
The spatial-domain non-orthogonal multiple access

(NOMA) based on multi-input multi-output (MIMO)

technology is a cornerstone for the fifth-generation (5G)

mobile communication system, to support enhanced mobile

broadband and massive machine-type communications with

the limited frequency-time resources. This naturally leads to

multiuser MIMO communication systems. In the literature,

most existing MIMO system designs adopt the linear MIMO

channel [1]–[10]. The linear MIMO channel assumption

however is only valid when the transmitter high power

amplifier (HPA) operates within its linear dynamic range.

Practical HPAs on the other hand are often nonlinear,

as they exhibit nonlinear saturation and phase distortion

characteristics [11]–[15]. More specifically, the linear channel

assumption critically depends on the transmitted signal’s

peak-to-average power ratio (PAPR) as well as the average

transmission power. For the modulation constellations with

unity PAPR, such as phase shift keying (PSK), the phase shift

of the HPA’s output is constant for all the symbol points.

Consequently, the HPA does not cause amplitude distortion

in this case, and the MIMO channel is linear. In order to
meet high throughput requirement, however, multiuser MIMO

systems typically utilize the high-throughput quadrature

amplitude modulation (QAM) with multiple bits per symbol

[16]. Since high-throughput QAM constellations have high

PAPR, the nonlinear distortion of the transmitter HPA may

become serious and the linear MIMO channel may no longer

be valid. Note that high-throughput QAM transmission is

achieved by imposing high average transmission power.

Therefore, it is impossible to avoid the nonlinearity of

transmitter HPA by using output back-off (OBO), because the

OBO required would be too severe, which would be unable

to meet the required link power budget.

This paper investigates the challenging single-carrier mul-

tiuser MIMO uplink with high-throughput QAM transmis-

sion, where transmitters are equipped with nonlinear HPAs

(NHPAs). Note that for the single-carrier multiuser nonlinear

MIMO downlink, where the base station (BS) transmits to

multiple mobile users (MUs), effective solution for overcom-

ing nonlinear distortions of NHPAs readily exists. Specifically,

since the BS possesses sufficient computation capacity, it can

implement digital predistorter [17]–[23] to pre-compensate for

the nonlinear distortions of NHPA in addition to implement

the multiuser transmit precoding to compensate for the MIMO

channel interference. This leads to our recent design using a

B-spline neural network (BSNN) based predistorter for single-

carrier multiuser nonlinear MIMO downlink [24]. In uplink,

by contrast, it is difficult for a mobile handset to implement

the predistorter owning to its limited computation capacity.

As a result, the BS receiver must first estimate the multiuser

nonlinear MIMO channel and then performs the nonlinear

multiuser detection (MUD), which is extremely challenging.

In the literature, only few works [25]–[27] attempted to

tackle this difficult task by employing the MIMO Volterra

model to identify the frequency-selective nonlinear MIMO

channel [25]–[27], which not only imposes impossibly heavy

computational burden but also is impractical for implementing

nonlinear MUD for the uplink with high-throughput QAM

transmission. In [28], we proposed a nonlinear MUD scheme

for single-carrier multiuser nonlinear MIMO uplink. However,

our previous work [28] only considers the MIMO systems

with frequency-nonselective or narrowband channels. In prac-

tice, MIMO channels are frequency-selective. Hence, practical

single-carrier multiuser nonlinear MIMO uplink is much more

complex than the case investigated in [28].

In this paper, we develop a BSNN assisted space-time

equalization (STE) scheme for this much more challenging
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single-carrier multiuser nonlinear frequency-selective MIMO

uplink with high-throughput QAM transmission and NHPAs.

Our novel contribution is two-fold.

• By extending the work [28] originally derived for mul-

tiuser nonlinear narrowband MIMO channel, we develop

a BSNN assisted identification scheme to identify the

multiuser nonlinear frequency-selective MIMO channel.

This includes the BSNN [29]–[36] modeling for the

MUs’ NHPAs and the estimate of the linear frequency-

selective MIMO channel impulse response (CIR) matrix.

By exploiting the results of this nonlinear MIMO channel

identification, the BSNN inverse models of the transmit-

ters’ NHPAs are also identified.

• We implement the minimum mean square error (MMSE)

space-time equalizer [3], [4] to combat the interference

of the frequency-selective MIMO channel using the es-

timated linear frequency-selective MIMO CIR matrix.

Then we compensate for the nonlinear distortions of

the transmitters’ NHPAs with the estimated BSNN in-

verse models for the NHPAs. An extensive simulation

study is carried out to demonstrate the excellent bit

error rate (BER) performance of our proposed nonlinear

STE approach for multiuser nonlinear frequency-selective

MIMO uplink with high-throughput QAM transmission

and NHPAs.

The rest of this paper is structured as follows. The single-

carrier multiuser nonlinear frequency-selective MIMO uplink

system is introduced in Section II. This includes the NHPA

model at each MU’s transmitter and the frequency-selective

MIMO channel model, as well as the nonlinear STE based

MUD at the BS receiver that first uses a standard space-

time equalizer to remove both multiuser interference and

self-interference and then removes the nonlinear distortion of

the transmitters’ NHPAs by the nonlinear inversion of the

NHPAs, assuming that both the frequency-selective MIMO

CIR matrix and the inverse mappings of transmitters’ NHPAs

are known at the BS receiver. The proposed BSNN assisted

nonlinear STE scheme is detailed in Section III. By utilizing

a unique parametrization of the frequency-selective MIMO

CIR matrix and the nonlinear transmitters as well as the

effective BSNN modeling of the NHPAs, a new iterative

alternating least squares (ALS) estimator is developed, which

guarantees to attain the unbiased and accurate estimates of

the frequency-selective MIMO CIR matrix and the BSNN

parametrized NHPAs’ models in a few iterations. Based on

the nonlinear frequency-selective MIMO channel identification

results, the closed-form BSNN inverse models for the NHPAs

are also obtained. Section IV is devoted to simulation study, to

investigate the effectiveness of our proposed BSNN assisted

nonlinear STE scheme for single-carrier multiuser nonlinear

frequency-selective MIMO uplink with high-throughput QAM

transmission and NHPAs. Our conclusions are offered in

Section V.

Fig. 1 depicts the system diagram of the spatial-domain

NOMA based single-carrier multiuser nonlinear frequency-
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Fig. 1. Spatial-domain NOMA based single-carrier multiuser nonlinear
frequency-selective MIMO uplink where the BS is equipped with the L-
element antenna array to receive the data from M single-antenna MUs using
the same single resource block.

selective MIMO uplink, where M single-antenna MUs trans-

mit to the BS equipped with L receive antennas using the same

frequency-time resource block. Note that L > M .

Since we consider the wideband or frequency-selective

channel, the CIR from the mth mobile to the lth antenna of

the BS can be expressed by

hl,m =
[
h0,l,m h1,l,m · · ·hnH−1,l,m

]T
, (1)

for 1 ≤ l ≤ L and 1 ≤ m ≤ M , where for notational

simplicity, all the L ·M CIRs are assumed to have the same

CIR length of nH . The kth data symbol transmitted by the

mth MU is denoted by sm(k) = |sm(k)| · exp
(
j∠sm(k)

)
,

where j =
√
−1, |sm(k)| denotes the amplitude of sm(k)

and ∠sm(k) is the phase of sm(k). As we use the U -

QAM constellation with log2(U) bits per symbol, to enhance

the achievable throughput, sm(k) takes the value from the

constellation set:

S =
{
dS(2l −

√
U − 1) + j dS(2q −

√
U − 1),

1 ≤ l, q ≤
√
U
}
. (2)

The minimum distance between the symbol points of S is 2dS.

Without loss of generality, the HPAs at all the MUs’

transmitters are assumed to be the same type. Hence under

the same given operation condition, they exhibit the same

nonlinear characteristics. We employ a common and practical

HPA, the solid state power amplifier [14], [15]. For this type

of NHPA, the transmitted signal of the mth MU, 1 ≤ m ≤M ,

can be expressed as

zm(k) =Ψ (sm(k))

=A
(
|sm(k)|

)
· exp

(
j
(
∠sm(k) + Υ(|sm(k)|)

))
, (3)

where Ψ(·) represents the NHPA at a MU’s transmitter, A(·)
is its amplitude response and Υ(·) is its phase response. The

output Ψ(s) of this type of NHPA is specified by its amplitude

response A(r) and phase response Υ(r), where r = |s| denotes

the amplitude of the input s to the NHPA. Note that the

distortion caused by this type of NHPA depends only on the

2. Nonlinear Frequency-selective
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amplitude of the NHPA input. According to [14], [15], the

amplitude response A(r) is given by

A(r) =
gar

(
1 +

(
gar
Asat

)2βa

) 1

2βa

, (4)

while the phase response Υ(r) is defined by

Υ(r) =
αφr

q1

1 +
(

r
βφ

)q2 [degree], (5)

where the parameters ga, βa and Asat are known as the

small signal’s gain, the smoothness factor and the saturation

level, respectively, while the parameters αφ, βφ, q1 and q2
specify the NHPA’s phase response [14], [15]. If we define

the maximum output power of the NHPA as Pmax = A2
sat.

Further denote the average output amplitude of the NHPA as

Aave, which means that the the average output power of the

NHPA output signal is Pave = A2
ave. Then the operating status

of the HPA is defined by the ratio of the maximum output

power Pmax of the NHPA to the average output power Pave

of the NHPA output signal, called the OBO, which is given

by

OBO = 10 · log10
Pmax

Pave
[dB]. (6)

Note that the maximum output power Pmax is the NHPA’s

saturated output power. The smaller the OBO is the deeper

the NHPA is operating into its saturation region and hence

causing more severe nonlinear distortion.

Recall the CIR (1) and denote the mth MU’s transmitted

signal vector by z
(h)
m (k) =

[
zm(k) zm(k−1) · · · zm(k−nH+

1)
]T

with zm(k − i) = Ψ(sm(k − i)) for 0 ≤ i ≤ nH − 1.

Then the received signal sample xl(k) at the BS’s lth receiver

antenna can be expressed by

xl(k) =

M∑

m=1

hT
l,mz

(h)
m (k) + nl(k)

=
M∑

m=1

nH−1∑

i=0

hi,l,mzm(k − i) + nl(k), (7)

where nl(k) is the complex additive white Gaussian noise

(AWGN) with power E
[∣∣nl(k)

∣∣2
]

= 2σ2
n. Collect the re-

ceived signals xl(k) for 1 ≤ l ≤ L as x(h)(k) =
[x1(k) x2(k) · · ·xL(k)]T, which can be expressed as

x(h)(k) =




hT
1,1 hT

1,2 · · · hT
1,M

hT
2,1 hT

2,2 · · · hT
2,M

...
...

. . .
...

hT
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L,2 · · · hT
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
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+ n(h)(k) =Hz(h)(k) + n(h)(k), (8)
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Fig. 2. Space-time equalizer for detecting the mth mobile user’s transmitted
signal.

in which the AWGN vector n(h)(k) = [n1(k) · · ·nL(k)]T.

Assume that the BS knows the multiuser MIMO CIR matrix

H . If all the transmitters’ HPAs are operating in the linear

regions, the MUD for the MUs’ transmitted signals consists

of M space-time equalizers [3], [4], one for each mobile, as

illustrated in Fig. 2. Specifically, each space-time equalizer

has length nF . Further define the mth space-time equalizer’s

weight vector associated with the BS’s lth receive antenna

as wl,m =
[
w0,l,m w1,l,m · · ·wnF−1,l,m

]T
, and denote the

corresponding space-time equalizer’s input signal vector by

xl(k) =
[
xl(k) xl(k − 1) · · ·xl(k − nF + 1)

]T
. Then the

output of the mth space-time equalizer is given by

ym(k) =

L∑

l=1

wH
l,mxl(k)

=

L∑

l=1

nF−1∑

i=0

w∗

i,l,mxl(k − i), 1 ≤ m ≤M. (9)

Since the HPAs are nonlinear, ym(k) is only a sufficient

statistic for detecting zm(k−d) = Ψ(sm(k−d)), and it is not

a sufficient statistic for detecting the transmitted data symbol

sm(k − d), where d is the decision delay.

Based on linear convolution, xl(k) can be expressed as

xl(k) =
∑M

m=1 cl,mzm, where the nF × (nF + nH − 1)
CIR matrix cl,m associated with the mth MU transmitter

and the lth BS receiver antenna has the structure shown

in (10) at the bottom of the previous page, and zm(k) =[
zm(k) zm(k−1) · · · zm(k−nF−nH+2)

]T
, for 1 ≤ m ≤M .

cl,m=




h0,l,m h1,l,m · · · hnH−1,l,m 0 · · · 0

0 h0,l,m h1,l,m · · · hnH−1,l,m
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 h0,l,m h1,l,m · · · hnH−1,l,m




(10)
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By defining the overall system CIR convolution matrix as

C =




c1,1 c1,2 · · · c1,M
c2,1 c2,2 · · · c2,M

...
... · · ·

...

cL,1 cL,2 · · · cL,M


 , (11)

and the MIMO channel input vector as z(k) =[
zT1 (k) · · · zTM (k)

]T
, the space-time equalizer’s input

vector x(k) =
[
xT
1 (k) · · ·xT

L(k)
]T

can be expressed as

x(k) =Cz(k) + n(k), (12)

in which the overall noise vector n(k) =[
nT

1 (k) n
T
2 (k) · · ·nT

L(k)
]T

with nl(k) =
[
nl(k) nl(k −

1) · · ·nl(k − nF + 1)
]T

for 1 ≤ l ≤ L. Further define

the overall weight vector of the mth space-time equalizer

by wm =
[
wT

1,m wT
2,m · · ·wT

L,m

]T
. The mth space-time

equalizer (9) can be expressed concisely as

ym(k) =wH
mx(k). (13)

From [3], we have the following closed-form MMSE solution

for wm:

w(MMSE)m=
(
CCH+2σ2

nI
)−1
C[ :(m−1)(nF+nH−1)+(d+1)],

(14)

for 1 ≤ m ≤ M , where I is the (LnF ) × (LnF ) identity

matrix and C[ :i] is the ith column of C.

The space-time equalizer (13) provides the estimate ẑm(k−
d) for zm(k − d). If the nonlinear inversion Ψ−1(·) of

the complex NHPA’s nonlinear mapping Ψ(·) is known, the

estimate of sm(k − d) is then given by

ŝm(k − d) =Ψ−1
(
ẑm(k − d)

)
. (15)

It can be seen that in order to detect the MUs’ data

sm(k − d), 1 ≤ m ≤ M , the BS needs to acquire the

MIMO channel matrix H and to invert the unknown complex

nonlinear mapping Ψ(·). This is a very challenging nonlinear

estimation and inversion problem. First, the MIMO channel

input z(h)(k) is unknown to the receiver, and the BS cannot

apply the standard least squares (LS) estimator to identify H .

Second, the model of the MUs’ NHPAs, denoted as z(h), is

multiplicative with the MIMO CIR matrix H as the product

H ·z(h). This implies that there are infinitely many equivalent

pairs of the parametrization for the MIMO CIR matrix and the

NHPAs’ model, which causes ambiguity problem and imposes

a significant challenge to the task of identifying both he MIMO

CIR matrix and the NHPAs’ model. In order to develop a

meaningful identification procedure for both the linear MIMO

CIR matrix and the NHPAs’ model, it is necessary to derive

a unique parametrization of the linear MIMO channel matrix

and the M nonlinear transmitters.

First, we note that there are infinitely many pairs of the

equivalent parametrization, which can be expressed as HU ·
U∗z(h), where U ∈ C

(MnH)×(MnH) is any unitary matrix.

Second, for any particular model for the MIMO channel matrix

HU , there are also infinitely many pairs of the equivalent

parametrization for the model of the NHPAs U∗z(h). In

order to derive a unique parametrization of the linear MIMO

channel matrix and the M nonlinear transmitters, therefore, we

need: 1) first to determine a particular parametrization of the

MIMO CIR matrix HU , and 2) next to derive a particular

parametrization of the NHPAs’ model U∗z(h). To achieve

these two tasks, we re-express (8) equivalently as

x(h)(k) =




1
h0,1,1

hT
1,1

1
h0,1,2

hT
1,2 · · · 1

h0,1,M
hT
1,M

1
h0,1,1

hT
2,1

1
h0,1,2

hT
2,2 · · · 1

h0,1,M
hT
2,M

...
...

. . .
...

1
h0,1,1

hT
L,1

1
h0,1,2

hT
L,2 · · · 1

h0,1,M
hT
L,M




×




h0,1,1z
(h)
1 (k)

h0,1,2

h0,1,1
h0,1,1z

(h)
2 (k)

...
h0,1,M

h0,1,1
h0,1,1z

(h)
M (k)



+ n(H)(k). (16)

From (16), we have a unique parametrized MIMO channel

matrix HU as

H =




1
h0,1,1

hT
1,1

1
h0,1,2

hT
1,2 · · · 1

h0,1,M
hT
1,M

1
h0,1,1

hT
2,1

1
h0,1,2

hT
2,2 · · · 1

h0,1,M
hT
2,M

...
...

. . .
...

1
h0,1,1

hT
L,1

1
h0,1,2

hT
L,2 · · · 1

h0,1,M
hT
L,M



. (17)

In (17), we still denote this equivalent linear MIMO channel

matrix HU by H for notational simplicity. From (16), we

also note that the M nonlinear transmitters can be expressed as

zm(k) =
h0,1,m

h0,1,1
·
(
h0,1,1z

(h)
m (k)

)
for 1 ≤ m ≤M . Therefore,

we have a unique parametrized NHPAs’ model U∗z(h) as

zm(k) =ζmΨ(sm(k)), 1 ≤ m ≤M, (18)

with ζ1 = 1 and ζm =
h0,1,m

h0,1,1
∈ C for 2 ≤ m ≤M . Note that

(18) corresponds to absorbing h0,1,1 into the NHPA’s response

Ψ(·), and again for notational simplicity, we still denote this

equivalent NHPA’s response h0,1,1Ψ(·) by Ψ(·).
Compared to the nonlinear frequency-nonselective MIMO

channel of [28], the nonlinear frequency-selective MIMO

channel, namely, the nonlinear MIMO Hammerstein system

(17) and (18), is much more complicated. In particular, MIMO

channel matrix H ∈ C
nHLM is nH times larger than the

MIMO channel matrix of [28]. Identification of such a large-

size MIMO nonlinear system, consisting of the frequency-

selective MIMO CIR multiplicative with the nonlinear model

of the M nonlinear transmitters, is much more difficult than

the corresponding identification task in [28].

As shown in the previous section, implementing the non-

linear space-time equalizer for multiuser nonlinear frequency-

selective MIMO uplink requires the knowledge of the dis-

persive linear MIMO CIR matrix H as well as the inverse

mappings of all the MUs’ nonlinear HPAs. Since the dispersive

linear MIMO CIR matrix H is cascaded with the M nonlinear

transmitters, in order to acquire H , it is necessary to jointly

2.3 Unique parametrization of MIMO uplink 
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estimate both the MIMO CIR matrix H and the model

of the M NHPAs. Based on the unique parametrization of

Subsection II-C, we develop a BSNN based approach for

estimating both the MIMO CIR matrix H and the MUs’

nonlinear transmitters ζmΨ(·) for 1 ≤ m ≤ M . Furthermore,

the results of this nonlinear identification enable us to acquire

the inverse mappings
(
ζmΨ

)
−1

(·) of ζmΨ(·) for 1 ≤ m ≤M .

To jointly estimate the MIMO CIR matrix H (17) and the

M NHPAs (18), we still need to parametrize the complex-

valued NHPA Ψ(·) of (3). We propose to use a complex-valued

BSNN for this parametrization. The reason why we choose

the BSNN rather than other nonlinear models is because

among all the universe approximators for the class of nonlinear

continuous functions in the univariate dimension, the BSNN

has the maximum robustness to estimation error [37]–[39]. In

other words, it is an optimal choice for this task.

First, we establish some physical properties of the NHPA

Ψ(·) and its input s = sR + jsI , which are essential for our

BSNN parametrization. Clearly, the NHPA Ψ(·) is a one-to-

one continuous mapping, and therefore it is invertible. This

establishes the physical base for identifying Ψ(·) as well as

inverting it. The input to the NHPA s takes value from the

QAM constellation S of (2). Observe from the QAM signaling

(2) that the constellation points are symmetrically distributed,

and they are both upper and lower bounded. In order words,

the distributions of sR and sI are identical and symmetric. In

addition, since
(
−

√
U + 1

)
dS < sR, sI <

(√
U − 1

)
dS, we

can always specify some known finite real values, Umin and

Umax, such that Umin < sR, sI < Umax.

1) Univariate BSNN: Consider a generic continuous non-

linear real-valued function y = f(u) defined in the univariate

dimension of u ∈ R, and its input u is both upper and lower

bounded, i.e., Umin < u < Umax, with the known Umin and

Umax. We use a univariate BSNN with piecewise polynomial

degree of Po and Nr basis functions to model this nonlinear

function. According to [29], the univariate BSNN is built upon

the so-called knot sequence specified by (Nr + Po + 1) knot

values, denoted as {U0, U1, · · · , UNr+Po
}, with the following

relationship

U0 < U1 < · · · < UPo−2 < UPo−1 = Umin < UPo
< · · ·

< UNr
< UNr+1 = Umax < UNr+2 < · · · < UNr+Po

. (19)

Since the input region is
(
Umin, Umax

)
, we have Nr+1−Po

internal knots inside
(
Umin, Umax

)
, two boundary knots (Umin

and Umax), and 2(Po − 1) external knots outside the input

region. Given the set of predetermined knots (19), we can

compute the set of Nr B-spline basis functions. Specifically,

using the well-known De Boor recursion [29], we start from

the zero-order basis functions

B
(r,0)
l (u) =

{
1, if Ul−1 ≤ u < Ul,

0, otherwise,
1 ≤ l ≤ Nr + Po,

(20)

and recursively compute the pth order basis functions with

p = 1, · · · , Po

B
(r,p)
l (u) =

u− Ul−1

Up+l−1 − Ul−1
B

(r,p−1)
l (u)

+
Up+l − u

Up+l − Ul

B
(r,p−1)
l+1 (u), (21)

for l = 1, · · · , Nr + Po − p. The BSNN model for y = f(u)
is then produced as

y =

Nr∑

i=1

biB
(r,Po)
i (u), (22)

where bi for 1 ≤ i ≤ Nr are the BSNN model coefficients.

2) Structure determination: We now discuss how to deter-

mine the structure parameters, Po and Nr, for the univariate

BSNN model (22). For modeling the nonlinear functions

commonly encountered in the real world, the polynomial

degree Po = 3 or 4 is sufficient [31]–[36]. Since the input

region
(
Umin, Umax

)
is a bounded interval, using Nr = 6

to 10 B-spline basis functions is also sufficient for accurately

modeling over the interval
(
Umin, Umax

)
. As regarding how

to determine the knot sequence relationship (19), the two

boundary knots can obviously be set to the known values

Umin and Umax, respectively, and the Nr + 1 − Po internal

knots can be uniformly spaced in the interval
(
Umin, Umax

)
.

The 2(Po − 1) external knots are used to equip the BSNN

model with extrapolating capability outside the input region(
Umin, Umax

)
, and they can be set empirically. Since no data

appears outside
(
Umin, Umax

)
, the choice of these external

knots does not really matter, in terms of modeling accuracy.

Also the physical properties of the system to be modeled can

be taken into account to improve the modeling performance.

For our application with the symmetric QAM signals, the

distribution of u = sR or u = sI is naturally symmetric,

and therefore the knot sequence should be symmetrically

distributed too.

3) Computational complexity: The computational complex-

ity of the univariate BSNN model (22) depends on Po, not Nr.

This is because given any input u ∈
(
Umin, Umax

)
, it can be

shown that no more than (Po+1) basis functions are nonzero

[40]. In [40], it further demonstrates that the complexity of

the BSNN model (22) is no more than twice of the following

polynomial basis model

y =

Po∑

i=0

aiu
i, (23)

with the model coefficients ai for 0 ≤ i ≤ Po, and the basis

function set

1, u, u2, · · · , uPo . (24)

4) Maximum robustness to estimation error: The works

[37]–[39] have established the fact that among all the universe

approximators for the class of nonlinear continuous functions

in the univariate dimension, the BSNN model (22) has the

optimal maximum robustness property. This optimal maximum

robustness property of the BSNN is due to the convexity of

its model bases, specifically, all the B-spline bases are positive

3.1 BSNN based parametrization 
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and they sum up to unity. This maximum robustness property

provides the BSNN model with the maximum robustness to

estimation error and enables the BSNN model to attain highly

accurate estimation in noisy-data environments [28], [34],

[36], [40]–[42], outperforming other universe approximators

of similar complexity with non-convex model bases.

For example, the model bases (24) of the polynomial model

(23) do not possess the convexity property, and our previous

applications [28], [34], [36], [40]–[42] have all confirmed that

the BSNN model significantly outperforms the polynomial

model, particularly under highly noisy environments. In fact,

the previous analysis given in [40] has explained exactly

why. More specifically, recall the real-valued true nonlinear

system y = f(u) with y, u ∈ R. Assume that this nonlinear

function can be exactly modeled by the polynomial model

(24) of degree Po or by the BSNN model (22) of polynomial

degree Po with Nr basis functions. Because the training

data are noisy, due to the estimation error, the estimated

model coefficients are perturbed from their true values ai
to âi = ai + εi for the polynomial model, and from their

true values bi to b̂i = bi + εi for the BSNN model. Let us

assume that all the estimation errors εi are bounded, namely,∣∣εi
∣∣ < εmax. The modeling error for the polynomial model

satisfies the following condition

|y − ŷ| =
∣∣∣∣

Po∑

i=0

aiu
i −

Po∑

i=0

âiu
i

∣∣∣∣ < εmax

∣∣∣∣
Po∑

i=0

ui
∣∣∣∣. (25)

Observe that the upper bound of the modeling error for the

polynomial model depends not only on the upper bound of

the estimation error but also on the input value u and the

polynomial degree Po. For example, the higher the polynomial

degree Po is, the higher the modeling error of the polynomial

model will be. By contrast, the modeling error
∣∣y − ŷ

∣∣ for

the BSNN model meets the following condition owe to the

convexity of its model bases

∣∣y − ŷ
∣∣=

∣∣∣∣
Nr∑

i=1

biB
(r,Po)
i (u)−

Nr∑

i=1

b̂iB
(r,Po)
i (u)

∣∣∣∣

<εmax

∣∣∣∣
Nr∑

i=1

B
(r,Po)
i (u)

∣∣∣∣ = εmax. (26)

Clearly, the upper bound of the modeling error for the BSNN

model only depends on the upper bound of the estimation

error, and it does not depend on the input value x, the number

of basis functions Nr or the polynomial degree Po. Unlike the

polynomial model, given the estimation error, the modeling

error of the BSNN model is not amplified. This confirms that

the BSNN model has the maximum robustness to estimation

error or noise.

5) Complex-valued BSNN model for NHPA: The input

s = sR + jsI to the NHPA (3) is complex-valued or bivariate

and the output of the NHPA Ψ(s) is also complex-valued.

We now discuss how to construct the complex-valued BSNN

model for the NHPA. First, based on the univariate BSNN

modeling discussed in Subsection III-A1, for the inputs sR
and sI , we can construct the two sets of the univariate B-

spline basis functions, B
(R,Po)
r (sR) for 1 ≤ r ≤ NR and

B
(I,Po)
i (sI) for 1 ≤ i ≤ NI , respectively. Then by applying

the tensor product between these two sets of univariate B-

spline basis functions [30], we obtain the new set of bivariate

B-spline basis functions B
(Po)
r,i (s) = B

(R,Po)
r (sR)B

(I,Po)
i (sI)

for 1 ≤ r ≤ NR and 1 ≤ i ≤ NI . This yields the following

complex-valued BSNN model for the NHPA Ψ(·)

ẑ =Ψ̂(s) =

NR∑

r=1

NI∑

i=1

B
(Po)
r,i (s)θr,i

=

NR∑

r=1

NI∑

i=1

B(R,Po)
r (sR)B

(I,Po)
i (sI)θr,i, (27)

where θr,i ∈ C, 1 ≤ r ≤ NR and 1 ≤ i ≤ NI , are the

complex-valued BSNN model coefficients. By collecting all

the coefficients into a vector form

θ =
[
θ1,1 θ1,2 · · · θr,i · · · θNR,NI

]T ∈ C
NB , (28)

where NB = NRNI , the task of identifying the complex-

valued NHPA Ψ(·) becomes one of estimating the complex-

valued parameter vector θ.

From Subsection II-C, the multiuser nonlinear frequency-

selective MIMO uplink is the multiplicative cascade of the M

nonlinear transmitters (18) with the MIMO CIR matrix (17).

Further adopting the BSNN model for the NHPA given in

Subsection III-A, we have the unique parametrization of this

multiuser nonlinear frequency-selective MIMO uplink, which

involves the parameter vectors θ and ζ =
[
ζ1 ζ2 · · · ζM

]T
,

where ζ1 = 1, of the M complex-valued BSNNs as well as

the multiuser MIMO CIR matrix H , where h0,1,m = 1 for

1 ≤ m ≤M .

1) Estimation signal representation: We first collect a

block of K training data, {s(h)(k),x(h)(k)}Kk=1, in which

the training input s(h)(k) =
[(
s
(h)
1 (k)

)T · · ·
(
s
(h)
M

)T]T
with

s
(h)
m (k) =

[
sm(k) sm(k − 1) · · · sm(k − nH + 1)

]T
, and

the desired output x(h)(k) = [x1(k) · · ·xL(k)]T. The outputs

x̂l(k) of our nonlinear model for modeling the desired outputs

xl(k) for 1 ≤ l ≤ L can be expressed by

x̂l(k) =

M∑

m=1

nH−1∑

q=0

hq,l,mẑm(k − q)

=

M∑

m=1

nH−1∑

q=0

NR∑

r=1

NI∑

i=1

B
(Po)
r,i (sm(k − q))hq,l,mζmθr,i. (29)

From (29), it can be seen that this nonlinear frequency-

selective MIMO uplink identification is a very challenging

nonlinear estimation problem because the parameters to be

estimated enter the model in the nonlinear triple product form

of hq,l,mζmθr,i. To devise an effective iterative estimation

procedure, we need the regression representations that are

‘linear’ in hq,l,m, ζm and θr,i, respectively.

3.2 Nonlinear frequency-selective 
MIMO uplink identification 
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1) Linear in H regression model: Clearly, we can express

the desired output matrix X ∈ C
L×K as

X =




x1(1) x1(2) · · · x1(K)
x2(1) x2(2) · · · x2(K)

...
... · · ·

...

xL(1) xL(2) · · · xL(K)


 =




xT
1

xT
2
...

xT
L


 . (30)

Recalling the MIMO channel model (8), X can be further

expressed as

X =HQ+N , (31)

in which N ∈ C
L×K denotes the channel AWGN matrix, and

the ‘regression’ matrix Q ∈ C
(MnH)×K is given by

Q =




ẑ1(1) ẑ1(2) · · · ẑ1(K)
ẑ2(1) ẑ2(2) · · · ẑ2(K)

...
... · · ·

...

ẑM (1) ẑM (2) · · · ẑM (K)


 , (32)

in which ẑm(k) =
[
ẑm(k) ẑm(k − 1) · · · ẑm(k − nH + 1)

]T
with

ẑm(k − q) =

NR∑

r=1

NI∑

i=1

B
(Po)
r,i (sm(k − q))ζmθr,i,

0 ≤ q ≤ nH − 1, (33)

for 1 ≤ m ≤ M . The regression model (31) is indeed linear

in H but its regression matrix Q is nonlinear in the parameter

products ζmθr,i.

2) Linear in θ regression model: Next, express the desired

output vectors xl ∈ C
K , 1 ≤ l ≤ L, where xT

l is the lth row

of X , as

xl =Plθ + nl, 1 ≤ l ≤ L, (34)

in which nl ∈ C
K is the corresponding channel AWGN

vector, and the ‘regression’ matrix Pl ∈ C
K×NB is given by

Pl =




φ
(l)
1,1(1) φ

(l)
1,2(1) · · · φ

(l)
NR,NI

(1)

φ
(l)
1,1(2) φ

(l)
1,2(2) · · · φ

(l)
NR,NI

(2)
...

... · · ·
...

φ
(l)
1,1(K) φ

(l)
1,2(K) · · · φ

(l)
NR,NI

(K)



, (35)

with

φ
(l)
r,i(k) =

M∑

m=1

nH−1∑

q=0

hq,l,mζmB
(Po)
r,i

(
sm(k − q)

)
, (36)

for 1 ≤ r ≤ NR and 1 ≤ i ≤ NI . Aggregating (34) for

1 ≤ l ≤ L, we have

L∑

l=1

xl =

L∑

l=1

Plθ +

L∑

l=1

nl ⇒ x = Pθ + n. (37)

This model is linear in θ but its regression matrix P is

nonlinear in hq,l,mζm.

3) Linear in ζ regression model: Similarly, express xl ∈
C

K , 1 ≤ l ≤ L, as

xl =Slζ + nl, 1 ≤ l ≤ L, (38)

where the ‘regression’ matrix Sl ∈ C
K×M is given by

Sl=




hT
l,1ψ1(1) hT

l,2ψ2(1) · · · hT
l,MψM (1)

hT
l,1ψ1(2) hT

l,2ψ2(2) · · · hT
l,MψM (2)

...
... · · ·

...

hT
l,1ψ1(K) hT

l,2ψ2(K) · · · hT
l,MψM (K)


, (39)

in which ψm(k) =
[
ψm(k) ψm(k− 1) · · ·ψm(k−nH +1)

]T
and

ψm(k − q) =

NR∑

r=1

NI∑

i=1

B
(Po)
r,i

(
sm(k − q)

)
θr,i, (40)

for 0 ≤ q ≤ nH − 1 and 1 ≤ m ≤M . Hence we have

L∑

l=1

xl =

L∑

l=1

Slζ +

L∑

l=1

nl ⇒ x = Sζ + n. (41)

This model is linear in ζ but its regression matrix S is

nonlinear in hq,l,mθr,i.

2) Iterative ALS procedure: We extend the estimation al-

gorithm of [28] originally developed for efficiently identifying

the multiuser nonlinear narrowband MIMO uplink model to

our current application of the multiuser nonlinear frequency-

selective MIMO uplink, and derive a new iterative ALS

procedure for estimating H , θ and ζ. The basic idea is that

if we alternatively fix the two parameters among the triple

parameters H , θ and ζ, the third parameter can be obtained

by the least squares (LS) estimator. The estimation procedure

involves two iterative loops with three-stage ALS estimations

of H , θ and ζ, respectively, as detailed below.

Algorithm: Two-loop three-stage ALS estimation.

Step 1. Estimation procedure initialization.

1.1. Set the maximum number of the outer loop iterations ςmax

and the maximum number of the inner loop iterations υmax.

1.2. Initialize H and ζ to H [0] and ζ[0]. Specifically, by

assuming that all the transmitters’ HPAs are linear, we have

the ‘approximate’ regression model X ≈ SH +N , where

the regression matrix S ∈ C
(nHM)×K is given by

S =




s1(1) s1(2) · · · s1(K)
s2(1) s2(2) · · · s2(K)

...
... · · ·

...

sM (1) sM (2) · · · sM (K)


 , (42)

with sm(k) =
[
sm(k) sm(k − 1) · · · sm(k − nH + 1)

]T
for

1 ≤ m ≤M . Then we can set H [0] to the following standard

LS estimate

Ĥ [0] =XSH
(
SSH

)−1
. (43)

To meet the unique parametrization of the MIMO CIR matrix

as discussed in Subsection II-C, we ‘normalize’ Ĥ [0] accord-

ing to

ĥ
[0]
l,m =

1

ĥ
[0]
0,1,m

ĥ
[0]
l,m, 1 ≤ l ≤ L, 1 ≤ m ≤M. (44)

All the elements of ζ̂[0] can be initialized to 1, i.e., ζ̂
[0]
m = 1

for 1 ≤ m ≤M .
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Step 2. Start of the outer iterative loop. For 1 ≤ ς ≤ ςmax,

do:

Step 3. Fix the unknown MIMO CIR H in the regression

matrices P and S to Ĥ [ς−1], and initialize ζ̂[0 = ζ̂[ς−1].

3.1. Start of the inner iterative loop. For 1 ≤ υ ≤ υmax, do:

3.2. Fix the unknown ζ in the regression matrix P to ζ̂[υ−1

and denote the resulting P as P
[υ

, which is now free from the

unknown H and ζ. The closed-form regularized LS estimate

of θ can readily be obtained as1

θ̂[υ =
((
P

[υ)H
P

[υ
+ λINB

)
−1 (

P
[υ)H

x, (45)

where λ is a very small positive regularization parameter, and

INB
denotes the NB ×NB identity matrix.

3.3. Fix the unknown θ in the regression matrix S to θ̂[υ

and denote the resulting S as S
[υ

, which is then free from

the unknown H and θ. The closed-form LS estimate of ζ is

readily given by

ζ̂[υ =
((
S

[υ)H
S

[υ
)
−1 (

S
[υ)H

x. (46)

To meet the unique parametrization of the M NHPAs, we

normalize ζ̂[υ with

ζ̂ [υm =ζ̂ [υm
/
ζ̂
[υ
1 , 1 ≤ m ≤M. (47)

3.4. End of the inner iterative loop.

For the fixed MIMO CIR matrix Ĥ [ς−1], we obtain the

estimated parameter vectors of the M NHPAs as θ̂[ς] = θ̂[υmax

and ζ̂[ς] = ζ̂[υmax .

Step 4. In the regression matrix Q, fix the unknown θ to θ̂[ς]

and the unknown ζ to ζ̂[ς]. The resultant Q is denoted as

Q[ς], which becomes independent of the unknown θ and ζ.

The closed-form LS estimate of H is then given by

Ĥ [ς] =X
(
Q[ς]

)H (
Q[ς]

(
Q[ς]

)H)−1

, (48)

which is followed by the normalization operation

ĥ
[ς]
l,m =

1

ĥ
[ς]
0,1,m

ĥ
[ς]
l,m, 1 ≤ l ≤ L, 1 ≤ m ≤M, (49)

to meet the unique parametrization of the MIMO CIR matrix.

Step 5. End of the outer iterative loop.

At the end of Algorithm, we obtain the estimates Ĥ =
Ĥ [ςmax], θ̂ = θ̂[ςmax] and ζ̂ = ζ̂[ςmax] for the multiuser

nonlinear frequency-selective MIMO uplink.

3) Unbiasedness and efficiency analysis: Observe that our

proposed identification procedure for the multiuser nonlinear

frequency-selective MIMO uplink model contains the two

iterative loops, namely, the outer iterative loop of Step 1 to

Step 5 and the inner iterative loop of Step 3.1 to Step 3.4,

together with the three stages of ALS estimation, namely, the

closed-form LS estimates (45), (46) (with the normalization

(47)) and (48) (with the normalization (49)). The outer loop

iterates between the two stages of estimating the model of the

M NHPAs and estimating the multiuser MIMO CIR matrix.

Within the first stage of the outer iterative loop, the inner loop

1Since the size of θ is relatively large, the regularization is applied to avoid
ill-conditioning and enhance estimation accuracy.

iterates between the two stages of estimating θ and ζ, which

together forms the model of the M nonlinear transmitters.

We now analyze why the proposed iterative ALS procedure

converges extremely fast. The initial estimate for the unknown

MIMO CIR matrix is given by Ĥ [0] of (43), which is an

estimate of H scaled by the NHPAs’ complex-valued gains.

It can readily be seen that with the normalization operation

(44), Ĥ [0] is an unbiased unique estimate of H in (17).

Therefore, give this unbiased estimate Ĥ [0] of H , the inner

iterative loop converges to the unique estimates of θ and ζ

very fast, owing to the unique parametrization of the NHPAs

and the closed-form LS estimates of (45) and (46) (with

the normalization (47)). Given this accurate NHPAs’ model,

Step 4 of the outer iterative loop can further improve the

accuracy of the estimate for the MIMO CIR matrix. Thus,

the outer iterative loop with ςmax = 1 iteration is in fact

sufficient. To further enhance the overall estimation accuracy

of the multiuser nonlinear frequency-selective MIMO uplink

model, we may set ςmax = 2.

It is worth emphasizing that the uniqueness of the solutions

H , θ and ζ is guaranteed by our unique parametrization of

the multiuser nonlinear MIMO system, (16) to (18). In the

simulation study, we will further investigate empirically the

unbiasedness and efficiency property of our proposed iterative

ALS estimation procedure.

To implement the nonlinear STE based MUD for the

multiuser nonlinear frequency-selective MIMO uplink, we also

require the inverse mappings of the M NHPAs. Mathemati-

cally, the complex-valued inverse mappings of the M NHPAs

are defined by

sm(k) =
(
ζmΨ

)
−1

(zm(k)) = Φm(zm(k))

=Φm

(
ζmΨ

(
sm

))
, 1 ≤ m ≤M. (50)

It can be seen that the inverse mapping Φm(·) of the mth

NHPA maps the output zm of the NHPA back to the NHPA’s

input sm. This is a challenging complex-valued nonlinear

inversion problem.

Since the BSNN is a universe nonlinear approximator with

the maximum robustness to estimation error, as discussed

in Subsection III-A, it is ideal for this nonlinear inversion

problem. Thus, we employ another complex-valued BSNN to

model Φm(·). By defining the two knots sequences similar to

(19) for the real and imaginary parts of zm = zmR
+ jzmI

,

respectively, the BSNN model for Φm(·) can be constructed

as

ŝm =Φ̂m(zm) =

NR∑

r=1

NI∑

i=1

B
(Po)
r,i (zm)α

(m)
r,i

=

NR∑

r=1

NI∑

i=1

B(R,Po)
r (zmR

)B
(I,Po)
i (zmI

)α
(m)
r,i , (51)

for 1 ≤ m ≤ M , where the two sets of the basis functions,

B
(R,Po)
r (zmR

) for 1 ≤ r ≤ NR and B
(I,Po)
i (zmI

) for 1 ≤
i ≤ NI , are similarly calculated according to the De Boor

recursion (20) and (21). It can be seen that inverting the NHPA

3.3 Inverting the NHPAs 
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ζmΨ(·) becomes the task of estimating the BSNN’s parameter

vector α(m) ∈ C
NB given by

α(m) =
[
α
(m)
1,1 α

(m)
1,2 · · ·α(m)

r,i · · ·α(m)
NR,NI

]T
. (52)

If we can acquire the training input-output data{
zm(k), sm(k)

}K

k=1
, then this estimation problem is

easily solved. However, the input zm(k) for this identification

task is unobserved and therefore unavailable. To overcome

this problem, we utilize the identification results for the

multiuser nonlinear frequency-selective MIMO uplink.

Specifically, in this identification, we have obtained the

M BSNN models ζ̂mΨ̂
(
·; θ̂

)
, 1 ≤ m ≤ M , for the M

NHPAs. Therefore, we can calculate the estimate of zm(k) as
̂̄zm(k) = ζ̂mΨ̂

(
sm(k); θ̂

)
, and use this ‘pseudo’ input ̂̄zm(k)

to substitute for the unknown true input zm(k). This enables

us to construct the training data
{̂̄zm(k), sm(k)

}K

k=1
for this

inverse modeling. The downside is that ̂̄zm(k) is not the true

training input and it is highly noisy, which may potentially

introduce bias in the estimate. Since we employ the BSNN as

the inverse model, we can rely on the maximum robustness

property of BSNN to combat this problem. After constructing

the training data
{̂̄zm(k), sm(k)

}K

k=1
, we can form the linear

in α(m) regression model from which the LS estimate of

α(m) is readily obtained. Specifically, by defining the desired

output vector as

sm =
[
sm(1) sm(2) · · · sm(K)

]T
, (53)

and the regression matrix B̃m ∈ R
K×NB as

B̃m =




B
(Po)
1,1

(̂̄zm(1)
)

· · · B
(Po)
NR,NI

(̂̄zm(1)
)

B
(Po)
1,1

(̂̄zm(2)
)

· · · B
(Po)
NR,NI

(̂̄zm(2)
)

... · · ·
...

B
(Po)
1,1

(̂̄zm(K)
)

· · · B
(Po)
NR,NI

(̂̄zm(K)
)



, (54)

the closed-form LS estimate α(m) is readily given by

α̂(m) =
(
B̃T

mB̃m

)
−1
B̃T

msm. (55)

Although the training input ̂̄zm(k) is noisy, the optimal

maximum robustness property of the BSNN as discussed in

Subsection III-A4 ensures that the LS estimate (55) is unbiased

and highly accurate.

The simulated multiuser nonlinear frequency-selective

MIMO uplink is specified in Table I. Since the system has

L receiver antennas and M users, we define the multiuser

TABLE I
PARAMETERS OF SIMULATED MULTIUSER NONLINEAR

FREQUENCY-SELECTIVE MIMO UPLINK

BS antennas: L = 5; MUs: M = 3; modulation: 64-QAM;
CIR length: nH = 3
NHPA: (4) and (5) with ga = 19, βa = 0.81, Asat = 1.4,
αφ = −48000, βφ = 0.123, q1 = 3.8, q2 = 3.7
Space-time equalizer length: nF = 10, and decision delay: d = 5

TABLE II
STRUCTURE PARAMETERS OF B-SPLINE NEURAL NETWORK.

Polynomial degree: Po = 4, number of basis functions: NR = NI = 8
Knot sequence for sR and sI (modeling of NHPA)
-10.0, -9.0, -1.0, -0.9, -0.05, -0.02, 0.0, 0.02, 0.05, 0.9, 1.0, 9.0, 10.0

Knot sequence for zR and zI (inverse modeling of NHPA)
-20.0, -18.0, -3.0, -1.4, -0.8, -0.4, 0.0, 0.4, 0.8, 1.4, 3.0, 18.0, 20.0

MIMO system’s average signal-to-noise ratio (SNR) as the

ratio of the total transmitted signal power over the total noise

power, given by

Average SNR =

∑M
m=1 σ

2
zm

L · 2σ2
n

, (56)

where σ2
zm

= E{|zm(k)|2} is the average power of the

mth MU’s transmitted signal. The BSNNs used for modeling

and inverse modeling of NHPA are specified in Table II. As

explained in Subsection III-A2, choosing NR = NI = 8 and

Po = 4 is adequate for our application. The knot sequences in

Table II are chosen to cover the NHPA’s operating range and

match the 64-QAM signals. Observe that the knot sequences

for sR and sI are identical, and they are symmetric, since

the distributions of sR and sI are symmetric and identical.

Similarly, the knot sequences for zR and zI are identical, and

they are symmetric.

Since the total number of model parameters for this mul-

tiuser nonlinear frequency-selective MIMO channel is L×M×
nH + NB + M = 112, the number of training samples is

set to K = 1000 for ensuring the estimation accuracy. For

the iterative ALS procedure, we set the number of outer-loop

iterations to ςmax = 2 and the number of inner-loop iterations

to υmax = 2. As explained in Subsection III-B3, this choice

is sufficient for the iterative ALS procedure to converge to the

unique and accurate estimates of H , θ and ζ.

We first demonstrate that the proposed BSNN based identifi-

cation algorithms presented in Subsections III-B and III-C are

TABLE III
UNIQUE PARAMETRIZED TRUE MULTIUSER NONLINEAR

FREQUENCY-SELECTIVE MIMO CHANNEL. L = 5, M = 3 AND nH = 3.
THE NHPA IS SPECIFIED IN TABLE I.

NHPAs’ true weightings ζT

1 1 1

True H =
[[
hT
l,m

, 1 ≤ m ≤ 3
]
∈ C1×9

]
, 1 ≤ l ≤ 5

1 0.4740 + j 1.1054 0.3705− j 0.7751
1 0.3755 + j 0.4018 1.6995− j 0.2905
1 −0.1295− j 1.4125 −0.5323− j 0.4941

0.3291− j 0.1268 1.0269 + j 0.4665 −0.5798 + j 0.8334
−0.5858− j 0.2308 −0.3396 + j 0.1845 −0.2193− j 0.3347
1.3517− j 1.3128 −0.6780 + j 0.9676 0.8737− j 0.3385

−0.1278 + j 0.6590 0.0567− j 0.2107 −0.4374− j 0.5615
−0.5436− j 0.5148 0.7399 + j 0.2869 −0.5403 + j 0.7881
0.0122 + j 0.9869 0.3670 + j 0.4122 0.1809 + j 0.2305

−1.0084− j 0.4358 −0.0909− j 0.4223 −0.8884− j 0.4641
−0.2137− j 0.2550 −0.1393− j 0.3626 −0.2465 + j 0.0176
−1.1740 + j 0.7498 −1.7164 + j 0.6888 −0.6179 + j 0.6992
−0.6067− j 0.7319 0.1464 + j 0.5121 −0.4454 + j 0.4105
0.0466− j 0.5741 0.8389− j 0.9315 0.1460− j 0.7706
1.0872 + j 1.0012 −0.8176 + j 1.3148 1.8309 + j 0.5452

4. Simulation Evaluation 

4.1 Simulation system setup  

4.2 Estimation results by our BSNN approach 
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TABLE IV
BSNN BASED IDENTIFICATION RESULTS FOR THE MULTIUSER NONLINEAR FREQUENCY-SELECTIVE MIMO CHANNEL OF TABLE III. THE OBO IS 3 DB

AND THE AVERAGE SNR IS 20 DB. THE RESULTS ARE OBTAINED OVER 100 INDEPENDENT RUNS, AND ARE PRESENTED AS: AVERAGE ESTIMATE

(±STANDARD DEVIATION). THE BSNN ESTIMATED NHPAS ARE DEPICTED IN FIG. 3.

Estimated weightings of MUs’ HPAs ζ̂ by BSNN approach

1 1.0000 + j 0.0000 (±0.0023± j 0.0024) 1.0000− j 0.0002 (±0.0023± j 0.0027)

Estimated MIMO channel matrix Ĥ =
[[
ĥT
l,m

, 1 ≤ m ≤ 3
]
∈ C1×9

]
, 1 ≤ l ≤ 5, by BSNN approach

1 0.4735 + j 1.1052 (±0.0032± j 0.0032) 0.3704− j 0.7748 (±0.0023± j 0.0026)
1 0.3754 + j 0.4020 (±0.0020± j 0.0019) 1.6995− j 0.2908 (±0.0036± j 0.0033)
1 −0.1297− j 1.4128 (±0.0032± j 0.0032) −0.5323− j 0.4944 (±0.0024± j 0.0023)

0.3291− j 0.1270 (±0.0017± j 0.0022) 1.0270 + j 0.4665 (±0.0025± j 0.0029) −0.5800 + j 0.8330 (±0.0027± j 0.0026)
−0.5859− j 0.2308 (±0.0021± j 0.0020) −0.3399 + j 0.1846 (±0.0019± j 0.0019) −0.2191− j 0.3343 (±0.0019± j 0.0017)
1.3521− j 1.3126 (±0.0044± j 0.0038) −0.6780 + j 0.9675 (±0.0026± j 0.0026) 0.8741− j 0.3383 (±0.0022± j 0.0027)

−0.1277 + j 0.6592 (±0.0020± j 0.0021) 0.0565− j 0.2107 (±0.0022± j 0.0018) −0.4371− j 0.5613 (±0.0022± j 0.0024)
−0.5436− j 0.5150 (±0.0023± j 0.0022) 0.7398 + j 0.2869 (±0.0022± j 0.0023) −0.5402 + j 0.7881 (±0.0025± j 0.0026)
0.0120 + j 0.9866 (±0.0021± j 0.0025) 0.3672 + j 0.4126 (±0.0023± j 0.0020) 0.1809 + j 0.2304 (±0.0018± j 0.0019)

−1.0081− j 0.4359 (±0.0025± j 0.0029) −0.0909− j 0.4222 (±0.0021± j 0.0022) −0.8883− j 0.4642 (±0.0027± j 0.0025)
−0.2138− j 0.2547 (±0.0019± j 0.0019) −0.1395− j 0.3628 (±0.0020± j 0.0017) −0.2468 + j 0.0179 (±0.0019± j 0.0018)
−1.1740 + j 0.7497 (±0.0032± j 0.0028) −1.7168 + j 0.6883 (±0.0037± j 0.0041) −0.6180 + j 0.6993 (±0.0027± j 0.0026)

−0.6065− j 0.7320 (±0.0023± j 0.0026) 0.1464 + j 0.5121 (±0.0021± j 0.0021) −0.4451 + j 0.4104 (±0.0024± j 0.0023)
0.0466− j 0.5740 (±0.0019± j 0.0021) 0.8388− j 0.9316 (±0.0029± j 0.0029) 0.1457− j 0.7707 (±0.0020± j 0.0022)
1.0872 + j 1.0016 (±0.0035± j 0.0032) −0.8175 + j 1.3143 (±0.0035± j 0.0032) 1.8308 + j 0.5451 (±0.0039± j 0.0037)
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Fig. 3. The unique parametrized true NHPA’s mapping ζmΨ(·) in comparison with the BSNN estimated NHPA mapping ζ̂mΨ̂(·) averaged over 100
identification runs given OBO of 3 dB and average SNR of 20 dB: (a) MU 1, (b) MU 2, and (c) MU 3.

capable of attaining the unbiased and accurate estimates of the

MIMO CIR matrix and the BSNN models of the NHPAs at

the MUs’ transmitters as well as the BSNN inverse models

of the transmitters’ NHPAs. For this purpose, we consider

the true MIMO CIR matrix H and the true NHPAs’ weights

ζ for a unique parametrized multiuser nonlinear frequency-

selective MIMO channel as given in Table III, where for the

clear representation purpose, each row of H is re-arranged

into three subrows:

hT
l,1 h

T
l,2 h

T
l,3 ⇒

hT
l,1

hT
l,2

hT
l,3

, 1 ≤ l ≤ L. (57)

In this set of experiments, we set the NHPAs’ OBO to 3 dB

and the system’s average SNR to 20 dB. The BSNN based

identification scheme and the nonlinear STE based MUD

presented in Section III are applied to this multiuser nonlinear

frequency-selective MIMO uplink. The results are obtained

over 100 independent identification experiments.

1) Accuracy of MIMO CIR matrix estimate: The MIMO

CIR matrix estimate Ĥ obtained by the proposed BSNN based

estimator is tabulated in Table IV, where the estimation results

are presented as average estimate with standard deviation.

Observe from Table IV that the BSNN based estimate Ĥ is a

very accurate unbiased estimate of the true MIMO CIR matrix

H given in Table III, with very small estimation error standard

deviations.

2) Accuracy of BSNN estimates of NHPAs: The estimated

NHPAs’ weighting vector ζ̂ obtained by the BSNN based

estimator closely matches the true NHPAs’ weighting vector

ζ, as can be clearly seen from Table IV. Fig. 3 compares the
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Fig. 4. The ideal combined response of the true NHPA ζmΨ(·) and its true inversion Φm(·) in comparison with the combined response of the true HPA

ζmΨ(·) and the estimated BSNN inversion Φ̂m(·) averaged over 100 identification runs given the OBO of 3 dB and the average SNR of 20 dB: (a) MU 1,
(b) MU 2, and (c) MU 3.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

T
ra

n
s
m

it
 1

 e
s
ti
m

a
te

 I
m

Transmit 1 estimate Re

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

T
ra

n
s
m

it
 2

 e
s
ti
m

a
te

 I
m

Transmit 2 estimate Re

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

T
ra

n
s
m

it
 3

 e
s
ti
m

a
te

 I
m

Transmit 3 estimate Re
(a) (b) (c)

Fig. 5. Detected MUs’ transmitted signals, zm(k), 1 ≤ k ≤ 3, by the MMSE space-time equalizer using the estimated MIMO CIR matrix Ĥ obtained
by the BSNN based estimation scheme at a typical identification run given OBO of 3 dB and average SNR of 20 dB: (a) ẑ1(k − 5), (b) ẑ2(k − 5), and
(c) ẑ3(k − 5).
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Fig. 6. Detected MUs’ transmitted 64-QAM symbols, sm(k), 1 ≤ m ≤ 3, by the nonlinear MMSE space-time equalizer based MUD using the estimated

Ĥ and the BSNN inversions Φ̂m(·) obtained by the BSNN based estimation scheme at a typical identification run given OBO of 3 dB and average SNR of
20 dB: (a) ŝ1(k − 5), (b) ŝ2(k − 5), and (c) ŝ3(k − 5).
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TABLE V
LINEAR LS ESTIMATE FOR THE TRUE MIMO CHANNEL MATRIX H OF MULTIUSER NONLINEAR FREQUENCY-SELECTIVE MIMO CHANNEL. THE OBO IS

3 DB AND THE AVERAGE SNR IS 20 DB. THE RESULTS ARE OBTAINED OVER 100 INDEPENDENT RUNS, AND ARE PRESENTED AS: AVERAGE ESTIMATE

(±STANDARD DEVIATION).

Linear LS estimate (43) Ĥ[0] =
[[(

ĥ
[0]
l,m

)T
, 1 ≤ m ≤ 3

]
∈ C1×9

]
, 1 ≤ l ≤ 5

10.5037− j 0.9566 (±0.1368± j 0.1215) 6.0066 + j 11.1395 (±0.1139± j 0.1278) 3.1474− j 8.4847 (±0.1183± j 0.1432)
10.4996− j 0.9583 (±0.1260± j 0.1184) 4.3061 + j 3.8817 (±0.1028± j 0.1349) 17.5568− j 4.6649 (±0.1413± j 0.1154)
10.4797− j 0.9443 (±0.1309± j 0.1221) −2.7116− j 14.6836 (±0.1099± j 0.1346) −6.0624− j 4.6978 (±0.1301± j 0.1274)

3.3110− j 1.6360 (±0.1179± j 0.1248) 11.2270 + j 3.9250 (±0.1197± j 0.1057) −5.2922 + j 9.2857 (±0.1101± j 0.1009)
−6.3678− j 1.8751 (±0.1130± j 0.1107) −3.3683 + j 2.2609 (±0.1089± j 0.1069) −2.6414− j 3.2991 (±0.1190± j 0.1083)
12.9403− j 15.0679 (±0.1186± j 0.1057) −6.1817 + j 10.7898 (±0.1185± j 0.1090) 8.8338− j 4.3716 (±0.1151± j 0.1004)

−0.7102 + j 7.0421 (±0.0820± j 0.0850) 0.3957− j 2.2574 (±0.0841± j 0.0811) −5.1194− j 5.4768 (±0.0831± j 0.0859)
−6.1958− j 4.8718 (±0.0828± j 0.0769) 8.0256 + j 2.3119 (±0.0864± j 0.0794) −4.9283 + j 8.7706 (±0.0720± j 0.0744)
1.0621 + j 10.3361 (±0.0720± j 0.0977) 4.2427 + j 3.9866 (±0.0853± j 0.0825) 2.1151 + j 2.2470 (±0.0852± j 0.0763)

−11.0036− j 3.6347 (±0.1145± j 0.1149) −1.3577− j 4.3382 (±0.1102± j 0.1123) −9.7641− j 4.0338 (±0.1133± j 0.1178)
−2.4888− j 2.4631 (±0.1145± j 0.1159) −1.7963− j 3.6669 (±0.1038± j 0.1204) −2.5767 + j 0.4046 (±0.1148± j 0.1288)

−11.6016 + j 8.9805 (±0.1205± j 0.1031) −17.3620 + j 8.8487 (±0.1294± j 0.0982) −5.8282 + j 7.9291 (±0.1160± j 0.1159)

−7.0849− j 7.1076 (±0.1373± j 0.1471) 2.0245 + j 5.2562 (±0.1213± j 0.1403) −4.2894 + j 4.7420 (±0.1373± j 0.1430)
−0.0367− j 6.0743 (±0.1442± j 0.1321) 7.9309− j 10.5453 (±0.1296± j 0.1181) 0.7785− j 8.2380 (±0.1362± j 0.1305)
12.3697 + j 9.4738 (±0.1281± j 0.1386) −7.3169 + j 14.5895 (±0.1263± j 0.1260) 19.7142 + j 3.9957 (±0.1485± j 0.1206)

Normalized linear LS estimate (44) Ĥ[0]

1 0.4713 + j 1.1035 (±0.0197± j 0.0207) 0.3702− j 0.7741 (±0.0151± j 0.0149)
1 0.3733 + j 0.4038 (±0.0126± j 0.0145) 1.6986− j 0.2892 (±0.0226± j 0.0219)
1 −0.1314− j 1.4130 (±0.0200± j 0.0196) −0.5338− j 0.4964 (±0.0147± j 0.0144)

0.3267− j 0.1260 (±0.0114± j 0.0124) 1.0263 + j 0.4672 (±0.0139± j 0.0164) −0.5796 + j 0.8312 (±0.0180± j 0.0150)
−0.5853− j 0.2320 (±0.0125± j 0.0114) −0.3376 + j 0.1845 (±0.0105± j 0.0101) −0.2210− j 0.3344 (±0.0124± j 0.0109)
1.3533− j 1.3159 (±0.0222± j 0.0238) −0.6771 + j 0.9686 (±0.0170± j 0.0162) 0.8734− j 0.3384 (±0.0158± j 0.0157)

−0.1277 + j 0.6588 (±0.0090± j 0.0095) 0.0568− j 0.2097 (±0.0090± j 0.0087) −0.4362− j 0.5612 (±0.0123± j 0.0129)
−0.5432− j 0.5136 (±0.0112± j 0.0100) 0.7381 + j 0.2876 (±0.0110± j 0.0122) −0.5411 + j 0.7859 (±0.0130± j 0.0135)
0.0124 + j 0.9874 (±0.0117± j 0.0131) 0.3676 + j 0.4135 (±0.0098± j 0.0095) 0.1810 + j 0.2307 (±0.0089± j 0.0079)

−1.0077− j 0.4378 (±0.0129± j 0.0110) −0.0909− j 0.4213 (±0.0111± j 0.0114) −0.8872− j 0.4649 (±0.0140± j 0.0160)
−0.2139− j 0.2541 (±0.0095± j 0.0092) −0.1381− j 0.3619 (±0.0101± j 0.0120) −0.2469 + j 0.0160 (±0.0112± j 0.0123)
−1.1747 + j 0.7511 (±0.0186± j 0.0184) −1.7188 + j 0.6895 (±0.0207± j 0.0224) −0.6193 + j 0.7008 (±0.0141± j 0.0147)

−0.6078− j 0.7320 (±0.0139± j 0.0154) 0.1459 + j 0.5137 (±0.0115± j 0.0122) −0.4458 + j 0.4108 (±0.0168± j 0.0157)
0.0489− j 0.5741 (±0.0140± j 0.0125) 0.8400− j 0.9277 (±0.0208± j 0.0212) 0.1446− j 0.7714 (±0.0160± j 0.0146)
1.0901 + j 1.0022 (±0.0253± j 0.0238) −0.8170 + j 1.3186 (±0.0184± j 0.0210) 1.8319 + j 0.5464 (±0.0247± j 0.0260)

BSNN estimated NHPA mapping ζ̂mΨ̂(·) averaged over 100

independent runs with the true HHPA’s mapping ζmΨ(·). It

can be seen that the amplitude response of ζ̂mΨ̂(·) is almost

identical to the true NHPA’s amplitude response, and the

estimation error of the phase response of ζ̂mΨ̂(·) is no more

than 0.01 radian.

3) Accuracy of BSNN inversions of NHPAs: We now ver-

ify the accuracy of the BSNN inversion estimates Φ̂m(·),
1 ≤ m ≤ 3, obtained by the proposed BSNN inverting

scheme. From (50), it can be seen that the ideal combined

response of the true NHPA ζmΨ(·) and its true inversion

Φm(·) satisfies sm = Φm

(
ζmΨ(sm)

)
. Therefore, we generate

the combined response of the true NHPA ζmΨ(·) and its

BSNN estimated inversion Φ̂m(·), and compare this combined

response with the ideal combined response in Fig. 4. Observe

that the combined response Φ̂m

(
ζmΨ(·)

)
matches well the

ideal combined response Φm

(
ζmΨ(·)

)
, and we have

Φ̂m

(
ζmΨ(sm)

)
≈ sm, 1 ≤ m ≤ 3. (58)

More specifically, the combined magnitude response is almost

identical to the ideal combined magnitude response, while

the error between the combined phase response and the ideal

combined phase response is no more than 0.02 radian. This

clearly demonstrates the accuracy of our proposed BSNN

inversion scheme based on the noisy pseudo training data.

4) Overall effectiveness of BSNN based estimation proce-

dure: To further illustrate the overall effectiveness of our

design, the estimated MIMO CIR matrix Ĥ and the BSNN

inversions Φ̂m(·), 1 ≤ m ≤ 3, of the transmitters’ NHPAs,

obtained by the BSNN based estimation procedure in a typical

identification run, are used to constructed the nonlinear STE

based MUD. Fig. 5 depicts the detected MUs’ transmitted

signals zm(k), 1 ≤ m ≤ 3, by the MMSE space-time

equalizer. The MUs’ transmitted 64-QAM data are detected

by passing the detected transmitted signals ẑm(k−5) through

the estimated BSNN inversion Φ̂m(·) to compensate for the

distortion of the transmitters’ NHPAs, for 1 ≤ m ≤ 3, which

are shown in Fig. 6.

5) Empirical evidence of unbiasedness and efficiency: The

estimation results of Table IV as well as Figs. 3 to 6 clearly

demonstrate the accuracy and efficiency of our proposed

BSNN based estimation procedure for the multiuser nonlinear

frequency-selective MIMO uplink. Specifically, these empiri-

cal results show that the estimated MIMO CIR matrix Ĥ is an

unbiased and accurate estimate for the true MIMO CIR matrix

H , while the identified BSNN inversions Φ̂m(·) are unbiased

and accurate estimates for the true NHPAs’ inversion mappings

Φm(·) , for 1 ≤ m ≤ M . Since we only set the numbers of

iterations in both the outer loop and the inner loop to 2, the

fast convergence of our proposed iterative ALS procedure is

self-evident.
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Fig. 7. Average bit error rate performance comparison for the proposed BSNN assisted nonlinear space-time equalization based MUD and the standard MMSE
linear space-time equalization scheme over 100 MIMO channel realizations, given the two OBO values of 3 dB and 5 dB: (a) MU 1, (b) MU 2, and (c) MU3.

In Subsection III-B3, we point out that the linear LS

estimate Ĥ [0] (43) is an estimate of the MIMO CIR matrix

scaled by the MUs’ NHPAs’ complex-valued gains, and its

normalized version (44) is an unbiased estimate of the true

MIMO CIR matrix H , although its estimation accuracy may

be poor. We now supply the empirical evidence to support

this analysis. In Table V, we list the linear LS estimate

Ĥ [0] (43) and its normalized version (44). By comparing this

normalized linear LS estimate with the true MIMO CIR matrix

H given in Table III, it is clear that the normalized Ĥ [0] is an

unbiased estimate of the true MIMO CIR matrix H . Since this

normalized linear LS estimate is used as the initial estimate

of the MIMO channel matrix in our iterative ALS estimator,

it is not surprising that our iterative ALS estimator converges

very fast. Moreover, by comparing this normalized linear LS

estimate Ĥ [0] with our BSNN approach based estimate Ĥ

of Table IV, it can be seen that with only two iterations, the

estimation accuracy of the latter is significantly better than that

of the former, since the estimation error standard deviations of

Ĥ are around six times smaller than those of the initial Ĥ [0].

Hence our estimation results also offer the empirical evidence

to support the analysis of Subsection III-B3.

We now evaluate the ultimate performance metric of our

design, namely, its achievable bit error rate (BER). We

consider the rich scattered wireless environment, where the

entries of the MIMO CIR matrix follow the independent

complex Gaussian distribution CN (0, 1). In the simulation,

we randomly generate the multiuser MIMO channel matrix

H by drawing its coefficients hi,l,m for 0 ≤ i ≤ nH − 1,

1 ≤ l ≤ L and 1 ≤ m ≤ M from CN (0, 1). A total of

100 channel realizations or MIMO CIR matrices are drawn.

For each MIMO channel realization, joint estimates of H ,

θ and ζ are obtained using the identification algorithms of

Section III with K = 1000 training data. Based on the

estimated Ĥ , θ̂ and ζ̂, the BSNN assisted nonlinear STE

based MUD is implemented and 108 64-QAM data symbols

are transmitted by each MU for the BS to calculate the BER.

The average BER performance over the generated 100 MIMO

channel realizations achieved by our proposed BSNN assisted

nonlinear STE based MUD are depicted in Fig. 7, given the

two OBO values of 3 dB and 5 dB.

It is worth recapping that our proposed scheme is the

first effective and practical multiuser nonlinear STE scheme

for the single-carrier multiuser nonlinear frequency-selective

MIMO uplink, and there exists no other effective and practical

nonlinear MUD schemes in the literature to compare with. The

existing STE based MUD schemes for single-carrier multiuser

frequency-selective MIMO uplink typically assume a linear

frequency-selective MIMO channel, which clearly no longer

work for the single-carrier multiuser nonlinear frequency-

selective MIMO uplink. To demonstrate this fact, we also

implement the linear STE for this single-carrier multiuser

nonlinear frequency-selective MIMO uplink. Specifically, we

first estimate the equivalent linear MIMO channel matrix Ĥ [0]

using the linear LS estimate of (43), and then design the

linear MMSE space-time equalizer based on Ĥ [0]. The BER

performance achieved by this linear space-time equalizer are

also shown in Fig. 7 for the comparison with our BSNN as-

sisted nonlinear STE based MUD. Not surprisingly, this linear

space-time equalizer exhibits a high BER floor at the BER

level of 10−2 even under the OBO of 5 dB, because it cannot

compensate for the nonlinear distortion of the transmitters’

NHPAs.

A BSNN assisted space-time equalization based MUD

has been proposed for the single-carrier multiuser nonlinear

frequency-selective MIMO uplink employing high-throughput

QAM transmission and with NHPAs at MUs’ transmitters.

First, we have developed a unique parametrization of the mul-

tiuser frequency-selective MIMO CIR matrix and the MUs’

nonlinear transmitters as well as a BSNN parametrization of

the transmitter’s NHPA. Second, we have proposed a highly

efficient and accurate iterative ALS estimation procedure to

jointly estimate the MIMO CIR matrix and the BSNN models

of the MUS’ NHPAs. Third, the BSNN inverse models for

the MUs’ NHPAs have also been estimated. Based on the

estimated MIMO CIR matrix and the constructed BSNN

inversion models of the NHPAs, a BSNN assisted space-

time equalization based MUD has been implemented for the

single-carrier multiuser nonlinear frequency-selective MIMO

4.3 Bit error rate performance 
5. Concluding Remarks 
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uplink. Simulation results have demonstrated that our proposed

iterative ALS procedure converges very fast to the unbiased

and accurate estimates of both the dispersive MIMO CIR

matrix and the MUs’ NHPAs. Simulation results have also

confirmed the effectiveness of the BSNN assisted space-time

equalization based MUD scheme, in terms of achievable BER

performance.
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