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Abstract

We study the finite word length (FWL) implementation
of digital controller structures with sparseness consider-
ation. A FWL stability measure is derived, taking into
account the number of trivial elements in a controller
realization. The controller realization that maximizes
a lower bound of this measure is first obtained, and a
stepwise algorithm is then applied to make the realiza-
tion sparse. A test case involving a dual wrist assem-
bly shows that the proposed design procedure yields
a computationally efficient controller realization with
good FWL closed-loop stability performance.

1 Introduction

In real-time applications where computational efficiency
is critical, a digital controller implemented in fixed-
point arithmetic has certain advantages. However, a
stable control system may achieve a lower than pre-
dicted performance or even become unstable when the
control law is implemented with a fixed-point device due
to the FWL effects. The FWL effects on the closed-loop
stability depend on the controller realization structure.
Earlier studies have addressed the problem of finding
the “optimal” realization of finite-precision controller
structures, which has a maximum tolerance to FWL er-
rors but may not have a sparse structure [1, 2].

It is highly desirable that a controller realization has a
sparse structure, containing many trivial elements of 0,
1 or-1. It is known that canonical controller realizations
have sparse structures but may not have the required
FWL stability robustness. An optimal controller real-
ization that maximizes the stability measures of [1, 2]
usually is a fully parameterized structure. A sparse
structure is particularly important for real-time appli-

cations with high-order controllers, as it will achieve
better computational efficiency. This poses a complex
problem of finding sparse controller realizations with
good FWL closed-loop stability characteristics.

We present an FWL stability measure, taking into ac-
count the sparseness consideration. The true optimal
realization that maximizes this measure will possess an
optimal trade-off between robustness to FWL errors and
sparse structure. Unfortunately, it is not known how
to obtain such an optimal realization. We extend an
iterative algorithm [3, 4] to search for a suboptimal so-
lution. Specifically, we first obtain the realization that
maximizes a lower bound of the proposed stability mea-
sure. This can easily be done [1, 2] but the resulting
realization is not sparse. A stepwise algorithm is then
applied to make the realization sparse without reducing
the FWL stability measure too much.

The design procedure is tested on a dual wrist assembly,
which is a prototype telerobotic system used in micro-
surgery experiments [5]. This dual wrist assembly is a
two-input two-output system with a plant order of 4,
and the digital controller designed using H,, method
has an order of 10 [5]. The total number of controller
parameters is 144. As this controller is a high-order
one and fast sampling is used, a sparseness realization
with good FWL stability characteristics is crucial for
computational efficiency in real-time operation.

2 A FWL stability measure
with sparseness consideration

Consider the discrete-time control system with plant
P(z) and controller C(z), depicted in Fig. 1. P(z) is
assumed to be strictly causal. Let (A,, B,,C.,0) be a
state-space description of P(z) with A, € R™*™ B, €



R™ ! and C, € R™™, and (A, B.,C., D.) be a state-
space description of C'(z) with A, € R"*"™ B. € R"*4,
C. € R"™*™ and D. € R'?. Then the stability of the
closed-loop control system depends on the poles of the
closed-loop system matrix
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Figure 1: Discrete-time control system consisting of
plant P(z) and controller C(2).

Any linear system with a given transfer function ma-
trix has an infinite number of state-space descriptions.
In fact, if (A2, B?, C?, DY) is a state-space description of
the digital controller C(z), all the state-space descrip-
tions of C'(z) form a set

SO = {(A67B6700,DC) : Ac — T_lA(C)T,

BC:T_lBS,CC:OBT,DC:DS} (2)

where T € R™ "™ is any nonsingular matrix, called a
similarity transformation. Any (A., B.,C.,D.) € S¢ is

a realization of C(z). Denote N = (I+n)(¢g+n)and
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We will also refer to X as a realization of C(z). From
(1), we know that A is a function of X
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When the fixed-point format is used to implement the
controller, X is perturbed into X + AX, where

Apr -+ ApN_i—nt1
AXE | 1 : (5)
Apiyn - Apn

and each element of AX is bounded by £/2 such that

pAX) 2 max|Api| < (6)
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Obviously, u(AX) is a norm of the FWL error AX. For
a fixed-point processor of By bits

e = 9 (Bs—Bx) (7)

where 2Bx is a normalization factor. With the pertur-

bation AX, a closed-loop pole \;(A(X)) of the origi-
nally stable system is moved to A;(A(X + AX)), which
may be outside the open unit disk and hence causes the

closed-loop to become unstable.

Note that the parameters 0, 1 and -1 are trivial, since
they require no operations in the fixed-point implemen-
tation and do not cause any computation error at all.
Thus Ap; = 0 when p; =0, 1 or —1. Let us define

0,if p=0,1or —1
1, otherwise
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When AX is small, we notice that

AN 2 N(AX + AX)) = N(A(X))
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It follows that
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where N is the number of the nontrivial elements in X .
Define

b= min A AEAD)] (1)

ie{l,--,m+n} N on 2
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If p(AX) < py(X), it follows from (10) and (11) that
|AN;] < 1—|X;(A(X))|. Therefore

N (AX + AX))| < |AN]+ [N(AX)] < 1 (12)

which means that the closed-loop system remains sta-
ble under perturbation AX. In other words, the larger
i1 (X) is, the bigger FWL error that the closed-loop sys-
tem can tolerate. Hence pq(X) is a measure describing
the FWL stability characteristics of X.

The measure (11) takes into account the sparseness
consideration.  Furthermore, it is computationally
tractable, as shown in the following theorem (see [2]
for a proof).



Theorem 1 Let {\;} = {\;(A(X))} be the eigenval-
ues of A(X) = Mgy + M X M. Denote z; and y; the
right and reciprocal left eigenvectors corresponding to
i, respectively. Then

ONi .. 9N
a\ op1 OPN—1-n+1
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X : : = M y;z; My (13)
A\ A
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where the superscript * denotes the conjugate operation
and 7 the transpose operation.

Let B™" be the smallest word length that, when used
to implement X, can guarantee the closed-loop stability.
An estimate of BI™™ is given by

B = Int[~ log, (1 (X))] - 1+ By (14)

where Int[z] rounds z to the nearest integer and Int[z] >
z. The optimal sparse controller realization with a max-
imum tolerance to FWL perturbation in principle is the
solution of the optimization problem

A
= X 1
v = max 1 (X) (15)

However, we do not know how to solve the above prob-
lem because p1 (X) includes §(p;) and is not a continu-
ous function with respect to controller elements p;.

3 Sparse realizations with good
FWL stability characteristics

Consider a lower bound of p;(X)

pn(X) = L Ao
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In fact, (16) is the stability measure given in [1], which
does not take into account the number of trivial pa-
rameters in X but is a continuous function. Obviously,
p11(X) < p1(X). The “optimal” realization that maxi-
mizes py; is the solution of the following problem

A
w = max py(X) (17)

and is relatively easy to obtain [1, 2] via the following
optimization procedure.

Assume that an initial controller realization is given as

De Gy ] (18)

— C
X°—{32 A9

X:X(T)z[é Tol]xo[é H (19)
and
A(xX) = [é o ]Z(XO) H H (20)

Obviously, A(X) has the same eigenvalues as A(X),
denoted as {\?}. Applying theorem 1 to (20) results in
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For a complex-valued matrix M € CU+mx(@+n) with
elements m;;, define the Frobenius norm

X(T) a {

1M ]|

Then the optimization problem (17) is equivalent to

w= max f(T) (23)
TGR"X"
det(T)#0

with the cost function

(1) = )
ie{l,r-r-l-%lr:z—i-n}\/ﬁ T 0 Jg[1 0 (24)
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where
X
3, 2 75’1’1)'(;;'(0 (25)

The optimal similarity matrix Top, can be obtained by
solving for the unconstrained optimization problem

w= max f(T) (26)
with a measure of monitoring the singular values of
T to make sure that det(T) # 0. In this study, we
use the simulated annealing [6] to solve for the uncon-
strained optimization problem (26). The corresponding
controller realization is given by X (Topt) = Xopt-

Notice that X,p¢ is not the optimal solution of the prob-
lem (15) and does not have a sparse structure. We can
make X, sparse by changing one nontrivial element
of Xope into a trivial one at a step, under the con-
straint that the value of py1; does not reduce too much.
This process will produce a suboptimal sparse realiza-
tion Xgop, and the detailed stepwise algorithm is:



Step 1: Set 7 to a very small positive real number (e.g.
1075). The transformation matrix 7T is initially set
t0 Topt, s0 that X (T') = Xopy.

Step 2: Find out all the trivial elements {ny, -, 9}
in X(T) (a parameter is considered to be trivial
if its distance from 0, 1 or -1 is less than 107%).
Denote £ the non-trivial element in X (7T) that is
the nearest to 0, 1 or -1.

Step 3: Choose S € R"*" such that

i) p1 (X (T 4+ 78)) is close to p (X (T)).

i) {m,---,n-} in X(T) remain unchanged in
X(T +75).

iii) ¢ in X (7T') is changed to as near to 0, 1 or -1 as
possible in X (T + 75).

) ISl = 1.
If S does not exist, Tgop = T and terminate the
algorithm.

Step 4: T =T +7S. If £ in X(T) is non-trivial, go to
step 3. If £ becomes trivial, go to step 2.

The step 3 is the key to guarantee that Xsop = X (Tsop)
contains many trivial elements and has good perfor-
mance as measured by pi;. We now discuss how to
obtain S. First, denote Vec(S) the vector containing
the columns of the matrix S stacked in column order.
With a very small 7, condition i) means

(Vec <%) ) T Ved(s) = 0 27)

Condition ii) means

(Vec (%) ) " Vee(S) =0
(28)

(vee (dd”T’“))TVec(S) =0,

Denote the matrix
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Vec(S) must belong to the null space N(E) of E. If
N(E) is empty, Vec(S) does not exist and the algo-
rithm is terminated. If AV(E) is not empty, it must
have basis {ej,- -, e:}, assuming that the dimension of

N(E) is t. Condition iii) requires moving ¢ closer to
its desired value (0, 1 or -1) as fast as possible, and
we should choose Vec(S) as the orthogonal projection

of Vec (dd—%) onto N'(FE). Noting condition iv), we can

compute Vec(S) as follows

d§ .
-
i — € I ) 17 R
a; =e; Vec <dT> €R, Vie{ t} (30)
¢ 2
w= Zaiei € R" (31)
i=1
Vee(S) = + eR” (32)
wTw

The sign in (32) is chosen in the following way. If £ is
larger than its nearest desired value, the minus sign is
taken; otherwise, the plus sign is used.

4 The dual wrist assembly case

A MATLAB program implementing the above algo-
rithm was applied to the dual wrist assembly. The ini-
tial controller realization Xj,;, chosen to be the H., con-
troller given in [5], had a low-bound stability measure of
p11(Xini) = 1.1734 x 10~%. The simulated annealing al-
gorithm obtained X,py with p1(Xope) = 1.5844 x 1073,
and the stepwise algorithm made X, sparse to produce
Xeop With p17(Xsop) = 4.3325 x 107*. Table 1 summa-
rizes the performance of these three different controller
realizations. Notice that, although the algorithm oper-
ates based on py;, the FWL stability characteristics are
judged using pq in Table 1.

Realization i Bmin | N,
Xini 11734 x107%* | 29 | 144
Xopt 15844 x 1073 | 25 | 144
Xeop 11171 x 1073 | 25 63

Table 1: Comparison of different realizations.

It can be seen that, for this teleoperation system, both
Xopt and Xy, can guarantee the closed-loop stability
when implemented using a fixed-point processor of 25
bits while Xj,; requires 29 bits. Although the value
of stability measure is smaller for X,, compared with
Xopt, it has 81 trivial elements, out of the total of
144 parameters. Thus this sparse controller realization
yields a computationally effective structure while main-
taining good FWL closed-loop stability robustness.

Fig. 2 compares the closed-loop force tracking errors
from the active operator hand force of the dual wrist
assembly when the different controller realizations were



implemented with a 30-bit processor. It can be seen
from Fig. 2 that there is a clear difference between the
performance of X;,; with FWL implementation and that
of the ideal controller implemented with infinite bits.
The 30-bit implemented X,,¢ and Xsop, however, pro-
duced the responses very closed to that of the ideal con-
troller.

5 Conclusions

We have investigated the problem of digital controller
implementations with FWL and sparseness considera-
tions. A FWL closed-loop stability measure has been
derived, which takes into account the number of trivial
parameters in a controller realization. A practical step-
wise procedure has been presented to obtain sparse con-
troller realizations with satisfactory FWL closed-loop
stability characteristics. A case study involving a tele-
operation system with a high-order controller demon-
strates that the proposed design procedure yields com-
putationally efficient controller structures suitable for
FWL implementation in real-time applications.
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Figure 2: Frequency response plots for different realiza-
tions.



