we propose a novel 
channel estimator that utilizes the universal and 

FIGURE 1. Structure of the transformer network.
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flexible transformer architecture, as illustrated 
in Fig. 3a. Specifically, the proposed transform-
er-based solution includes a dimensionality reduc-
tion network for pilot design and a reconstruction 
network for channel estimation. We exploit 
a fully-connected linear layer to learn the pilot 
sequences [7–9]. More importantly, in our chan-
nel estimation module, the encoder part of the 
transformer is exploited to reconstruct the chan-
nel. Unlike local-attention in [9], self-attention in 
the transformer can extract long-range correla-
tions between subcarriers and adjust the weight 
of each subcarrier, so that the global features of 
the channel matrix can be extracted for enhanced 
estimation accuracy.

To evaluate the performance of the proposed 
transformer-based solution, we investigate the 
downlink channel estimation problem in M suc-
cessive time slots, where the BS is equipped with 
a uniform planar array (UPA) with Nt = 8  8 = 64 
antennas, the user equipment (UE) has single-an-
tenna, the number of orthogonal frequency divi-
sion multiplexing (OFDM) sub-carriers is K = 32, 
and the channel estimation compression ratio is 
 = M/Nt = 3/8. We consider a sparse channel 
scenario with Nc = 6 clusters, Np = 10 paths per 
cluster, and an angle spread of  = ± 3.75°. We 
generate training, validation, and test datasets of 
100,000, 10,000, 5,000 samples, respectively. 
We consider the normalized mean square error 
(NMSE) as the performance metric.

To illustrate the advantages of our proposed 
channel estimator in Fig. 3a, we compare it with 
four benchmarks. The first one is the tradition-
al simultaneous orthogonal matching pursuit 
(SOMP) based estimator, denoted as “SOMP.” 
The second and third are the conventional 
DL-based channel estimators, namely, the MMV-

LAMP based estimator [7] and the DNN-based 
estimator [8], denoted as “MMV-LAMP” and 
“DNN,” respectively. Finally, we consider the 
state-of-the-art attention-CNN based channel esti-
mator [9], abbreviated as ‘Attention-CNN’, as 
the fourth benchmark. We propose three distinct 
transformer-based estimators with diff erent model 
sizes, denoted as “Transformer-S,” “Transform-
er-M,” and “Transformer-L,” respectively. Figure 
3b shows the NMSE performance of different 
channel estimation schemes. Evidently, the pro-
posed transformer-based estimator significantly 
outperforms the conventional and other DL-based 
methods, especially with comparable model sizes. 
We observe that, during the inference stage, the 
fl oating-point operations per second (FLOPs) and 
the runtime per sample of the transformer-based 
estimator are much lower than those of other 
DL-based methods. Moreover, we can observe 
that the performance of the transformer improves 
with the model size. This demonstrates that the 
transformer-based method can learn latent fea-
tures from the data more effectively to achieve 
better channel estimation accuracy with less pilot 
overhead. It also provides a flexible trade-off 
between the model complexity and performance, 
and the users can choose the operating point 
based on the underlying resources and applica-
tion requirements.

csI feedbAcK
CSI feedback is essential in frequency-division 
duplex (FDD) systems. For time-division duplex 
(TDD) systems, by exploiting channel reciprocity, 
the transmitter may estimate the downlink CSI 
from the uplink CSI. But such reciprocity relies on 
many ideal factors, including the accurate calibra-
tion of the transceiver RF chains at both the BS 

FIGURE 2. Traditional and proposed transformer-based signal processing architecture for massive MIMO 
systems.
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and UE. For massive MIMO, the perfect uplink 
and downlink reciprocity is difficult to achieve, 
and the BS has to rely on CSI feedback for both 
FDD and TDD operations. However, the large 
number of antennas results in excessive feed-
back overhead. Similarly to channel estimation, 
CS-based techniques can be used to reduce the 
CSI feedback overhead. However, these tech-
niques cannot fully exploit the channel struc-
ture since the channels in real systems are not 
exactly sparse. Recently, DL-based solutions have 
achieved impressive results for CSI feedback. An 
autoencoder architecture, called CsiNet, is pro-
posed in [10] to reduce the feedback overhead 
in massive MIMO systems, which is shown to out-
perform traditional CS-based methods in terms of 
both compression ratio and recovery accuracy. 
Moreover, a bit-level CsiNet is designed by con-
sidering the eff ects of CSI quantization distortion 
[11]. This design can be easily assembled in exist-
ing CSI networks with some slight modifi cations. 
Subsequent studies expanded and designed var-
ious network models based on CNN and LSTM 
architectures to handle different CSI feedback 
problems [2, 12].

Herein, we present a transformer-based CSI 
feedback scheme to obtain more effi  cient quan-
tization and compression performance compared 
with the prior work. As illustrated in Fig. 4a, we 
utilize the fully-connected linear layer to linearly 
embed the channel data and use sine and cosine 
functions of diff erent frequencies to represent the 
relative positions of the sub-carriers. Then, the 
transformer encoder extracts features from the 
channel data embedded with the positional infor-
mation. Next, the features are vectorized, and a 
fully-connected linear layer is used to generate 
a real-valued compressed codeword. The code-
word is then converted to the feedback bit-stream 
through a quantization layer, which is construct-
ed by uniform scalar quantization[11]. Since the 
whole network structure corresponds to the com-
pression recovery task, the decoder adopts the 
same structure as the encoder.

We use the same simulation parameters above 
to evaluate the proposed transformer-based CSI 

feedback schemes with different model sizes, 
denoted as “Transformer-S,” “Transformer-M,” and 
“Transformer-L,” respectively. Three benchmark 
schemes with bit-level feedback are also considered 
for comparison. The fi rst one is the MLP-based CSI 
feedback scheme, “MLP,” where the encoder and 
decoder consist of three fully-connected layers, 
respectively. The second one is the “bit-level Csi-
Net” scheme in [11], while the third is the “LSTM” 
scheme in [12]. We again use the NMSE metric 
for performance evaluation. Figure 4b shows that 
all three transformer-based CSI feedback schemes 
outperform the three benchmarks. Meanwhile, the 
FLOPs of the transformer-based schemes are much 
lower than “bit-level CsiNet,” and all the proposed 
schemes have lower runtime than both the “bit-lev-
el CsiNet” and the “LSTM” schemes. Also, we can 
observe that the performance of the transformer 
improves with the model size, providing a trade-off  
between complexity and performance. We can see 
that “Transformer-S” is suffi  cient when a few feed-
back overhead is desired, while the more complex 
alternatives provide further gains as the feedback 
overhead increases. In a nutshell, the transformer 
can better extract these implicit features in the CSI 
and fewer feedback bits are needed to reconstruct 
the CSI at the BS with the same quality, which 
reduces the feedback overhead and latency.

hYbrId beAmformIng
Conventional massive MIMO systems with ful-
ly-digital architecture require a dedicated RF chain 
for each antenna, which results in excessive power 
consumption and extremely high RF hardware 
costs. The alternative hybrid analog-digital MIMO 
architecture employs a much lower number of dig-
ital RF chains than the number of antennas, where 
each RF chain is connected to multiple active 
antennas, and the signal phase on each antenna is 
controlled via a network of analog phase shifters. 
The analog phase shifter can be seen as a low-cost 
passive device, which controls only the phase of 
the signal. Compared with its fully-digital counter-
part, HBF optimization is significantly more chal-
lenging due to the constant modulus constraint on 
the analog beamformer [13].

FIGURE 3. a) The transformer-based end-to-end architecture for jointly designing the pilot signals and channel estimator; b) NMSE per-
formance comparison of diff erent channel estimation schemes vs. signal-to-noise ratio (SNR).
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Many model-based solutions have been pro-
posed to tackle this challenge. For instance, the 
authors of [13] propose spatial sparse hybrid pre-
coding (SS-HP) to achieve near fully-digital perfor-
mance by exploiting channel sparsity. However, 
model-based HBF algorithms require time-con-
suming optimization iterations to obtain near-op-
timal solutions. Moreover, they demand either 
perfect downlink CSI or a codebook with an accu-
rate sparse basis, which are diffi  cult to acquire in 
practice. To overcome these issues, DL-inspired 
beamforming has been proposed, whereby prior 
information is captured from radio channel mea-
surements. In [14], the authors propose a CNN-
based HBF architecture that can be trained to 
maximize spectral efficiency with imperfect CSI. 
The authors of [15] propose an MLP-based down-
link multi-user HBF module to maximize the spec-
tral effi  ciency from limited CSI feedback bits.

To the best of our knowledge, all the existing 
DL-based HBF schemes adopt the MLP or CNN 
architectures. We propose a transformer-based 
HBF scheme, composed of three transformer 
encoder modules, as shown in Fig. 5a. According 
to [13], analog RF beamformer and digital base-
band beamformer can be optimized to approach 
the optimal fully-digital beamformer. Motivated 
by this principle, each transformer encoder in Fig. 
5a implements a part of the HBF optimization. 
More specifi cally, the input dimension of the fi rst 
transformer encoder is K  2NuNt, where Nu is 
the number of UEs, and the output represents the 
fully-digital beamformer, that is, F  K2NuNt; the 
input dimension of the second transformer encod-
er is the permutation of F, that is, Nu  2KNt, and 
the output is the phase of the analog RF beam-
former, that is, P = vec(angle(FRF))  NuNt; the 
third transformer encoder represents the digital 
baseband beamformer, which takes F as input and 
produces FBB  K2NuNt as output, respective-
ly. By introducing the structural prior information 
of traditional optimization methods, combined 
with the self-attention’s feature extraction ability, 
we can achieve better performance than tradi-
tional as well as existing DL-based methods in the 
literature. As shown in Fig. 5a, we consider two 
working modes: the first mode requires an esti-
mated CSI matrix as input, which is achieved by 
the adopted CSI feedback scheme; the second 

mode relies on implicit CSI as input, which is con-
veyed by the feedback bits transmitted from the 
UEs, and in this case, the CSI feedback network 
is jointly trained with the proposed HBF network. 
Note that the case in which the proposed HBF 
network is trained with the perfect CSI matrix as 
input (working mode 1), can be regarded as an 
upper bound for the case trained with quantized 
CSI feedback bits (working mode 2).

To illustrate the superior performance of 
our transformer-based HBF, we use the chan-
nel parameters similar to those above. We set 
the number of UEs to Nu = 2. We choose three 
benchmarks for comparison, namely SS-HP from 
[13], CNN-based HBF of [14], and MLP-based 
HBF from [15]. The sum rate comparison of dif-
ferent schemes is depicted in Fig. 5b. It can be 
seen that the transformer-based HBF scheme sig-
nifi cantly outperforms SS-HP and other DL-based 
HBF schemes with both complete and limited 
CSI feedback. The performance gains over the 
benchmarks are particularly considerable at low 
feedback overhead of 3 to 24 bits. Moreover, the 
proposed scheme with limited feedback bits even 
outperforms SS-HP with perfect CSI, when the 
feedback overhead is greater than 24 bits. This 
demonstrates the eff ectiveness of the proposed 
transformer-based HBF architecture, particularly 
under the practical limited feedback scenario. 
However, both “Transformer’ and ‘Transform-
er-S’ have higher FLOPs and runtime than other 
DL-based schemes. Therefore, it is of interest to 
develop a more effi  cient transformer-based HBF 
architecture with guaranteed performance.

semAntIc communIcAtIon
Our communication networks have been tradi-
tionally conceived and designed as bit pipes; that 
is, the goal has been to deliver as many bits as 
possible with the highest reliability. Current com-
munication networks do not take into account 
the meaning or the purpose of the delivered 
bits, whose interpretation and processing have 
been left to higher layers. To meet the require-
ments of 6G wireless networks, however, it is 
important to propose more effi  cient information 
acquisition and delivery methods. The recently 
growing trend of semantic communication aims 
at accurately recovering the statistical structure of 

FIGURE 4. a) The transformer-based CSI feedback architecture; b) NMSE performance comparison of diff erent CSI feedback schemes 
vs. feedback overhead.
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the underlying source signals and designing the 
communication system in an end-to-end fashion, 
similarly to joint source and channel (JSC) coding 
by taking the source semantics into account [4, 
5, 16]. Figure 6a shows the general framework 
of a semantic communication model, where the 
transmitter includes a semantic encoder and a 
semantic-aware JSC encoder, and the receiver 
includes a semantic-aware JSC decoder and a 
semantic decoder. In general, the transmitter can 
perform semantic encoding on the source accord-
ing to the knowledge library for obtaining highly 
compressed abstract semantics, followed by JSC 
encoder and subsequent baseband signal pro-
cessing. The receiver follows the reverse steps of 
the transmitter, where a JSC decoder is followed 
by a semantic decoder based on some knowl-
edge library. Alternatively, the semantic and JSC 
encoder/decoder operations can be considered 
into single module as in [4].

Semantic communication is particularly effec-
tive for complex information sources, such as text, 
speech, image, or video, where the reconstruction 
quality depends on the source semantics, and is 
often diffi  cult to measure through traditional mea-
sures of bit error rate or mean square error. In 
[16], the authors proposed an LSTM-based model 
to extract the semantic information of sentences 
through JSC coding for text transmission. Howev-
er, due to the lack of a separate semantic coding 
module, JSC coding can only implicitly utilize the 
semantic information, which has difficulty to rep-
resent specifi c semantics. Instead, the transformer 
can extract correlations between different words 
to form highly abstract semantics. Inspired by this 
benefit, a DL-enabled semantic communication 
(DeepSC) scheme was proposed in [5], where a 
separate semantic coding network is utilized to 
better extract accurate semantic information. As 
shown in Fig. 6a, a transformer encoder is utilized 
as the semantic encoder and an MLP is used as the 
JSC encoder. The Rayleigh fading channel is inter-
preted as an untrainable layer in the model. Corre-
spondingly, the receiver consists of an MLP-based 
JSC decoder followed by a transformer decod-
er for text reconstruction. The whole network is 
trained in an end-to-end fashion to simultaneous-
ly minimize the sentence similarity and maximize 
mutual information. Figure 6b compares the per-
formance of DeepSC [5] in transmitting text over a 
Rayleigh fading channel with the following bench-
marks: Huff man code followed by Reed-Solomon 

(RS) coding and 64-quadrature amplitude modu-
lation (QAM), fixed-length code (5-bit) followed 
by RS coding and 64-QAM, Huffman code fol-
lowed by Turbo coding and 64-QAM, 5-bit code 
followed by Turbo coding and 128-QAM, Brotli 
code followed by Turbo coding and 8-QAM, and 
the JSC coding approach of [16]. The simulation 
results demonstrate that thanks to the powerful 
transformer architecture, the sentence similarity 
performance of DeepSC [5] far outperforms the 
alternatives based on separate compression fol-
lowed by channel coding, as well as the JSC coding 
approach [16]. Hence, we foresee that seman-
tic-aided communication is an important challenge, 
where the transformer architecture is likely to have 
an impact on future communication systems by 
more eff ectively learning and adapting to the sta-
tistics of complex signals, such as text, image, or 
video. The systematic design of transformers may 
also allow designing a common architecture for 
the communication of multiple modalities.

While we have considered a simple single-input 
single-output channel in the example in Fig. 6, 6G 
communication networks will need to combine 
semantic communication with massive MIMO and 
other core communication tools and techniques, 
as illustrated in Fig. 2b. This will require jointly opti-
mizing these modules in an end-to-end fashion. 
One of the challenges facing semantic communi-
cations is to achieve the potential gains from the 
joint processing of source and channel coding with 
other components while retaining the low-com-
plexity and modular network architecture.

chALLenges And open Issues
We hope that the above examples have convinced 
the readers of the signifi cant potential of the trans-
former architecture for future 6G intelligent net-
work design. In addition to these examples, we 
expect that the transformers will fi nd applications 
in waveform design, channel modeling and gener-
ation, signal detection, as well as more advanced 
sensing techniques exploiting other complex infor-
mation sources such as LiDAR or cameras. We 
would like to highlight that the transformer archi-
tecture was invented only in 2017. Although it 
has received signifi cant attention in the last years 
thanks to its superior performance, the research on 
transformer-based communication system design 
is still in its infancy, and many key issues are still 
open. In this section, we discuss several potential 
directions for future study.

FIGURE 5. a) The transformer-based HBF architecture; b) Sum-rate vs. feedback overhead for diff erent HBF schemes.
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networK effIcIencY And generALIZAtIon
Network efficiency and generalization problems 
have been widely discussed in the context of DL-as-
sisted communication systems. They are particularly 
severe in transformer architectures and may limit 
their further adoption. An important limitation of 
the transformer architecture is the high computa-
tion and memory complexity, mainly caused by the 
self-attention module. Recently, various model vari-
ants have been proposed to improve computational 
and memory effi  ciency, such as sparse attention, lin-
earized attention, low-rank self-attention [17]. More-
over, since the transformer makes few assumptions 
on the structural bias of the input data, the network 
cannot perform real-time parameter retraining to 
overcome poor generalization. Transfer learning 
and introducing structural biases or regularization 
can be considered to address this issue. However, 
existing works mainly focus on CV and NLP applica-
tions. Hence, to successfully apply the transformer 
architecture to 6G networks, an important research 
challenge is to optimize their computational effi-
ciency and generalization capabilities by developing 
eff ective and effi  cient transformer architectures tar-
geting wireless applications.

effIcIent InformAtIon InJectIon
In NLP, the text is divided into words, and a word 
embedding is used to feed each word to the trans-
former network. Similarly, in CV, each image is 
divided into patches, and the sequences of linear 
embedding of these patches are fed as input to 
a transformer. Similar techniques can be used for 
the semantic communication of text and image 
sources; however, for the physical layer design, 
the input is mainly based on CSI, which commonly 
has four dimensions: time-space-frequency-user. In 
this article, the inputs of channel estimation and 
CSI feedback take self-attention on the frequency 
domain of CSI, while in the hybrid beamforming, 
the frequency and user domains are used jointly. 
Therefore, how to efficiently feed the underlying 
input, which can include the source signal, CSI ten-
sor, location, traffi  c and environment information, 
input the transformer architecture is one of the top-
ics to be investigated for wireless applications.

combInAtIon wIth modeL-drIven dL
Model-driven DL methods introduce learnable 
parameters while retaining the model assumptions 
and the often-used iterative optimization of the 

model parameters, such as LAMP [6]. This usu-
ally results in faster convergence and requires a 
smaller dataset. However, the performance can 
deteriorate severely when the underlying model 
is inaccurate, for example, in the low SNR regime, 
or with non-Gaussian noise. In order to further 
improve the robustness of model-driven DL algo-
rithms, there has been some work on employing 
deep neural networks, such as CNNs, to replace 
the original MMSE denoiser to refine the out-
put. Compared with other DL architectures, the 
transformer has a distinguished feature extraction 
capability from data. Therefore, integrating the 
transformer architecture into the model-driven 
framework is a promising approach to further 
mitigate the performance degradation caused by 
model inaccuracies.

pArALLeL communIcAtIon seQuentIAL tAsKs
Transformer architecture is signifi cantly superior 
to conventional RNN models in sequential tasks, 
thanks to its ability to use self-attention for cap-
turing various long-term temporal correlations in 
parallel and to learn a better representation for 
predicting the next state. Thus, transformers are 
also expected to be successful in communication 
tasks involving temporal sequences, such as chan-
nel prediction and beam tracking.

concLusIons
In this article, we have presented the transformer 
architecture and provided examples to highlight its 
potential benefits in addressing various challeng-
es for 6G intelligent networks. We have consid-
ered the applications of transformers from massive 
MIMO processing to semantic communication, 
and provided concrete examples to show their 
competitive performance compared to the other 
classical as well as recently proposed DL-based 
models, hence demonstrating their significant 
potential for designing AI-native future communi-
cation systems. Potential research directions have 
also been identified to encourage efforts by the 
research community to further develop a trans-
former-based 6G intelligent network paradigm.
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