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Abstract

This contribution considers nonlinear space–time equalisation (STE) for multiple receive-antenna induced single-input multiple-
output (SIMO) systems. By exploiting the inherent symmetry of the underlying optimal Bayesian STE solution, a novel symmetric
radial basis function (RBF) based STE scheme is proposed, which is capable of approaching the optimal Bayesian equalisation
performance. Adaptive implementation of this symmetric RBF (SRBF) based STE can be achieved conveniently by estimating the
SIMO channels using the least mean square channel estimator and computing the optimal RBF centres from the resulting SIMO
channel matrix estimate. Simulation results also demonstrate that the performance of this SRBF based STE is robust with respect
to the choice of the RBF variance value. The proposed adaptive solution is then extended to the space–time decision feedback
equalisation (ST-DFE) structure.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Space–time processing techniques plays an increasingly important role in wireless communications [1–7]. With
the aid of smart antenna arrays and by exploiting both the space and time dimensions, space–time processing is
capable of effectively improving the achievable system capacity, coverage and quality of service by suppressing both
intersymbol interference and co-channel interference. The family of single-input multiple-output (SIMO) systems has
enjoyed popularity owing to its simplicity. A space–time equaliser (STE) [8–14] based on the SIMO structure of a
single-antenna transmitter and a multiple-antenna receiver is capable of mitigating the channel impairments arising
from hostile multipath propagation. The most commonly used STE structure is linear and classically the design of
such a linear STE is based on the minimum mean square error criterion. A recent study has shown that the optimal
linear STE design is the one that adopts the minimum bit error rate (MBER) criterion [12]. This linear MBER design
has been extended to the linear space–time decision feedback equalisation (ST-DFE) structure [13,14].

In this contribution, we show that the true optimal STE solution for the SIMO system is nonlinear, just as in
the case of single-input single-output (SISO) systems [15–20]. We further highlight the inherent symmetry of the
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optimal Bayesian STE solution, and this enables us to propose an adaptive nonlinear STE based on a novel symmetric
radial basis function (RBF) network. Such a symmetric RBF (SRBF) network was proposed recently for realising
the optimal Bayesian equaliser in the SISO case [21]. A convenient way of adaptive implementation of this SRBF
STE is to estimate the SIMO channels using the least mean square (LMS) channel estimator and then to compute
the optimal RBF centre vectors based on the resulting SIMO channel matrix estimate. This adaptive SRBF STE is
capable of realising the optimal Bayesian STE and its performance is robust with respect to the choice of the RBF
variance value, as will be demonstrated in a simulation investigation. We then investigate the optimal nonlinear ST-
DFE solution for the SIMO system. By adopting the space-translation interpretation of decision feedback [22], the
ST-DFE structure is transformed into a STE structure in the translated observation space, and this enables us to apply
the adaptive solution for the STE to the ST-DFE.

The paper is organised as follows. Section 2 briefly presents the SIMO system model as well as the generic STE and
ST-DFE structures. The optimal Bayesian STE solution and its adaptive realisation by the SRBF network are derived
in Section 3, while Section 4 investigates the optimal Bayesian ST-DFE solution and its adaptive implementation.
Simulation results are presented in Section 5, and the paper concludes at Section 6.

2. SIMO system model and equalisation structure

A SIMO system employs a single transmit antenna and L (>1) receive antennas, as depicted in Fig. 1, where s(t)

is the transmitted signal, xl(t) denotes the lth receiver antenna’s output signal, and nl(t) the lth channel’s noise. The
received signals are sampled at the symbol rate to obtain the L antennas’ output samples xl(k), 1 � l � L, which can
be expressed as

xl(k) =
nc−1∑
i=0

ci,ls(k − i) + nl(k) = x̄l(k) + nl(k), (1)

where nl(k) is a complex-valued Gaussian white noise process with E[|nl(k)|2] = 2σ 2
n , x̄l(k) denotes the noise-free

part of the lth channel’s complex-valued output, the modulation scheme is assumed to be binary phase shift keying
(BPSK) and therefore the transmitted symbol sequence s(k) is real-valued and takes values from the BPSK symbol
set {±1}, and ci,l are the complex-valued taps of the lth channel impulse response (CIR) having a length of nc. For
notational simplicity, we have assumed that each of the L channels has the same length of nc. The proposed nonlinear
equalisation structures can be extended to complex-valued modulation schemes, such as quadrature phase shift keying,
at the cost of an increase in computational complexity [20,23].

The multiple-channel output samples xl(k), 1 � l � L, are passed to a generic STE or a generic ST-DFE, as shown
in Figs. 2 and 3, respectively. In the generic STE structure of Fig. 2, M is the feedforward temporal filter’s order,
d denotes the equaliser’s decision delay, and ŝ(k − d) is the decision for the transmitted symbol s(k − d). For the

Fig. 1. Single-input multiple-output system employing multiple receive antennas.
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Fig. 2. Space–time equalisation structure using �-spaced temporal filters, where � = Ts and Ts denotes the symbol period, M is the feedforward
temporal filter order, and d the decision delay.

Fig. 3. Space–time decision feedback equalisation structure using �-spaced temporal filters, where � = Ts and Ts denotes the symbol period, M is
the feedforward temporal filter order, nf the feedback temporal filter order, and d the decision delay.

generic ST-DFE structure, additionally, the feedback temporal filter order nf must be specified. We will define the
overall signal-to-noise ratio (SNR) of the SIMO system under consideration as

SNR = σ 2
s

L2σ 2
n

L∑
l=1

nc−1∑
i=0

|ci,l |2, (2)

where σ 2
s = 1 is the BPSK symbol energy.

The task of the STE is to use the multi-channel output vector

x(k) = [
xT

1 (k) xT
2 (k) . . . xT

L(k)
]T (3)

to produce an estimate ŝ(k − d) for s(k − d), where

xl(k) = [
xl(k) xl(k − 1) . . . xl(k − M − 1)

]T (4)

for 1 � l � L. Note that the equaliser’s input vector x(k) can be expressed as

x(k) = Cs(k) + n(k) = x̄(k) + n(k), (5)
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where n(k) = [nT
1 (k) nT

2 (k) . . . nT
L(k)]T with nl(k) = [nl(k) nl(k − 1) . . . nl(k − M + 1)]T , the symbol vector

s(k) = [
s(k) s(k − 1) . . . s(k − M − nc + 2)

]T
, (6)

and the overall CIR matrix C is defined as

C =

⎡
⎢⎢⎣

C1
C2
...

CL

⎤
⎥⎥⎦ (7)

with the M × (M + nc − 1) CIR matrix Cl given by

Cl =

⎡
⎢⎢⎢⎣

c0,l c1,l . . . cnc−1,l 0 . . . 0

0 c0,1 c1,l . . . ccn−1,l

. . .
...

...
. . .

. . .
. . . · · · . . . 0

0 . . . 0 c0,1 c1,l . . . cnc−1,l

⎤
⎥⎥⎥⎦ . (8)

The task of the ST-DFE is to use the equaliser’s input vector x(k) of (3) together with the equaliser’s feedback
vector, defined by

ŝb(k) = [
ŝ(k − d − 1)ŝ(k − d − 2) . . . ŝ(k − d − nf )

]T
, (9)

to produce an estimate ŝ(k − d) for s(k − d).

3. Adaptive Bayesian space–time equaliser

Classical STE structure for the SIMO system is linear, and the optimal design for this linear STE is known to be
the linear MBER solution [14]. However, just as in the case of the SISO channel equalisation [15–20], the optimal
STE solution based on the information provided in x(k) is nonlinear, which will be derived in the following.

3.1. Bayesian space–time equalisation solution

Denote the Ns = 2M+nc−1 legitimate combinations of s(k) as sq , 1 � q � Ns . Denote furthermore the (d + 1)th
element of sq , corresponding to the desired symbol s(k − d) as sq,d . The noiseless SIMO channel output x̄(k) only
takes values from the finite signal state set

x̄(k) ∈X �= {x̄q = Csq, 1 � q � Ns}, (10)

which can be divided into two subsets conditioned on the value of s(k − d) as

X (±) �= {
x̄q ∈X , 1 � i � Nsb: s(k − d) = ±1

}
, (11)

where the size of X (+) and X (−) is Nsb = Ns/2. Let the conditional probabilities of receiving x(k) given s(k − d) =
±1 be p±(x(k)) = p(x(k) | s(k − d) = ±1). According to Bayes’ decision theory [24], the optimal detection strategy
is

ŝ(k − d) =
{

1, if p+(x(k)) � p−(x(k)),

−1, if p+(x(k)) < p−(x(k)).
(12)

Let us introduce the following real-valued Bayesian decision variable

yBay(k) = fBay
(
x(k)

) �= 1

2
p+

(
x(k)

) − 1

2
p−

(
x(k)

)
. (13)

The optimal detection rule (12) is equivalent to

ŝ(k − d) = sgn
(
yBay(k)

) =
{

1, yBay(k) � 0,

−1, yBay(k) < 0.
(14)



Author's personal copy

626 S. Chen et al. / Digital Signal Processing 18 (2008) 622–634

From the signal model (5), the decision variable (13) can be expressed as

yBay(k) =
Ns∑

q=1

sgn(sq,d )βqe
− ‖x(k)−x̄q ‖2

2σ2
n , (15)

where βq denotes the a priori probability of x̄q . Since all the x̄q are equiprobable, all the βq are equal.
We now highlight a symmetric property of the Bayesian solution.

Lemma 1. The two subsets X (+) and X (−) are distributed symmetrically, that is, for any signal state x̄(+)
i ∈ X (+)

there exists a signal state x̄(−)
q ∈X (−) satisfying x̄(−)

q = −x̄(+)
i .

Proof. Let x̄(+)
i = Cs(+)

i ∈X (+). Then −x̄(+)
i = C(−s(+)

i ) ∈X (−).
Given this symmetry property, the optimal Bayesian equalisation solution (15) can be rewritten as

yBay(k) =
Nsb∑
q=1

βq

(
e
− ‖x(k)−x̄(+)

q ‖2

2σ2
n − e

− ‖x(k)+x̄(+)
q ‖2

2σ2
n

)
, (16)

where x̄(+)
q ∈X (+). The Bayesian STE solution has odd symmetry, as fBay(−x(k)) = −fBay(x(k)). �

3.2. Symmetric RBF space–time equaliser design

In the SISO equalisation case, the RBF network has been proposed to realise the Bayesian equalisation solution
[16–20]. The standard RBF network however does not guarantee to posses the odd symmetry. We propose a SRBF
network which has the same odd symmetry property as the Bayesian solution. The proposed SRBF network takes the
following form

ySRBF(k) = fSRBF
(
x(k)

) =
Nsb∑
i=1

θiφi

(
x(k)

)
, (17)

where fSRBF(•) is a real-valued nonlinear mapping realised by the SRBF network, θi is the ith real-valued RBF
weight, φi(•) denotes the ith RBF unit, and Nsb is the number of RBF units used. The SRBF STE makes the decision
according to ŝ(k − d) = sgn(ySRBF(k)). In contrast to the standard RBF model, we adopt the following symmetric
RBF unit

φi(x)
�= ϕ

(
x; ci , σ

2
i

) − ϕ
(
x;−ci , σ

2
i

)
, (18)

where ci ∈ CLM is the ith complex-valued RBF centre, σ 2
i the ith real-valued RBF variance, and ϕ(•) the classic RBF

function. In this study we adopt the Gaussian RBF function of the form

ϕ
(
x; ci , σ

2) = e
− ‖x−ci‖2

2σ2 . (19)

The SRBF network (17) with the node structure (18) has an inherently odd symmetry, just as the Bayesian STE

solution. A standard RBF model with the RBF node defined by φi(x)
�= ϕ(x; ci , σ

2
i ), by contrast, cannot guarantee

this odd symmetry.
It is obvious that we can set all the RBF weights θi = θ > 0 and all the RBF variances σ 2

i = σ̂ 2
n , where σ̂ 2

n is an
estimated σ 2

n . Furthermore, if we use the set of signal states X (+) as the RBF centres of this SRBF STE, then it realises
exactly the optimal Bayesian performance. It can be seen that the key to realise the optimal Bayesian STE solution is
to realise the optimal RBF centre set, i.e., X (+). A simple and effective means of realising this optimal RBF centre set
is to identify the SIMO CIRs using the LMS algorithm, showing as follows:

ĉi,l(k) = ĉi,l(k − 1) + μcεl(k)s(k − i), 0 � i � nc − 1, (20)
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Fig. 4. Equivalent translated space–time decision feedback equalisation structure using �-spaced temporal filters, where � = Ts and Ts denotes the
symbol period. The ST-DFE structure parameters are chosen as decision delay d = nc − 1, feedforward temporal filter order M = nc and feedback
temporal filter order nf = nc − 1, where nc is the SIMO CIR length.

for 1 � l � L, where μc is the step size, and

εl(k) = xl(k) −
nc−1∑
i=0

ĉi,l(k − 1)s(k − i). (21)

From the estimated SIMO channel matrix Ĉ, it is straightforward to calculate the optimal RBF centre set, namely,
X (+). Alternatively, the clustering methods can be used to directly identify the optimal RBF centre set [17,25,26].
However, the method of identifying the SIMO CIRs generally requires a much shorter training sequence than the
clustering approach.

The estimated noise variance σ̂ 2
n is used as the RBF variance. We point out that the performance of the SRBF STE

is not sensitive to the value of the RBF variance used, and there exists a large range of the RBF variance values which
enable the SRBF STE to achieve the optimal Bayesian performance. This will be demonstrated in the simulation study.
This robustness to the value of the RBF variance is a consequence of the Bayesian equalisation solution’s robustness
to the noise variance σ 2

n used [20].

4. Adaptive Bayesian space–time decision feedback equaliser

As mentioned previously in Section 2, the ST-DFE uses the equaliser’s input vector x(k) of (3) and the equaliser’s
feedback vector ŝb(k) of (9) to detect the transmitted symbol s(k − d). We will choose the ST-DFE structure’s para-
meters as follows: d = nc − 1, M = nc and nf = nc − 1. This choice may not always be optimal. However, for the
SISO case, this particular choice of the DFE structure’s parameters is sufficient for guaranteeing that the subsets of
noise-free signal states are always linearly separable and therefore they guarantee an adequate performance [22]. We
will prove that this linearly separable property is also valid for the ST-DFE structure (see Lemma 2).

We first show that the decision feedback can be viewed as a space translation, and in the translated observation
space the ST-DFE is “reduced” to the STE. Using M = nc and d = nf = nc − 1, the received signal vector xl(k) of
the lth channel can be expressed as

xl(k) = CFl
sf (k) + CBl

sb(k) + nl (k), (22)
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where sf (k) = [s(k) s(k − 1) . . . s(k − d)]T , sb(k) = [s(k − d − 1) s(k − d − 2) . . . s(k − d − nf )]T , and the
M × (d + 1)- and M × nf -dimensional CIR matrices CFl

and CBl
are given by

CFl
=

⎡
⎢⎢⎢⎣

c0,l c1,l . . . cnc−1,l

0 c0,l

. . .
...

...
. . .

. . . c1,l

0 . . . 0 c0,l

⎤
⎥⎥⎥⎦ (23)

and

CBl
=

⎡
⎢⎢⎢⎣

0 . . . 0

cnc−1,l

. . .
...

...
. . . 0

c1,l . . . cnc−1,l

⎤
⎥⎥⎥⎦ , (24)

respectively. Under the assumption that the past decisions are correct, ŝb(k) = sb(k) and the lth received signal vector
can be expressed as xl (k) = CFl

sf (k) + CBl
ŝb(k) + nl(k). Thus, the decision feedback can be viewed as a translation

of the original observation space xl (k) into a new space rl(k)

rl(k)
�= xl (k) − CBl

ŝb(k) = CFl
sf (k) + nl(k) = r̄l (k) + nl(k). (25)

Let us now define

r(k) = [
rT

1 (k) rT
2 (k) . . . rT

L(k)
]T (26)

and the (LM) × (d + 1)-dimensional overall CIR matrix

CF =

⎡
⎢⎢⎣

CF1

CF2
...

CFL

⎤
⎥⎥⎦ . (27)

Then

r(k) = CF sf (k) + n(k) = r̄(k) + n(k). (28)

Note that the elements of r(k) can be computed recursively according to [22]⎧⎨
⎩

rl(k − i) = � · rl(k − i + 1) − cnc−i,l ŝ(k − d − 1),

for i = M − 1,M − 2, . . . ,1,

rl(k) = xl(k),

(29)

where the unit delay operator � is defined as � · r(k) = r(k − 1). In the translated observation space r(k), the original
ST-DFE of Fig. 3 is “translated” into the “STE” of Fig. 4.

There are Ns = 2nc = 2d+1 legitimate combinations of sf (k), again denoted as sq , 1 � q � Ns , for notational
convenience. The noise-free part of r(k), namely r̄(k), takes the value from the finite signal state set

r̄(k) ∈R �= {r̄q = CF sq, 1 � q � Ns}, (30)

which can be divided into two subsets conditioned on the value of s(k − d) as

R(±) �= {
r̄q ∈R, 1 � i � Nsb: s(k − d) = ±1

}
, (31)

where Nsb = Ns/2 = 2d .

Lemma 2. The two subsets R(−) and R(+) are linearly separable.
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Proof. We show that there exist a hyperplane wT r = 0 which separates R(−) from R(+). In fact, we can choose
w = [wT

1 wT
2 . . . wT

L]T with

wl =
[

0 0 . . . 0
1

c0,l

]T

, 1 � l � L.

For any r(−)
i = CF s(−)

i ∈R(−), the last element of s(−)
i is −1 and

wT r(−)
i =

L∑
l=1

wT
l CFl

s(−)
i = −L < 0.

For any r(+)
i = CF s(+)

i ∈R(+), the last element of s(+)
i is +1 and

wT r(+)
i =

L∑
l=1

wT
l CFl

s(+)
i = +L > 0.

It is now apparent that the Bayesian ST-DFE solution is specified by the following “Bayesian STE” solution

yBay(k) =
Nsb∑
q=1

βq

(
e
− ‖r(k)−r̄(+)

q ‖2

2σ2
n − e

− ‖r(k)+r̄(+)
q ‖2

2σ2
n

)
, (32)

in the translated space r(k), where r̄(+)
q ∈R(+) and Nsb = 2d . An adaptive implementation of this Bayesian ST-DFE

can be adopted based on the SRBF network, which involves firstly estimating the SIMO CIRs and then calculating
the optimal RBF centre set using the estimated SIMO channel matrix ĈF . The estimated SIMO channel taps are also
used in the recursive space translation (29). �
5. Simulation study

5.1. STE for a fixed SIMO system

A SIMO system with L = 4 receive antennas was simulated, and each channel had nc = 3 taps. Table 1 lists the
CIRs cT

l = [c0,l c1,l c2,l], 1 � l � 4, of this SIMO system. The actually simulated channel was normalised according
to cl/‖cl‖ for the sake of maintaining a unity channel gain. This normalisation ensured that all the channels shared
equal power but it did not change the characteristics of each channel, i.e. zero positions of the transfer function of each
channel were unchanged. The STE’s temporal filter order was chosen as M = 5. For this example, the STE’s decision
delay 0 � d � 6, and the optimal decision delay was found to be d = 4. This optimal decision delay was used in the
simulation. Figure 5 depicts the bit error rate (BER) of the optimal benchmark, the Bayesian STE.

The proposed SRBF based STE was next investigated. The LMS channel estimator (20) was employed to identify
the L = 4 SIMO CIRs with a step size μc = 0.02. The optimal RBF centre set was then computed from the estimated
SIMO channel matrix. The RBF variance was set to σ 2

n . Given SNR= 1 dB, Fig. 6 shows the convergence behaviour
of the LMS SIMO channel estimator averaged over 10 runs, in terms of the mean tap error

MTEl (k) = ∥∥cl − ĉl(k)
∥∥2

, 1 � l � 4. (33)

Table 1
CIRs of the simulated fixed SIMO system with L = 4 and nc = 3. The actually simulated channel was
normalised according to cl/‖cl‖
l cl

1 −0.2 + j0.3 −0.5 + j0.4 0.7 − j0.6
2 −0.3 + j0.2 0.7 − j0.1 −0.5 + j0.4
3 −0.1 − j0.2 0.6 + j0.1 −0.4 + j0.3
4 0.1 + j0.1 0.2 + j0.2 −0.4 − j0.4
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Fig. 5. Bit error rate comparison of two space–time equalisers for the fixed SIMO system listed in Table 1. Equaliser feedforward order M = 5 and
decision delay d = 4.

Fig. 6. Learning curve of the LMS SIMO channel estimator averaged over 10 runs for the fixed SIMO system listed in Table 1, given SNR = 1 dB
and the step size μc = 0.02.

Fig. 7. Bit error rate performance of the SRBF STE as a function of the RBF variance for the fixed SIMO system listed in Table 1, given SNR = 1 dB.
Equaliser feedforward order M = 5 and decision delay d = 4.

It can be seen from Fig. 6 that the LMS SIMO channel estimator had a reasonable convergence rate. The BER of the
SRBF STE is plotted in Fig. 5, in comparison with the optimal Bayesian STE, where it can be seen that the SRBF
STE closely approached the optimal Bayesian performance. For the same conditions in Fig. 6, Fig. 7 shows the BER
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Table 2
CIRs of the simulated fixed SIMO system with L = 4 and nc = 5. The actually simulated channel was normalised according to cl/‖cl‖
l cl

1 0.7 + j0.9 −0.1 + j0.5 0.6 − j0.9 −0.1 − j0.4 0.8 + j0.6
2 −0.9 + j0.2 0.3 − j0.2 0.5 + j0.7 0.3 + j0.2 −0.1 + j0.7
3 −0.4 − j0.4 −0.1 − j0.3 0.6 − j0.7 −0.4 − j0.4 0.5 + j0.8
4 0.7 + j0.3 −0.8 − j0.3 0.1 − j0.1 0.9 + j0.3 −0.1 − j0.4

Fig. 8. Bit error rate comparison of two space–time decision feedback equalisers for the fixed SIMO system listed in Table 2. Equaliser feedforward
order M = 5, feedback order nf = 4 and decision delay d = 4.

Fig. 9. Learning curve of the LMS SIMO channel estimator averaged over 10 runs for the fixed SIMO system listed in Table 2, given SNR = 0 dB
and the step size μc = 0.02.

performance of the SRBF STE as a function of the RBF variance used. It can be seen from Fig. 7 that the SRBF STE
approached the optimal Bayesian performance with a large range of RBF variance values.

5.2. ST-DFE for a fixed SIMO system

The SIMO system simulated again had L = 4 receive antennas, but each channel had nc = 5 taps. Table 2 lists the
CIRs cl , 1 � l � 4, of this SIMO system. Again the actually simulated channel was normalised according to cl/‖cl‖
to yielding a unity channel gain. Since the CIR length was nc = 5, the ST-DFE’s structure parameters were set to the
feedforward order M = 5, feedback order nf = 4 and decision delay d = 4. In the simulation, the detected symbols
were fed back. The BER performance of the optimal Bayesian ST-DFE is depicted in Fig. 8, as the benchmark.
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Fig. 10. Bit error rate performance of the SRBF ST-DFE as a function of the RBF variance for the fixed SIMO system listed in Table 2, given
SNR = 0 dB. Equaliser feedforward order M = 5, feedback order nf = 4 and decision delay d = 4.

Fig. 11. Bit error rate comparison of two space–time decision feedback equalisers averaged over 50 SIMO channel realisations, where the number
of receive antennas is L = 4, each channel has a length of nc = 5, and channel taps ci,l are complex-valued Gaussian random processes with zero
means and E[|ci,l |2] = 1. Equaliser feedforward order M = 5, feedback order nf = 4 and decision delay d = 4.

The LMS SIMO channel estimator (20) was again employed to identify the four SIMO CIRs with a step size
μc = 0.02. The optimal RBF centre set was then computed from the estimated SIMO channel matrix, and the estimated
SIMO channel taps were used to perform the space translation (29) for the SRBF ST-DFE. The RBF variance was set
to σ 2

n . With SNR = 0 dB, Fig. 9 illustrates the learning curve of the LMS SIMO channel estimator averaged over 10
runs, in terms of the mean tap error MTEl (k), 1 � l � 4. It can be seen from Fig. 9 that the convergence rate of the
LMS SIMO channel estimator was satisfactory. The BER of the SRBF ST-DFE is seen to closely approach that of
the optimal Bayesian ST-DFE in Fig. 8. The robustness of the SRBF ST-DFE with respect to the value of the RBF
variance used is demonstrated in Fig. 10.

5.3. ST-DFE for a random SIMO system

Additional simulation was performed to evaluate the proposed SRBF ST-DFE using an uncorrelated-fading SIMO
system, which consisted of L = 4 channels, each having nc = 5 taps. The channel taps ci,l , 1 � i � nc and 1 �
l � L, were complex-valued Gaussian random processes with zero means and E[|ci,l |2] = 1. The ST-DFE’s structure
parameters were chosen to be the feedforward order M = 5, feedback order nf = 4 and decision delay d = 4. For
each channel realisation, the LMS SIMO channel estimator (20) was used to identify the four SIMO CIRs with a
step size μc = 0.02. The optimal RBF centre set was calculated based on the estimated SIMO channel matrix, and
the estimated SIMO channel taps were used to perform the space translation (29) for the SRBF ST-DFE. The RBF
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variance was set to σ 2
n , and the detected symbols were fed back in the simulation. The performance was averaged over

50 channel realisations, and Fig. 11 compares the BERs achieved by the optimal Bayesian ST-DFE, which assumed
the perfect channel state information, and the SRBF ST-DFE, which was based on the LMS SIMO channel estimates.

6. Conclusions

A nonlinear space–time equalisation scheme has been proposed for SIMO systems based on a novel symmetric
RBF network. By exploiting the inherent symmetry of the underlying optimal Bayesian STE solution, the proposed
SRBF based STE is capable of realising the optimal Bayesian equalisation performance. An adaptive implementation
of this SRBF based STE has been adopted by estimating the SIMO channels using the LMS channel estimator and
computing the optimal RBF centres from the resulting SIMO channel matrix estimate. Simulation results has also
demonstrated that the performance of this SRBF based STE is robust with respect to the choice of the RBF variance
value. The proposed adaptive nonlinear space–time equalisation scheme has then been extended to the space–time
decision feedback equalisation structure. A space translation interpretation of decision feedback has been presented,
and it has been shown that in the translated observation space the ST-DFE is reduced to an equivalent STE structure
with a desired property that the subsets of the signal states are always linearly separable.
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