
ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Special Topic Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing

Machine Learning Driven Latency Machine Learning Driven Latency
Optimization for Internet of Optimization for Internet of
Things Applications in Edge ComputingThings Applications in Edge Computing

Uchechukwu AWADA1, ZHANG Jiankang2,

CHEN Sheng3,4, LI Shuangzhi1, YANG Shouyi1

(1. Zhengzhou University, Zhengzhou 450001, China；
 2. Bournemouth University, Poole BH12 5BB, UK；
 3. University of Southampton, Southampton SO17 1BJ, UK；
 4. Ocean University of China, Qingdao 266100, China)

DOI: 10.12142/ZTECOM.202302007

https://kns.cnki.net/kcms/detail/34.1294.TN.20230516.1317.002.html,
published online May 17, 2023

Manuscript received: 2023-03-11

Abstract: Emerging Internet of Things (IoT) applications require faster execution time and response time to achieve optimal performance.
However, most IoT devices have limited or no computing capability to achieve such stringent application requirements. To this end, compu⁃
tation offloading in edge computing has been used for IoT systems to achieve the desired performance. Nevertheless, randomly offloading ap⁃
plications to any available edge without considering their resource demands, inter-application dependencies and edge resource availability
may eventually result in execution delay and performance degradation. We introduce Edge-IoT, a machine learning-enabled orchestration
framework in this paper, which utilizes the states of edge resources and application resource requirements to facilitate a resource-aware
offloading scheme for minimizing the average latency. We further propose a variant bin-packing optimization model that co-locates applica⁃
tions firmly on edge resources to fully utilize available resources. Extensive experiments show the effectiveness and resource efficiency of
the proposed approach.
Keywords: edge computing; execution time; IoT; machine learning; resource efficiency

Citation (Format 1): AWADA U, ZHANG J K, CHEN S, et al. Machine learning driven latency optimization for Internet of Things applications
in edge computing [J]. ZTE Communications, 2023, 21(2): 40–52. DOI: 10.12142/ZTECOM.202302007
Citation (Format 2): U. Awada, J. K. Zhang, S. Chen, et al., “Machine learning driven latency optimization for Internet of Things applications in
edge computing,” ZTE Communications, vol. 21, no. 2, pp. 40–52, Jun 2022. doi: 10.12142/ZTECOM.202302007.

1 Introduction

The Internet of Things (IoT) describes physical devices
that are connected to the Internet or networks for the
purpose of exchanging and sharing data. IoT enables
direct fusion of physical devices into computer sys⁃

tems, resulting in efficiency, more reliable services and eco⁃
nomic benefits without human intervention. However, most
IoT devices have limited or no computing capability to meet
some application-specific requirements. For example, emerg⁃
ing IoT technologies such as the smart city[1], healthcare-IoT[2],
Internet of Vehicles (IoV)[3–5], connected and autonomous ve⁃
hicles (CAVs) [6], and industry 4.0[7], require substantial re⁃
sources to execute their applications. In addition, most of
these applications are structured as a collection of loosely-

coupled services that communicate with one another and are
often latency-sensitive. A conventional approach is to offload
these applications to a cloud computing (CC)[8] data center for
execution. CC provides an on-demand availability of compute
resources over multiple locations, each of which is a data cen⁃
ter. However, a CC data center could be hundreds or thou⁃
sands of miles away from the data sources, thereby jeopardiz⁃
ing the application performance through longer response time.
A recent innovative distributed computing paradigm referred
to as edge computing (EC) [9] brings computation and storage
resources closer to the locations where they are needed, to re⁃
duce response time and save bandwidth. This enabling archi⁃
tecture deploys computation and storage resources at the edge
of a network, and even beyond the edge of the network. It is
important to note that EC computational resources are also
limited compared to CC resources, but EC benefits IoT sys⁃
tems by deploying computing resources closer to end devices,
thus reducing network traffic and latency to enable real-time
insights. To this end, existing research works have exploited

This work is supported by the National Natural Science Foundation of Chi⁃
na under Grant Nos. 61571401 and 61901416 (part of the China Postdoc⁃
toral Science Foundation under Grant No. 2021TQ0304) and the Innova⁃
tive Talent Colleges and the University of Henan Province under Grant
No.18HASTIT021.

40

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing Special Topic

EC for task offloading in various IoT systems[3–5, 10–11]. Never⁃
theless, one fundamental challenge is where and how to
offload and schedule complex applications so that their aver⁃
age latency is minimized and high resource efficiency is
achieved. A common practice is to randomly offload applica⁃
tions or tasks individually to available edges without jointly
considering task resource demands, task dependencies and
edge resource availability. Such a disjointed approach would
result in execution delays due to insufficient resource avail⁃
ability or tasks unable to communicate with their dependent
tasks. Hence, it is not suitable for latency-sensitive tasks.

For example, the video classification application shown in
Fig. 1(a) consists of 12 sub-applications T1,⋯,T12, where T1,
T2 and T3 are independent tasks, whereas T4 and T5 require in⁃
puts from T1 to be able to complete their executions. Similarly,
T6, T7 and T8 depend on the completion of T4, T5 and T2, re⁃
spectively. These make the execution of complex IoT applica⁃
tions very challenging. It is naturally important to offload and
schedule such applications, to minimize their average latency.
For instance, suppose each sub-application or tasks
T1,⋯,Tn of the application in Fig. 1(a) are randomly offloaded
to different EC deployments, and then each dependent task
would require the execution result(s) or input data from other
task(s) to be transmitted back to its host edge deployment to
complete its execution, as shown in Fig. 2(a). This transfer of
input data is referred to as an input data flow, and such trans⁃
mission would incur additional delay, thereby further affecting
the average latency, given the rate and number of transmis⁃
sions that could occur.

More specifically, assuming the video classification applica⁃
tion in Fig. 1(a) is to be executed, the work in Ref. [5] pro⁃
posed an approach as shown in Fig. 2(a), which offloads tasks
T1, T2 and T3 to Edge 1, tasks T4, T5, T6 and T7 to Edge 2, and
the remaining tasks T8, T9, T10, T11 and T12 to Edge 3. Since
these tasks are interdependent tasks, the execution result of
task T1 needs to be transmitted from Edge 1 to Edge 2, to
serve as the input data to tasks T4 and T5, while the execution
results of tasks T6 and T7 need to be transmitted from Edge 2

to edge Edge 3, to serve as the input data to task T10. Finally,
the execution results of tasks T2 and T3 need to be transmitted
c1, m1 from Edge 1 to Edge 3 to complete the video classifica⁃

tion application execution.
In this paper, we show that machine learning (ML) tech⁃

niques enable effective IoT task offloading and scheduling in
edge computing systems. We propose an ML linear regression
model to predict or estimate the resource requirements and

(a) Video classification application

T1

(b)　Video classification application, with each sub-application’s CPU and memory resource requirements denoted as c, m and execution time denoted as Eex

▲Figure 1. Directed acyclic graphs (DAG) of representative application

(a) An approach for video classification application offloading

(b) Machine learning enabled approach for video classification applica⁃tion offloading

{T1， T2， T3}

▲Figure 2. Application offloading strategies

{T1， T2 T3}
Edge 1

{T4， T5， T6， T7} Edge 2

{T8， T9， T10， T11， T12}
{T2， T3， T6， T7}

Edge 3

Edge N

Offloading
Input data flow

︙

Edge 1

Edge 2

Edge 3

Edge N
︙

{T1， T2， T3， T4， T5， T6， T7， T8， T9， T10， T11， T12}

T4 T6

T5 T7

T2 T8

T9T3

T10

T11

T12

T1(c1, m1 , Eex1)
T4(c4, m4 , Eex4)

T5(c5, m5 ,
Eex5)

T7(c7, m7 , Eex7)

T6(c6, m6 , Eex6)

T8(c8, m8 , Eex8)

T9(c9, m9 , Eex9)

T2(c2, m2 , Eex2)

T3(c3, m3 , Eex3)

T10(c10, m10 , Eex10)

T11(c11, m11 , Eex11)

T12(c12, m12 , Eex12)

41

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Special Topic Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing

execution time of an application, as shown in Fig. 1(b), and
intelligently offload them to an edge with sufficient resource
availability, as shown in Fig. 2(b). This approach eliminates
the need of input data flow, as sub-applications can commu⁃
nicate and share data quickly. However, upon arrival of an
application in a suitable edge, the application may perform
poorly if the sub-applications are scheduled naively, e.g., in
an edge deployment that can only execute one task at any
time, where each task is scheduled individually. Therefore,
we further propose a variant bin-packing optimization that
gang-schedules[12– 13] and co-locates applications firmly on
EC resources to fully utilize available resources. We aim to
schedule and execute all the tasks by considering dependen⁃
cies and resource demands, such that the actual scheduling
and execution time is minimized. In summary, to achieve
our Edge-IoT implementation, we address the following criti⁃
cal issues:

• We investigate a situation whereby multiple IoT systems
can intelligently offload their complex applications to an edge
deployment with sufficient resource availability to meet the
resource-level demands of the applications, thus facilitating a
resource-aware offloading scheme by enabling faster interac⁃
tions among the applications to maximize their performance.

• Specifically, we derive a multi-task ML resource require⁃
ment and execution time estimation, so as to aid the selection
of edge deployment with suitable resource availability.

• To guarantee optimal usage of edge resources and faster
execution of tasks, we further propose a variant bin-packing
optimization approach through gang scheduling of multi-
dependent tasks, which co-schedules and co-locates tasks
firmly on available nodes to avoid resource wastage.

• We show that Edge-IoT is capable of minimizing the re⁃
sponse time of IoT applications using minimum resources, and
conduct extensive experiments to compare the performance of
our Edge-IoT with several existing approaches using real-
world data-trace from Alibaba Cluster Trace Program, which
provides information on task dependencies.
2 Related Work

Edge computing has been proven to make the IoT smarter
by implementing smart connections and operation of IoT de⁃
vices[14]. Emerging IoT technologies, such as the smart city[1],
healthcare-IoT[2], Internet of Vehicles (IoV) [3–5], connected
and autonomous vehicles (CAVs)[6], and industry 4.0[7], are uti⁃
lizing EC for data analysis, processing and monitoring within
their networks to improve both the efficiency and response
speed. There are a huge number of existing works that have
addressed the use of EC for IoT applications. For example, in
Ref. [15], the authors studied multi-user IoT application
offloading for a mobile edge computing (MEC) system and
both the resources of computation and communication were co⁃
operatively allocated. The proposed system focuses on mini⁃
mizing both the weighted overhead of local IoT devices and

the offload measured by the delay and energy consumption.
The authors in Ref. [16] formulated two novel optimization
problems for delay-sensitive IoT applications, i. e., the total
utility maximization problems under both static and dynamic
offloading task request settings, to maximize the accumulative
user satisfaction on the use of the services provided by an
MEC system and show the non-deterministic polynomial time
(NP) -hardness of the defined problems. Aiming to maximize
the number of IoT devices through jointly optimizing the un⁃
manned aerial vehicle (UAV) trajectory and service indicator
as well as resource allocation and computation offloading, the
authors in Ref. [17] formulated the optimization problem as a
mixed integer nonlinear programming (MINLP) problem,
where the chosen IoT devices would complete their computa⁃
tion tasks on time under given energy budgets and co-channel
interference was taken into account. In Ref. [18], the authors
studied the service home identification problem of service pro⁃
visioning for multi-source IoT applications in an MEC net⁃
work, by identifying a service home (cloudlet) of each multi-
source IoT application for its data processing, querying and
storage. They considered two novel service home identifica⁃
tion problems. The work in Ref. [19] presented a joint optimi⁃
zation objective to evaluate the unavailability level, communi⁃
cation delay and resource wastage while allocating the same
batch of IoT applications to multiple edge clouds. Then, the
authors proposed an approach to minimizing the joint optimi⁃
zation objective under the condition of certain communication
delays. In Ref. [20], the authors investigated the issue of joint
cooperative edge caching and recommender systems to
achieve additional cache gains by the soft caching framework.
To measure the cache profits, they formulated the optimization
problem as an Integer Linear Programming (ILP) problem,
which is NP-hard.

The above methods leverage EC to offload IoT applications.
They promise efficiency and better performance, but lack the
consideration of a learning-based resource-aware offloading
scheme with joint optimization of task resource demands and
edge deployment resource availability. Therefore, we propose
a joint optimization solution that guarantees faster offloading
and execution of IoT applications in edge computing systems.
3 System Model and Problem Formulation

3.1 System Model
We consider an urban vehicular network environment

where the IoV applications are offloaded from vehicles to EC
deployments across various EC-enabled roadside units
(RSUs), EC-enabled base stations (BSs), etc. We focus on V2I
application offloading as illustrated in Fig. 3, where each ve⁃
hicle is equipped with a powerful wireless interface that can
be used to connect with RSUs, BSs, etc. We also consider the
possibility that each vehicle is equipped with in-vehicle edge
devices or deployment. For example, an in-vehicle EC deploy⁃

42

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing Special Topic

ment may not be as large as the deployments of RSUs, while
those of the RSUs may not be as large as the deployments of
BSs, etc., in terms of resource capacity. Therefore, IoV appli⁃
cations can be packaged in containers, i.e., Docker container
provides a task offloading solution for isolation, portability
and lightweight from devices to edge clusters, or to deploy it
to the closest edge deployment with sufficient resource avail⁃
ability whenever it is needed. For such applications, let
c, m represent the CPU and memory requirements.

Let E = { Edge1,⋯, EdgeM } represent the set of individual
participating edge deployments (i. e., in-vehicle, RSU, BS,
etc.), as a cluster of container-instances (such as an edge de⁃
vice with virtualized container-optimized nodes). With the re⁃
source availability of each participating edge deployment
C c,m

Edgei
, an informed decision on multi-task offloading can be

made. Let V = { V1,⋯,VM } represent the index set of vehicles.
A vehicle Vq can choose to execute its ready application lo⁃
cally in its in-vehicle edge device installation if there is suffi⁃
cient resource availability or it is offloaded to the closest edge
deployment Edgei⋆ ∈ E with sufficient resource availability.
Let ϑ [Vq (t)] denote the offloading decision variable, which is
measured by

ϑ []Vq (t) = ì
í
î

1, tasks are offloaded,
0, tasks are processed locally. (1)

A multi-task set C = { T1,⋯, TN } from the vehicles at time t
requires much CPU and memory for execution. Such resource
requirement, along with its execution time, is first predicted or
estimated by a linear regression ML model. The multi-task fea⁃
tures, fmt (ω, ϵ, γ) where ω is the number of instances, ϵ is the
type of tasks, and γ is the dependency depth, are fed into the
model Θ⋆ to estimate the values of the resource requirement
and execution time according to
fmt ⋅ Θ⋆ = [E͂ex1T͂

c, m1 E͂ex2T͂
c, m2 ⋯E͂exN

T͂ c, m
N] , (2)

where T͂ c, m
i and E͂ex i

 are the estimated resource requirement
(in terms of CPU and memory c, m) and estimated execution

time for task i, respectively. With these estimated values, a
suitable edge deployment can be selected and multi-
dependent tasks can be intelligently scheduled with the aim of
minimizing their actual response time, while maximizing avail⁃
able resources. Assuming that fmt ∈ R1 × d is a d-dimensional
vector (tensor), the predictor Θ is a (d × ϵ)-dimensional pa⁃
rameter matrix. We use historical data from previously ex⁃
ecuted tasks/jobs based on Keras to train the predictor Θ.
Keras is a library that wraps TensorFlow complexity into a
simple and user-friendly application programming interface
(API). Dataset DS = {(x i, y i) }n

i = 1 contains d-dimensional ten⁃
sors of data features x i ∈ R1 × d and ϵ-dimensional tensors of
labels (the actual execution times) y i ∈ R1 × ϵ. The learning
problem is to solve the following optimization:
Θ⋆ = arg min

Θ ∈ Rd × ϵ

1
2n∑i = 1

n ‖x iΘ - y i‖22 + λ
2  Θ

2
F
 , (3)

where λ is the regularization parameter and  ⋅ F denotes the
Frobenius norm. Optimization (3) is solved using gradient-
descent, where the model is updated iteratively until conver⁃
gence, i. e., Θt + 1 = Θt - η (1

n g (Θt) + λΘl), in which η is
the learning rate, g (Θ) = 1

n XT (XΘ - Y) denotes the gradi⁃
ent of the loss function, X = [xT1⋯xT

n]T and Y = [yT1⋯y T
n]T

are the feature set and label set, respectively. To guarantee
the accuracy of the proposed model, we introduce the normal⁃
ized absolute estimate error (NAEE), defined as:

NAEE = |estimated value - actual value|
actual value , (4)

for both the resource requirement and execution time estima⁃
tion, which serves as the estimation accuracy measure for the
trained linear regression model.

At time t, while ϑ [Vq (t)] = 0, the multi-task set C ∈ Vq is
decided to perform local execution procedure in the vehicle
Vq; while ϑ [Vq (t)] = 1, C ∈ Vq is otherwise to be offloaded to
the edge deployment (Edgei⋆) with sufficient resources closest
to Vq. Multi-task set C is a loosely coupled inter-dependent
application, as shown in Fig. 1, where each task T ∈ C has
two resource requirements: CPU and memory, as the total
number of estimated resources needed for its execution is de⁃
noted as d c, m

T͂ . For each task T ∈ C, let Esh, Est and Ecp denote
its scheduling time, starting time and completion time, respec⁃
tively. Therefore, the execution time of a task is thus:

Eex = Ecp - Est. (5)
Existing offloading strategies (i.e., Refs. [4], [5], [21], etc.,)

allow subtasks of an application or a job to be offloaded sepa⁃
rately across different edge deployments, thus creating addi⁃

▲Figure 3. An example architecture of Internet of Vehicles (IoV) multi-
task offloading

∑i = 1
k d c,m

T͂i
= d c,m '

T͂

J ⇒ Edge⋆

C c, m
Edgei

Edge 1

Edge 2

Edge N
︙︙

43

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Special Topic Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing

tional delay in the application’s response time, as explained
in Section 1. For example, when a vehicle in such an approach
begins to offload its tasks, the delay includes three parts: 1)
the time for offloading subtasks from the vehicle to different
edge deployments, given as Eof , 2) the time for transmitting
the results of executed subtasks (known as input data flow)
from one edge deployment to another edge deployment, given
as Esub, and 3) the time for transmitting the final result from
EC deployment to the vehicle, given as E rst. Therefore, the re⁃
sponse time of the vehicle’s job is given as:

E rsp = ∑T ∈ C (Eof + Esub + Esh + Eex) + E rst. (6)
In this paper, we aim to offload or dispatch a set of applica⁃

tions C belonging to a parked or moving vehicle Vq directly to
a single and the closest edge deployment Edgei⋆ having suffi⁃
cient resource capacity or availability to accommodate the
tasks such that Eof is minimized, Esub is avoided, as well as the
overall Esh and Eex are minimized, namely,
C ⇒ Edge⋆. (7)
Hence, the response time of the vehicle’s job changes to:
E rsp = Eof + ∑T ∈ C (Esh + Eex) + E rst. (8)
Once C has been offloaded to Edge⋆, Edge-IoT utilizes the

gang-scheduling[12–13] strategy to co-schedule all the applica⁃
tions at a time in Edge⋆. Given a cluster of container instances
or nodes Ii ∈ Edge⋆, let I c, m

Edge⋆ denote each node’s resource ca⁃
pacity or availability. In a real scenario where multi-vehicle
set V ∈ V offload multi-job tasks at t, these applications are
offloaded as a multi-job set J, i.e., J ⇒ Edge⋆, where its col⁃
lective estimated resource demand denoted as ∑i = 1

k d c, m
~Ti

=
d c, m '

T͂ . Hence, we can offload J to Edge⋆ with suitable re⁃
source availability. Therefore, the aggregate scheduling time
and execution time of multi-job set J is given as:

∑J ∈ J∑i = 1
k Esh i

k = Esh', (9)

∑J ∈ J∑i = 1
k Eex i

k = E'ex. (10)
The estimated resource utilization of the edge for multi-job

tasks is thus

U͂ c, m
Edgei

= ∑J ∈ Jd c, m '
T͂

C c, m
Edgei . (11)

Similarly, U͂ c, m
Edgei

 includes CPU utilization U͂ c
Edgei

 and memory
utilization U͂ m

Edgei
, which are defined respectively by

U͂ c
Edgei

= ∑J ∈ Jd c '
T͂

C c
Edgei , (12)

U͂ m
Edgei

= ∑J ∈ Jd m '
T͂

C m
Edgei , (13)

where ∑J ∈ Jd c '
T͂ and ∑J ∈ Jd m '

T͂ are the total collective esti⁃
mated CPU and memory, respectively. After completing the
multi-job executions, the final execution results are immedi⁃
ately and deterministically transmitted back to the vehicles.
3.2 Problem Formulation

The basic notations adopted are described in Table 1.
The objectives are to minimize the response time, E rsp in
Eq. (8) for all J ∈ J and to maximize the computation or
cluster resource utilization U c,m

Edge i in Eq. (11), subject to cer⁃
tain constraints. The response time E rsp in Eq. (8) comprises
the dispatching or offloading time Eof, the scheduling time
E'sh, the execution time E'ex, and the transmission time of fi⁃
nal execution results E rst. The closest computation offload⁃

▼Table 1. Notations
Notation

E
T

c, m
C

d c, m
T

Edgei

Edge⋆

RU c
Edgei

, RU m
Edgei

Eex

U c
Edgei

, U m
Edgei

Description

A set of edge deployments
Individual application or task
CPU and memory resources

A set of containerized applications
Application resource requirements

Individual edge deployment or cluster
Closest edge deployment or cluster

Actual CPU, memory resources usage
Application or task execution time

Cluster CPU, memory resource utilization

Notation

V, V
Ii

I c, m
i

C c, m
Edgei

U c, m
Edgei

U c
Edgei

, U m
Edgei

RU c, m
Edgei

Est, Ecp

U c, m
Edgei

J, J

Description

A vehicle, a set of vehicles
Container-instance or node in a cluster

Resource capacity or availability of a node
Resource capacity/availability in an edge

Resources used for execution
CPU, memory resource used for execution

Actual resources usage of jobs
Application/task start, completion time

Cluster resource utilization
A job, a set of jobs

44

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing Special Topic

ing policies are jointly adopted in Eof, thus enabling faster
offloading time.

1) Constraints
The collective resource demand or request of multi-job set

J at any given time t cannot exceed the collective resource ca⁃
pacity or available in the selected EC deployment:

∑J ∈ Jd c, m '
T͂ ≤ C c, m

Edge⋆ , ∀c, m, (14)
and the unused or inactive nodes Ii ∈ Edge⋆ would be shut
down. All the nodes are in active or inactive states. An active
node is a node that is running and currently considered for al⁃
location or has at least a job being started, executing or com⁃
pleting. An inactive node is a node that is not running and is
not currently considered for allocation or has no job. These
two states can be expressed as follows:

∀c, m β (Ii) = ì
í
î

1, Active  if Ji ∈ [Est, Ecp, Eex] ,
0, Inactive if Ji ∉ [Est, Ecp, Eex] , (15)

where indicator β (Ii) = 1 indicates that node Ii is ready to ac⁃
cept new jobs, and at least job Ji is being started, executing or
completing, i.e., Ji ∈ [Est, Ecp, Eex], on Ii; otherwise β (Ii) = 0.

2) Optimization formulation
Hence, maximizing utilization of the selected edge deploy⁃

ment or cluster depends on application orchestration:

Maximize U͂ c, m
Edgei

= ∑J ∈ Jd c, m '
T͂

C c, m
Edgei , (16)

subject to J ⇒ Edge⋆, ∃ , (17)

 β (Ii) ∈ { 0,1 } , ∃ , (18)

 ∑J ∈ Jd c, m '
T͂ ≤ C c, m

Edge⋆ , ∀c, m . (19)
The constraints in Eqs. (17) to (19) indicate the dispatching

of multi-job set J to the closest edge having sufficient resource
capability or availability. More specifically, Eq. (17) is the
constraint for J offloading, guaranteeing that J is dispatched
to a cluster such that dependent tasks within each J ∈ J can
communicate and execute faster. Condition (18) guarantees
that active nodes (β (Ii) = 1) are used for execution and that
inactive nodes (β (Ii) = 0) are shut down. The constraint in
Eq. (19) guarantees that d c, m '

T of J does not exceed C c, m
Edgei

 any
selected cluster. The details of our multi-job dispatching prin⁃
ciple will be discussed in Section 4.1 and Algorithm 1. We
aim to minimize the number of active nodes used for execution
by co-locating jobs tightly on each node to maximize resource

utilization. The details of our co-location strategy will be dis⁃
cussed in Section 4.2 and Algorithm 2.

On the other hand, the overall scheduling time and execu⁃
tion time can be minimized depending on orchestration:

Minimize ∑J ∈ J∑i = 1
k Esh i

k = Esh' , (20)

subject to J ⇒ Edge⋆, ∀c, m . (21)

Minimize ∑J ∈ J∑i = 1
k Eex i

k = Eex' , (22)

subject to J ⇒ Edge⋆, ∀c, m . (23)
The constraints in Eqs. (21) and (23) guarantee that J is dis⁃

patched to the same cluster such that dependent tasks within
each J ∈ J can communicate and execute faster. The details of
our multi-job dispatching principle are given in Section 4.1
and Algorithm 1.
4 Edge-IoT Algorithm Framework

The proposed Edge-IoT solution in this paper is focused on
offloading and scheduling. The offloading strategy is based on
the orchestration of ready multi-job tasks to the closest edge
deployment with sufficient available resources to accommo⁃
date the tasks, as expressed in Eq. (17), while the scheduling
strategy involves packing or co-location of these tasks tightly
on container instances to fully utilize the available resources.
These components aim at providing optimal performance for
vehicular multi-task execution in EC systems such that the op⁃
timizations in Eqs. (16), (20) and (22) are achieved.
4.1 Offloading Policy

When sets of vehicular multi-job tasks J = J1,⋯,JN are
ready to be offloaded, our policy is to offload them to the clos⁃
est edge Edge⋆ with sufficient resource capacity or availabil⁃
ity, i.e., J ⇒ Edge⋆, while ∑J ∈ Jd c, m '

T͂ ≤ C c, m
Edge⋆. For the ratio⁃

nale of this strategy, consider the Ericsson Connected Vehicle
Platform (CVP), which serves about 5.5 million active vehicles
across more than 150 countries. Assuming that there are 0.1%
of these vehicles at a location L and at time t deciding to
offload their multiple tasks i.e., ϑ [V ∈ V] = 1, we would see
a total load of 4 000 requests. Executing these loads would re⁃
quire an edge deployment with 40 nodes or container in⁃
stances if we assume that a container instance can co-locate
100 containerized tasks. To serve these vehicles efficiently, it
is better to dispatch these tasks as units to a closest edge de⁃
ployment, i.e., J ⇒ Edge⋆, having sufficient resource capacity
or availability. The closest heuristic given in Eq. (17) is to
minimize the offloading time Eof and to further minimize the

45

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Special Topic Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing

overall response time E rsp. Algorithm 1 describes the offload⁃
ing procedure.
Algorithm 1. Edge-IoT: multi-job offloading
Input: J arrived at time t; Edgei ∈ E; ∑J ∈ Jd c, m '

T͂

Output: Offload J to Edge⋆ with matching C c, m
Edge⋆ such that

J ⇒ Edge⋆1: for Edgei ∈ E do
2: if ∑J ∈ Jd c, m '

T͂ ≤ C c, m
Edgei

 then

3: J ⇒ Edgei = Edge⋆4: else
5: Offload J to next Edge⋆6: end if
7: end for
8: if J cannot be offloaded as a whole then
9: for Edgei ∈ E do
10: for J ∈ J do
11: if ∑J ∈ Jd c, m '

T͂ ≤ C c, m
Edgei

 then

12: J ⇒ Edgei = Edge⋆13: else
14: Dispatch J to next Edge⋆15: end if
16: end for
17: end for
18: end if

4.2 Scheduling Policy
Once J is offloaded to Edge⋆, our scheduling algorithm uses

the resource availability I c, m
i of each container-instance in

Edge⋆, and the resource demand d c, m '
T of each J ∈ J to pro⁃

vide efficient co-location such that fewer container-instances
are used for execution in Edge⋆. Specifically, the gang sched⁃
uling approach is adopted alongside our bin-packing optimiza⁃
tion to co-schedule and co-locate all J ∈ J at a time. Bin-
packing is one of the most popular packing problems. The goal
is to minimize the number of nodes used as given in optimiza⁃
tion in Eq. (31). Unlike other approaches, such as the first fit
bin packing problem (FFBPP) [22], it requires the next Ji to be
placed on the active node; otherwise, it is placed on a new
node. Our scheduling strategy co-locates multi-dependent
tasks firmly on nodes (Algorithm 2) such that for any given
job, resource wastage is avoided and fewer nodes are used for
execution. It takes the resource demand of multi-job tasks and
resource availability of nodes as input, then scans all J ∈ J
and maps them to active nodes in full utilization. Our ap⁃
proach scans all J ∈ J and maps Ji to active nodes in full utili⁃
zation (Line 2 in Algorithm 2). All J ∈ J are co-located firmly
on active nodes, so that resource wastage is avoided and fewer
nodes are used to execute all jobs concurrently (Lines 4–9 in
Algorithm 2).

Algorithm 2. Edge-IoT: multi-job co-location
Input: J offloaded to Edge⋆, resource demand of each J ∈ J:

d c, m '
T͂ , resource availability of each node Ii ∈ Edge⋆: I c, m

i

Output: J is co-located, such that
Minimize∑Ii ∈ Edge⋆

Ii ≡ Minimize RU c, m
Edge⋆

1: for Ii ∈ Edge⋆ do
2: if β (Ii) = 1 then

3: I c, m
i = c, m , i.e., initial resource available

4: for J ∈ J do
5: if Γ [J, Ii] = 0 and d c, m '

T͂ ≤ I c, m
i then

6: J ⇒ Ii7: Γ [J,Ii] = 1
8: I c, m

i = I c, m
i - d c, m '

T͂9: end if
10: if I c, m

i close to zero then
11: break
12: end if
13: end for
14: end if
15: end for

Hence, for every J offloaded to Edge⋆, our co-location strat⁃
egy is to find the solution to the problem:

Minimize ∑
Ii ∈ Edge⋆

Ii ≡ Minimize RU c, m
Edge⋆ = U c, m

Edge⋆

C c, m
Edge⋆

 , (24)

subject to J ⇒ Edge⋆, |∃  , (25)
∑
J ∈ J

Γ []J, Ii ⋅ d c, m '
T͂ ≤ I c, m

i , ∀c, m , (26)
where

Γ []J, Ii = ì
í
î

1, if J ⇒ Ii,
0, otherwise. (27)

We aim to minimize the number of nodes used for executing
J, which is equivalent to minimizing the actual resource usage
in Edge⋆, given as RU c, m

Edge⋆ , which is the ratio of the resources
used for execution U c, m

Edge⋆ over the edge’s resource capacity
C c, m

Edgei
. The metric RU c, m

Edge⋆ includes the actual CPU resource
usage RU c

Edge⋆ and the actual memory resource usage RU m
Edge⋆, which are defined respectively as

RU c
Edge⋆ = U c

Edge⋆

C c
Edge⋆ , (28)

RU m
Edge⋆ = U m

Edge⋆

C m
Edge⋆ , (29)

where U c
Edge⋆ and U m

Edge⋆ are the used CPU and memory re⁃

46

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing Special Topic

sources, respectively, while C c
Edge⋆ and C m

Edge⋆ are the edge’s
CPU and memory resource capacity, respectively. Then the ac⁃
tual CPU utilization ρ c

DR i
 and the actual memory utilization

ρ m
DR i

 are defined respectively by

U c
Edgei

=
∑
J ∈ J

d c, m '
T

U c
Edge⋆ , (30)

U m
Edgei

=
∑
J ∈ J

d c, m '
T

U c
Edge⋆ . (31)

Algorithms 1 and 2 are directly connected with minimizing
Esh', minimizing Eex' as well as maximizing U͂ c, m

Edgei
. Therefore,

Eq. (25) is the constraint for multi-job set J deployment, guaran⁃
teeing that J is offloaded to the closest cluster such that depen⁃
dent tasks within each J ∈ J can communicate and execute
faster. As we have stated previously that if J cannot be dis⁃
patched as a whole to a cluster, the dispatcher will allow frac⁃
tional dispatching of each J ∈ J to the closest member edge.
The constraint in Eq. (26) indicates that the total estimated re⁃
source requirements of co-located jobs d c, m '

T cannot exceed
I c, m

i , the node resource availability. The condition in Eq. (27)
means that Γ [Ji, Ii] = 1 if job Ji is placed on the node Ii; other⁃
wise, Γ [Ji, Ii] = 0. This is to guarantee that each J ∈ J is
placed in exactly one node. To solve this multi-job packing
problem, we have adopted the solving Constraint Integer Pro⁃
grams (SCIP) solver, which is currently one of the fastest math⁃
ematical programming (MP) solvers for this problem.
4.3 Connection with Optimization Objectives

Our objectives are to minimize the total response time of
multiple IoV applications as stated in Eqs. (20) and (22) and
maximize the edge cluster resource utilization in Eq. (26). Al⁃
gorithms 1 and 2 together achieve these objectives. By offload⁃
ing multi-job tasks to an edge having sufficient resource avail⁃
ability, Algorithm 1 ensures that any edge deployment se⁃
lected has sufficient resources C c, m

Edge⋆ needed for multi-job ex⁃
ecution such that the dependent tasks can be executed faster,
ultimately leading to a smaller aggregate scheduling time Esh' and execution time Eex'. By intelligently packing dependent
tasks tightly on nodes, Algorithm 2 is capable of fully utilizing
available resources at EC clusters, ultimately leading to the re⁃
source assigned for the execution of jobs U c, m

Edge⋆ to be fewer
while guaranteeing it is sufficient for multi-job tasks. More
specifically, the resource usage (RU) of the cluster for multi-
job tasks is given in Eqs. (28) and (29).
5 Experiment Setup

Our experiment setup consists of six edge deployments dis⁃
tributed across RSUs, BSs and vehicles, as summarized in

Table 2. These platforms consist of large resource capacity EC
devices. The input data flow time, final result transmission
time, vehicle’s speed, and road area were drawn from a uni⁃
form distribution range of (0.2, 0.4] s, (0.4, 4] s, (40, 80] km/h
and [2 km × 2 km], respectively[23]. Therefore, we conduct ex⁃
tensive experiments with orchestrated sets of multi-dependent
tasks with heterogeneous resource requests across the EC re⁃
sources. For each deployment, we compare the performance of
our Edge-IoT with the existing state of the art.

As for applications, the v-2018 version of Alibaba cluster
trace is used, which records the activities of about 4 000 ma⁃
chines in a period of eight days. The entire trace contains
more than 14 million tasks with more than 12 million depen⁃
dencies and more than four million jobs, among which we de⁃
ploy a total of 48 jobs with total of 204 tasks (including depen⁃
dencies) for our experiments. The task dependency depth
among the jobs is in the range of (1, 17]. Table 3 lists the de⁃
tails of our multi-job sets.
5.1 Heuristics and Baselines

In our experiments, we assume that all tasks are of high pri⁃
ority. The proposed Edge-IoT utilizes the closest heuristic and
adopts the gang-scheduling strategy and a variant bin-packing
optimization to efficiently co-schedule and co-locate multi-job
tasks in a cluster or edge to minimize the overall response
time. We consider Edge-IoT as a full dependency and full
packing (FDFP) approach.

We compare the scheduling approach of Edge-IoT with the
following three existing schemes, fixing their dispatching
policy to that of Edge-IoT, as follows:

1) Full dependency and partial packing (FDPP) [5] is an ap⁃

▼ Table 3. Multi-job execution, where the actual resources consumed
for multi-job execution d c, m

T are taken from the original Alibaba data
and the estimated resource demands d c, m '

T͂ are calculated by linear re⁃
gression model

Multi-Job J
1
2
3
4
5

C

5
7
9

12
15

T

22
29
38
52
63

d c, m '
T͂

1 195.24, 4.35
1 501.5, 5.81
2 011.55, 7.57
2 762.25, 10.4
3 369.68, 12.58

d c, m '
T

1 135, 3.77
1 325, 4.23
1 820, 5.76
2 560, 8.2

3185, 10.17

NAEE
0.1, 0.15

0.13, 0.37
0.1, 0.3

0.1, 0.26
0.1, 0.23

NAEE: normalized absolute estimate error

▼Table 2. Edge deployments and their resource capacities

Edge Deployment

Edge 1
Edge 2
Edge 3
Edge 4
Edge 5
Edge 6

Edge Device

Acer aiSage (x2)
AWS Snowcone (x10)

Huawei AR502H Series (x6)
HIVECELL (x6)

NVIDIA Jetson Xavier NX (x3)
INTELLIEDGE G700 (x5)

CPU Capacity

12 Cores
20 Cores
24 Cores
36 Cores
36 Cores
48 Cores

Memory
Capacity/GiB

4
40
12
48
24
80

47

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Special Topic Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing

proach that executes subtasks of a job locally in the vehicle
and offloads subtasks to the cloud server and the remaining
tasks to the RSU for execution at the same time.

2) Full dependency and no packing (FDNP) -1[3] is an ap⁃
proach that offloads all tasks of a job to the same EC deploy⁃
ment, but assumes that at any EC deployment, a node can only
execute one task at a time, and FDNP-1 schedules one task at
a time. Therefore, unscheduled tasks must wait in a queue un⁃
til resources become available for the next task(s). Such a
queue is constructed based on the application priority, where
it keeps multiple applications in decreasing order of their pri⁃
ority.

3) FDNP-2[4] is an approach that offloads different subtasks
of a job to different EC deployments, where each node at the
selected EC deployment can only schedule and execute one
task at a time, and the task with the highest priority is first se⁃
lected for scheduling.

4) No dependency and partial packing
(NDPP)[23] is an approach that offloads differ⁃
ent multi-job subtasks to available EC de⁃
ployment, by considering the completion
deadline of each task. However, this ap⁃
proach does not respect inter-task dependen⁃
cies, but co-locates tasks on a node.
5.2 Comparison of Offloading and Execu⁃

tion Results
The investigation focuses on the IoV

multi-task response time, which includes the
multi-job offloading, resource utilization/us⁃
age, scheduling, execution and response
time. The multi-job execution information
across the edge deployments, obtained ac⁃
cording to Alibaba data, are listed in Table
3, where the actual resources consumed for
the multi-job execution d c, m '

T are taken from
the original data. NAEE defined in Eq. (4)
and listed in Table 3 for resource consumed
serves as the estimation accuracy measure
for the trained linear regression model. The
average NAEE across six deployments is
0.12 for CPU and 0.23 for memory. Note that
we only focus on the resource demand esti⁃
mation for multi-job tasks, as the execution
time estimation is not required to select suit⁃
able on-premise edge deployments given in
Table 2. The results obtained by Edge-IoT
(FDFP), FDPP, FDNP-1, FDNP-2 and
NDPP are compared.

1) Resource usage and resource utilization
Fig. 4 shows the task deployment ratio of

Edge-IoT with four baseline schemes. It can
be seen that for each multi-job task

offloaded, Edge-IoT is able to deploy its constituent tasks to a
single edge. This is because Edge-IoT selects the closest edge
with sufficient resource availability to accommodate all the
tasks, and co-locates them tightly in each node. Recall that
some of the baseline schemes, i. e., FDNP-1 and FDNP-2, do
not co-locate tasks on each node, but assume each node can
only execute one task at a time. Therefore, FDNP-1 can nei⁃
ther offload all its subtasks nor execute them at a time, given
the number of nodes at each edge. For example, Multi-Job 1
that consists of five jobs is deployed and co-located on edge
Edge-1 by Edge-IoT, and in turn, allows for faster input data
flow transmissions. For the same Multi-Job 1, FDPP, FDNP-2
and NDPP deploy the jobs across two edge deployments. Al⁃
though FDPP and NDPP can partially co-locate tasks at each
of the edges, the three schemes incur additional execution de⁃
lays due to input data flow transmissions across the two edge

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

Multi-Job 1 Multi-Job 2

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Multi-Job 3

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Multi-Job 4

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP
Multi-Job 5

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Tas
k d

epl
oym

ent
 rat

io/%

100

80

60

40

20

0

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

▲Figure 4. Tasks deployment ratio across the edge deployments

Multi-Job 1 Multi-Job 2 Multi-Job 3 Multi-Job 4 Multi-Job 5

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP
Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

200

150

100

50

0

Res
our

ce u
sag

e, R
U

c, m Ed
ge

i
 /%

▲Figure 5. Average resource usage across the edge deployments

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing

48

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing Special Topic

deployments. On the other hand, FDNP-1 is not able to deploy
all the jobs on edge Edge-1, because it executes a task on
each node at a time. Hence, it can only execute several tasks
at a time, given the number of nodes available in the edge
cluster, while the remaining tasks wait in a queue. Fig. 5
shows the average resource usage of the multi-job tasks de⁃
ployed by Edge-IoT with those of the four baseline schemes
across the edge clusters. It can be seen that Edge-IoT con⁃
sumes the fewest resources by using a single edge for each
multi-job task, while FDNP-2 uses the highest resources (up
to three edge deployments) for the same multi-job task. The av⁃
erage resource utilization comparison is shown in Fig. 6.
Again, Edge-IoT achieves the highest resource utilization com⁃
pared with the four baseline schemes. We now examine the
performance of Edge-IoT compared with the baseline schemes
for each multi-job offloaded (as shown in Table 3) in detail.

• Multi-Job 1: Edge-IoT dispatches 100% of the tasks in a
single-hop offloading to Edge-1. It first optimizes the deploy⁃
ment by gang-scheduling and co-locating as many tasks in a
node as possible to fully utilize the available resources in the
node. These tasks are tightly packed on nodes using the pack⁃
ing algorithm, which uses all of Edge-1 resources to execute
the tasks, and achieves 95% resource utilization. For the same
Multi-Job 1, some of the baseline schemes such as FDPP,
FDNP-2 and NDPP offload the tasks across two edge clusters
(Edge-1 and Edge-2), using up to two times more resources
than Edge-IoT. FDNP-1 schedules one task on a node at a
time using a single edge deployment (Edge-1). Thus, it uses
all available resources (100%) at the edge deployment and
keeps the unscheduled tasks on a task queue until resources
become available. Overall, Edge-IoT achieves better resource
usage and utilization compared to the four baseline schemes,
as shown in Figs. 5 and 6.

• Multi-Job 2: This multi-job task consists of seven jobs

with a total of 29 tasks, where each job has a task dependency
in the range of (1, 5]. Edge-IoT optimizes the deployment to
ensure that the resources are fully utilized. Containers provide
isolation to running applications, making it possible to co-
locate multiple applications on the same node without any in⁃
terference. A single container-optimized node can execute
more containerized applications, given that there are sufficient
available resources. For scheduling, Edge-IoT deploys all the
tasks at a time on edge cluster Edge-2, using 70% of the re⁃
sources, while with three edge deployments, FDPP, FDNP-2
and NDPP use 50%, 20% and 21% on Edge-1, 100%, 45%
and 33% on Edge-2, and 21%, 20% and 50% on Edge-3.
Edge-IoT and FDNP-1 utilize 95% and 55% of resources, re⁃
spectively. Although FDNP-1 uses all available resources in
the cluster, it achieves low resource utilization due to its in⁃
ability to co-locate tasks on nodes, which results in resource
under-utilization. Again Edge-IoT outperforms all the four
baseline schemes in terms of task deployment ratio, resource
usage and utilization.

• Multi-Job 3: Edge-IoT offloads all tasks of Multi-Job 3 to
edge Edge-3. This edge deployment is made up of six Huawei
AR502H Series edge devices, with CPU and memory capacity
of 24 vCPU and 12 GiB, respectively. The multi-job task con⁃
sists of nine jobs, with a total of 38 tasks, where each job has a
task dependency range (1, 8]. Edge-IoT improves resource us⁃
age by using a single edge and up to three times fewer re⁃
sources compared with the four baseline schemes, as can be
seen from Fig. 5. It also achieves 76% resource utilization in a
single cluster. On the other hand, with three edge deploy⁃
ments, FDPP and NDPP achieve 85% and 89% resource utili⁃
zation on Edge-2; 94% and 94% on Edge-3; and 89% and 85%
on Edge-4). FDNP-1 and FDNP-2 perform worst with the high⁃
est resource consumption and the lowest resource utilization.

• Multi-Job 4 and Multi-Job 5: These multi-job tasks are
offloaded by Edge-IoT to Edge-4 and Edge-
5, respectively. Among all the schemes,
Edge-IoT uses the least resources for each
multi-job execution across the two edge clus⁃
ters. Specifically, Edge-IoT consumes 72%
and 89% of resources at Edge-4 and Edge-5,
respectively. It also achieves the highest re⁃
source utilization of 98% and 99% across
the two clusters, compared to the four base⁃
line schemes. FDPP consumes 21%, 31%
and 31% of resources across Edge-3, Edge-4
and Edge-5, and NDPP consumes 31%,
31% and 21% ofresources across Edge-4,
Edge-4 and Edge-6. FDNP-1 consumes all
available resources at Edge-3 and Edge-4
for Multi-Job4 and Multi-Job5, respectively,
while recording the lowest resource utiliza⁃
tion at each cluster. FDNP-2 consumes the
second highest resources and achieves the ▲Figure 6. Average resource utilization across the edge deployments

Multi-Job 1 Multi-Job 2 Multi-Job 3 Multi-Job 4 Multi-Job 5

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Edg
e-Io

T
FD

PP
FD

NP
-1

FD
NP

-2
ND

PP

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

300
250
200
150
100

50
0

Res
our

ce u
sag

e, u
c, m Ed

ge
i /%

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing

49

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Special Topic Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing

second lowest resource utilization for the
same multi-job task execution.

2) Multi-Task Scheduling, Execution and
Response Time

The aggregate job scheduling time Esh' de⁃
fined in Eq. (9), which is the time for placing
multi-job tasks on the nodes in a cluster, is
an important performance metric to assess
the integrated edge clusters. Another impor⁃
tant performance metric is the aggregate job
execution time Eex' defined in Eq. (10). The
response time E rsp'defined in Eq. (8) is even
more important. Figs. 7, 8 and 9 compare the
scheduling time, execution time and re⁃
sponse time, respectively, attained by the
five schemes.

It can be seen that the scheduling time is
typically very small, and the execution time
and response time by contrast are signifi⁃
cantly larger. Across the edge clusters, Edge-
IoT consistently achieves the fastest schedul⁃
ing, execution and response, compared to the
other four benchmark strategies. Note that we
focus on the scheduling time, execution time
and result transmission time components of
the response time. This is because the offload⁃
ing time Eof' is relatively small due to our
offloading policy which ensures that jobs are
offloaded to the closest edge cluster and
within a single-hop offloading. Specifically,
for Multi-Job 1, Edge-IoT achieves a very fast
scheduling, which is 11.6 times faster than
FDPP and NDPP, and 16 times faster than
FDNP-1 and FDNP-2. For Multi-Job 2 sched⁃
uling, Edge-IoT achieves significantly shorter
scheduling time than the four benchmark
strategies, i. e., Edge-IoT is 12 times faster
than FDPP and NDPP, and 29 times faster
than FDNP-1 and FDNP-2. For Multi-Job 3,
FDNP-1 and FDNP-2 attain the lowest sched⁃
uling time, while FDPP and NDPP attain the
second lowest scheduling time. Edge-IoT
achieves the best performance with up to 38
times faster than the other four schemes. For
Multi-Job 4 and Multi-Job 5, Edge-IoT again achieves the fast⁃
est scheduling, followed by FDPP and NDPP, while FDNP-1
and FDNP-2 have the worst scheduling performance.

In terms of the execution time, it is important to note that
the input data flow time also contributes to the total execution
time of a job. FDPP, FDNP-2 and NDPP incur additional time
due to their approaches of task offloading across multiple clus⁃
ters, which leads to input data flows (which is in the range of
(0.2, 0.4] s) across the clusters. Edge-IoT is 111.4, 22.3, 112

and 23 times faster than FDNP-1, FDPP, FDNP-2 and NDPP,
respectively, for executing Multi-Job 1, while for Multi-Job 2
execution, it is approximately 204, 29, 205 and 30 times
faster, respectively. Similarly, for Multi-Job 3, Multi-Job 4 and
Multi-Job 5 executions, Edge-IoT achieves approximately up
to 943.8, 63, 945.7 and 64.8 times shorter execution time than
FDNP-1, FDPP, FDNP-2 and NDPP, respectively. The signifi⁃
cant advantage of Edge-IoT in terms of the aggregate job ex⁃
ecution time can be explained as follows. It deploys sets of

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing

▲Figure 7. Task scheduling time across edge deployments

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing

▲Figure 8. Task execution time across edge deployments

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing

▲Figure 9. Task response time across edge deployments

Multi-Job 1 Multi-Job 2 Multi-Job 3 Multi-Job 4 Multi-Job 5

Edge-IoT FDPP FDNP-1 NDPP FDNP-2300
250
200
150
100

50
0

Sch
edu

ling
 tim

e, E
sh'/

ms
Exe

cut
ion

 tim
e, E

ex'/
s

1.5

1.0

0.5

0

3
35 48 35 48 48

4

116 116
48

4 4
5079 79

152 152
208 208

120 120 148 148

252 252

Multi-Job 1 Multi-Job 2 Multi-Job 3 Multi-Job 4 Multi-Job 5
14312

1 560 1 569
312 12350

2 450 2 462
362 13495

4 455 4 470

510 13664 685

7 968 7 989

13818 843

12 295
Edge-IoT FDPP FDNP-1 NDPP FDNP-2

Res
pon

se t
ime

, E rsp
'/s

1.5

1.0

0.5

0

×104

×104

Edge-IoT FDPP FDNP-1 NDPP FDNP-2

Multi-Job 1 Multi-Job 2 Multi-Job 3 Multi-Job 4 Multi-Job 5
343321 580 1 589341 34378 390

2 478 2 490
49531 546

4 491 4 506

49712 733

8 016 8 037

12 330 12 355

878 90373

12 270

50

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing Special Topic

multi-job tasks as a unit through the gang scheduling strategy
in a single-edge deployment. These applications are deployed
and executed concurrently. By contrast, the benchmark ap⁃
proaches schedule and execute the given DAGs individually
and in parts across multiple edge deployments, resulting in in⁃
put data flow transmission delays and longer time to execute
the overall tasks.

Recall that the response time of a job defined in Eq. (8) is
the addition of its offloading time, scheduling time, execution
time and final result transmission time. Therefore, the ulti⁃
mate aim is to minimize the response time of IoV applications
offloaded to EC. Fig. 9 compares the response time of Edge-
IoT and the four benchmark schemes. Edge-IoT outperforms
the four benchmark schemes by achieving shorter response
time for all the multi-job tasks, and up to 169, 12, 169.2 and
12.4 times faster than FDNP-1, FDPP, FDNP-2 and NDPP, re⁃
spectively.
6 Conclusions

Edge-IoT, a machine learning-enabled IoT application or⁃
chestration in an EC system proposed in this paper, has dem⁃
onstrated superior QoS in resource management and IoT multi-
task orchestration in edge clusters. Unlike Edge-IoT, the exist⁃
ing methods do not deploy all the ready tasks at a time or in a
single edge cluster or do not respect task dependencies, lead⁃
ing to more edge resource usage and cluster under-utilization
as well as causing longer task execution time. This paper has
presented Edge-IoT to improve edge resource efficiency and
performance. We have utilized a resource-aware offloading
strategy that selects the closest edge cluster suitable for a
given job, and a container-based bin packing optimization
strategy that packs or co-locates tasks tightly on nodes to fully
utilize available resources. To evaluate our approach, we have
illustrated use cases of real-world CPU and memory-intensive
tasks from Alibaba cluster trace, which records the activities
of both long-running containers (for Alibaba’s e-commerce
business) and batch jobs across eight days. We have com⁃
pared our approach with the state-of-the-art dependency-
aware IoV task orchestration baseline strategies. Our proposed
algorithm achieves both the highest edge cluster resource utili⁃
zation and the minimum scheduling, execution and response
time for IoV multi-job tasks compared to the baseline strate⁃
gies. The gains achieved by Edge-IoT as observed from our ex⁃
periments include faster response time of the overall tasks and
improved usage of edge resources.

References
[1] KHAN L U, YAQOOB I, TRAN N H, et al. Edge-computing-enabled smart cit⁃

ies: a comprehensive survey [J]. IEEE Internet of Things journal, 2020, 7(10):
10200–10232. DOI: 10.1109/JIOT.2020.2987070

[2] AMIN S U, HOSSAIN M S. Edge intelligence and Internet of Things in health⁃
care: a survey [J]. IEEE access, 2020, 9: 45 – 59. DOI: 10.1109/
ACCESS.2020.3045115

[3] LIU Y J, WANG S G, ZHAO Q L, et al. Dependency-aware task scheduling in
vehicular edge computing [J]. IEEE Internet of Things journal, 2020, 7(6):
4961–4971. DOI: 10.1109/JIOT.2020.2972041

[4] SHEN Q Q, HU B J, XIA E J. Dependency-aware task offloading and service
caching in vehicular edge computing [J]. IEEE transactions on vehicular tech⁃
nology, 2022, 71(12): 13182–13197. DOI: 10.1109/TVT.2022.3196544

[5] REN H, LIU K, JIN F, et al. Dependency-aware task offloading via end-edge-
cloud cooperation in heterogeneous vehicular networks [C]//25th International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022: 1420–
1426. DOI: 10.1109/ITSC55140.2022.9922334.

[6] LIU S S, LIU L K, TANG J, et al. Edge computing for autonomous driving: op⁃
portunities and challenges [J]. Proceedings of the IEEE, 2019, 107(8): 1697–
1716. DOI: 10.1109/jproc.2019.2915983

[7] MAHMUD R, TOOSI A N, RAMAMOHANARAO K, et al. Context-aware place⁃
ment of industry 4.0 applications in fog computing environments [J]. IEEE trans⁃
actions on industrial informatics, 2020, 16(11): 7004 – 7013. DOI: 10.1109/
TII.2019.2952412

[8] OTHMAN M M, EL-MOUSA A. Internet of Things & cloud computing Internet
of Things as a service approach [C]//11th International Conference on Informa⁃
tion and Communication Systems (ICICS). IEEE, 2020: 318 – 323. DOI:
10.1109/ICICS49469.2020.239503

[9] REN J, ZHANG D Y, HE S W, et al. A survey on end-edge-cloud orchestrated
network computing paradigms: transparent computing, mobile edge computing,
fog computing, and cloudlet [J]. ACM computing surveys, 2020, 52(6): 1–36.
DOI: 10.1145/3362031

[10] HWANG J, NKENYEREYE L, SUNG N, et al. IoT service slicing and task
offloading for edge computing [J]. IEEE Internet of Things journal, 2021, 8
(14): 11526–11547. DOI: 10.1109/jiot.2021.3052498

[11] ALMUTAIRI J, ALDOSSARY M. A novel approach for IoT tasks offloading in
edge-cloud environments [J]. Journal of cloud computing, 2021, 10(1): 1–19.
DOI: 10.1186/s13677-021-00243-9

[12] AWADA U, ZHANG J K, CHEN S, et al. Air-to-air collaborative learning: a
multi-task orchestration in federated aerial computing [C]//14th International
Conference on Cloud Computing (CLOUD). IEEE, 2021: 671 – 680. DOI:
10.1109/CLOUD53861.2021.00086

[13] AWADA U, ZHANG J K, CHEN S, et al. AirEdge: a dependency-aware multi-
task orchestration in federated aerial computing [J]. IEEE transactions on ve⁃
hicular technology, 2022, 71(1): 805–819. DOI: 10.1109/TVT.2021.3127011

[14] TU Y F, DONG Z J, YANG H Z. Key Technologies and application of edge
computing [J]. ZTE communications, 2017, 15(2): 26-34. DOI: 10.3969/j.
issn.1673-5188.2017.02.004

[15] LI X W, ZHAO L, YU K P, et al. A cooperative resource allocation model for
IoT applications in mobile edge computing [J]. Computer communications,
2021, 173: 183–191. DOI: 10.1016/j.comcom.2021.04.005

[16] LI J, LIANG W F, XU W Z, et al. Maximizing user service satisfaction for
delay-sensitive IoT applications in edge computing [J]. IEEE transactions on
parallel and distributed systems, 2022, 33(5): 1199 – 1212. DOI: 10.1109/
TPDS.2021.3107137

[17] ZHAN C, HU H, LIU Z, et al. Multi-UAV-enabled mobile-edge computing for
time-constrained IoT applications [J]. IEEE Internet of Things journal, 2021, 8
(20): 15553–15567. DOI: 10.1109/JIOT.2021.3073208

[18] LI J, LIANG W F, XU W Z, et al. Service home identification of multiple-
source IoT applications in edge computing [J]. IEEE transactions on services
computing, 2023, 16(2): 1417–1430. DOI: 10.1109/TSC.2022.3176576

[19] LIU J L, LIU C H, WANG B, et al. Optimized task allocation for IoT applica⁃
tion in mobile-edge computing [J]. IEEE Internet of Things journal, 2022, 9
(13): 10370–10381. DOI: 10.1109/JIOT.2021.3091599

[20] HAN S N, LI X H, SUN C, et al. RecCac: Recommendation-empowered coop⁃
erative edge caching for internet of things [J]. ZTE communications, 2021, 19
(2): 2–10. DOI: 10.12142/ZTECOM.202102002

[21] LIU C H, LIU K, GUO S T, et al. Adaptive offloading for time-critical tasks in
heterogeneous Internet of vehicles [J]. IEEE Internet of Things journal, 2020, 7
(9): 7999–8011. DOI: 10.1109/JIOT.2020.2997720

[22] RAMPERSAUD S, GROSU D. Sharing-aware online virtual machine packing

51

ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi

Special Topic Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing

in heterogeneous resource clouds [J]. IEEE transactions on parallel and distrib⁃
uted systems, 2017, 28(7): 2046–2059. DOI: 10.1109/TPDS.2016.2641937

[23] HONG Z C, CHEN W H, HUANG H W, et al. Multi-hop cooperative computa⁃
tion offloading for industrial IoT-edge-cloud computing environments [J]. IEEE
transactions on parallel and distributed systems, 2019, 30(12): 2759–2774.
DOI: 10.1109/TPDS.2019.2926979

Biographies
Uchechukwu AWADA is currently working toward a PhD degree at the
School of Information Engineering, Zhengzhou University, China. His current
research interests include edge computing, cloud computing, aerial computing,
distributed systems, IoT, IoV and wireless communications. He is a student
member of the ACM.

ZHANG Jiankang (jzhang3@bournemouth.ac.uk) is a senior lecturer at Bour⁃
nemouth University, UK. Prior to joining Bournemouth University, he was a se⁃
nior research fellow at the University of Southampton, UK. Dr. ZHANG was a
lecturer from 2012 to 2013 and then an associate professor from 2013 to 2014
at Zhengzhou University, China. His research interests are in the areas of aero⁃
nautical communications, aeronautical networks, evolutionary algorithms and
edge computing.

CHEN Sheng received his BE degree from the East China Petroleum Institute,
China in 1982 and his PhD degree from City, University of London, UK in
1986, both in control engineering. In 2005, he was awarded the higher doctoral
degree, Doctor of Sciences (DSc), from the University of Southampton, UK.

From 1986 to 1999, He held research and academic appointments at the Uni⁃
versities of Sheffield, Edinburgh and Portsmouth, all in UK. Since 1999, he has
been with the School of Electronics and Computer Science, the University of
Southampton, where he holds the post of Professor in Intelligent Systems and
Signal Processing. His research interests include adaptive signal processing,
wireless communications, modeling and identification of nonlinear systems,
neural network and machine learning, intelligent control system design, and
evolutionary computation methods and optimization. He has published over 600
research papers. He has 18 500+ Web of Science citations with h-index of 59,
and 36 700+ Google Scholar citations with h-index of 81. Dr. CHEN is a Fellow
of the United Kingdom Royal Academy of Engineering, a Fellow of the Asia-Pa⁃
cific Artificial Intelligence Association, and a Fellow of IET. He is one of the
original ISI’s highly cited researchers in engineering (March 2004). He is
named a 2023 Electronics and Electrical Engineering Leader in the UK by Re⁃
search.com.

LI Shuangzhi received his BS and PhD degrees from the School of Information
Engineering, Zhengzhou University, China in 2012 and 2018, respectively.
From 2015 to 2017, he was a visiting student with the Department of Electrical
and Computer Engineering, McMaster University, Canada. He is currently a lec⁃
turer with the School of Information Engineering, Zhengzhou University, China.
His research interests include noncoherent space-time coding and ultra-reliable
low-latency communications.

YANG Shouyi received his PhD degree from the Beijing Institute of Technolo⁃
gy, China in 2002. He is currently a full professor with the School of Informa⁃
tion Engineering, Zhengzhou University, China. He has authored or co-authored
various articles in the field of signal processing and wireless communications.
His current research interests include signal processing in communications sys⁃
tems, wireless communications, and cognitive radio.

52

