
Sparse Realizations of Optimal Finite-PreisionTeleoperation Controller StruturesR.H. Istepaniany, J. Wuz and S. Chen{y Department of Eletrial and Computer EngineeringRyerson Polytehni University, Toronto, Ontario, Canada M5B 2K3z Institute of Industrial Proess ControlZhejiang University, Hangzhou, 310027, P.R. China{ Department of Eletronis and Computer SieneUniversity of Southampton, Southampton SO17 1BJ, U.K.AbstratWe study the �nite word length (FWL) implementationof digital ontroller strutures with sparseness onsider-ation. A FWL stability measure is derived, taking intoaount the number of trivial elements in a ontrollerrealization. The ontroller realization that maximizesa lower bound of this measure is �rst obtained, and astepwise algorithm is then applied to make the realiza-tion sparse. A test ase involving a dual wrist assem-bly shows that the proposed design proedure yieldsa omputationally eÆient ontroller realization withgood FWL losed-loop stability performane.1 IntrodutionIn real-time appliations where omputational eÆienyis ritial, a digital ontroller implemented in �xed-point arithmeti has ertain advantages. However, astable ontrol system may ahieve a lower than pre-dited performane or even beome unstable when theontrol law is implemented with a �xed-point devie dueto the FWL e�ets. The FWL e�ets on the losed-loopstability depend on the ontroller realization struture.Earlier studies have addressed the problem of �ndingthe \optimal" realization of �nite-preision ontrollerstrutures, whih has a maximum tolerane to FWL er-rors but may not have a sparse struture [1, 2℄.It is highly desirable that a ontroller realization has asparse struture, ontaining many trivial elements of 0,1 or -1. It is known that anonial ontroller realizationshave sparse strutures but may not have the requiredFWL stability robustness. An optimal ontroller real-ization that maximizes the stability measures of [1, 2℄usually is a fully parameterized struture. A sparsestruture is partiularly important for real-time appli-

ations with high-order ontrollers, as it will ahievebetter omputational eÆieny. This poses a omplexproblem of �nding sparse ontroller realizations withgood FWL losed-loop stability harateristis.We present an FWL stability measure, taking into a-ount the sparseness onsideration. The true optimalrealization that maximizes this measure will possess anoptimal trade-o� between robustness to FWL errors andsparse struture. Unfortunately, it is not known howto obtain suh an optimal realization. We extend aniterative algorithm [3, 4℄ to searh for a suboptimal so-lution. Spei�ally, we �rst obtain the realization thatmaximizes a lower bound of the proposed stability mea-sure. This an easily be done [1, 2℄ but the resultingrealization is not sparse. A stepwise algorithm is thenapplied to make the realization sparse without reduingthe FWL stability measure too muh.The design proedure is tested on a dual wrist assembly,whih is a prototype teleroboti system used in miro-surgery experiments [5℄. This dual wrist assembly is atwo-input two-output system with a plant order of 4,and the digital ontroller designed using H1 methodhas an order of 10 [5℄. The total number of ontrollerparameters is 144. As this ontroller is a high-orderone and fast sampling is used, a sparseness realizationwith good FWL stability harateristis is ruial foromputational eÆieny in real-time operation.2 A FWL stability measurewith sparseness onsiderationConsider the disrete-time ontrol system with plantP (z) and ontroller C(z), depited in Fig. 1. P (z) isassumed to be stritly ausal. Let (Az ; Bz; Cz ; 0) be astate-spae desription of P (z) with Az 2 Rm�m, Bz 2



Rm�l and Cz 2 Rq�m, and (A; B; C; D) be a state-spae desription of C(z) with A 2 Rn�n, B 2 Rn�q,C 2 Rl�n and D 2 Rl�q . Then the stability of thelosed-loop ontrol system depends on the poles of thelosed-loop system matrixA = � Az +BzDCz BzCBCz A � (1)
P(z)

C(z)Figure 1: Disrete-time ontrol system onsisting ofplant P (z) and ontroller C(z).Any linear system with a given transfer funtion ma-trix has an in�nite number of state-spae desriptions.In fat, if (A0 ; B0 ; C0 ; D0) is a state-spae desription ofthe digital ontroller C(z), all the state-spae desrip-tions of C(z) form a setSC 4= �(A; B; C; D) : A = T�1A0T;B = T�1B0 ; C = C0T;D = D0	 (2)where T 2 Rn�n is any nonsingular matrix, alled asimilarity transformation. Any (A; B; C; D) 2 SC isa realization of C(z). Denote N 4= (l + n)(q + n) andX 4= � D CB A � = 264 p1 � � � pN�l�n+1... � � � ...pl+n � � � pN 375 (3)We will also refer to X as a realization of C(z). From(1), we know that A is a funtion of XA(X) = � Az 00 0 �+ � Bz 00 I �X � Cz 00 I �4=M0 +M1XM2 (4)When the �xed-point format is used to implement theontroller, X is perturbed into X +�X , where�X 4= 264 �p1 � � � �pN�l�n+1... � � � ...�pl+n � � � �pN 375 (5)and eah element of �X is bounded by "=2 suh that�(�X) 4= maxi2f1;���;Ng j�pij � "2 (6)

Obviously, �(�X) is a norm of the FWL error �X . Fora �xed-point proessor of Bs bits" = 2�(Bs�BX ) (7)where 2BX is a normalization fator. With the pertur-bation �X , a losed-loop pole �i(A(X)) of the origi-nally stable system is moved to �i(A(X +�X)), whihmay be outside the open unit disk and hene auses thelosed-loop to beome unstable.Note that the parameters 0, 1 and -1 are trivial , sinethey require no operations in the �xed-point implemen-tation and do not ause any omputation error at all.Thus �pi = 0 when pi = 0, 1 or �1. Let us de�neÆ(p) = � 0; if p = 0; 1 or � 11; otherwise (8)When �X is small, we notie that��i 4= �i(A(X +�X))� �i(A(X))� NXj=1 ��i�pj�pjÆ(pj); 8i 2 f1; � � � ;m+ ng (9)It follows thatj��ij �vuutNs NXj=1 ������i�pj ����2 j�pj j2 Æ(pj)� �(�X)vuutNs NXj=1 ������i�pj ����2 Æ(pj); 8i (10)where Ns is the number of the nontrivial elements in X .De�ne�1(X) = mini2f1;���;m+ng 1� ���i(A(X))��sNs NPj=1 Æ(pj) �����i�pj ���2 (11)If �(�X) < �1(X), it follows from (10) and (11) thatj��ij < 1� ���i(A(X))��. Therefore���i(A(X +�X))�� � j��ij+ ���i(A(X))�� < 1 (12)whih means that the losed-loop system remains sta-ble under perturbation �X . In other words, the larger�1(X) is, the bigger FWL error that the losed-loop sys-tem an tolerate. Hene �1(X) is a measure desribingthe FWL stability harateristis of X .The measure (11) takes into aount the sparsenessonsideration. Furthermore, it is omputationallytratable, as shown in the following theorem (see [2℄for a proof).



Theorem 1 Let f�ig = f�i(A(X))g be the eigenval-ues of A(X) = M0 +M1XM2. Denote xi and yi theright and reiproal left eigenvetors orresponding to�i, respetively. Then��i�X = 2664 ��i�p1 � � � ��i�pN�l�n+1... � � � ...��i�pl+n � � � ��i�pN 3775 =MT1 y�i xTi MT2 (13)where the supersript � denotes the onjugate operationand T the transpose operation.Let Bmins be the smallest word length that, when usedto implementX , an guarantee the losed-loop stability.An estimate of Bmins is given byB̂mins = Int[� log2(�1(X))℄� 1 +BX (14)where Int[x℄ rounds x to the nearest integer and Int[x℄ �x. The optimal sparse ontroller realization with a max-imum tolerane to FWL perturbation in priniple is thesolution of the optimization problem� 4= maxX2SC �1(X) (15)However, we do not know how to solve the above prob-lem beause �1(X) inludes Æ(pj) and is not a ontinu-ous funtion with respet to ontroller elements pj .3 Sparse realizations with goodFWL stability harateristisConsider a lower bound of �1(X)�1l(X) = mini2f1;���;m+ng 1� ���i(A(X))��sN NPj=1 �����i�pj ���2 (16)In fat, (16) is the stability measure given in [1℄, whihdoes not take into aount the number of trivial pa-rameters in X but is a ontinuous funtion. Obviously,�1l(X) � �1(X). The \optimal" realization that maxi-mizes �1l is the solution of the following problem! 4= maxX2SC �1l(X) (17)and is relatively easy to obtain [1, 2℄ via the followingoptimization proedure.Assume that an initial ontroller realization is given asX0 = � D0 C0B0 A0 � (18)

From (2) and (4), we haveX = X(T ) = � I 00 T�1 �X0 � I 00 T � (19)andA(X) = � I 00 T�1 �A(X0) � I 00 T � (20)Obviously, A(X) has the same eigenvalues as A(X0),denoted as f�0i g. Applying theorem 1 to (20) results in��i�X ����X(T ) = � I 00 T T � ��i�X ����X0 � I 00 T�T � (21)For a omplex-valued matrix M 2 C(l+n)�(q+n) withelements mij , de�ne the Frobenius normkMkF 4=vuutl+nXi=1 q+nXj=1m�ijmij (22)Then the optimization problem (17) is equivalent to! = maxT2Rn�ndet(T )6=0 f(T ) (23)with the ost funtionf(T ) =mini2f1;���;m+ng 1pN � I 00 T T ��i � I 00 T�T �F (24)where�i 4= ��i�X ��X=X01� j�0i j (25)The optimal similarity matrix Topt an be obtained bysolving for the unonstrained optimization problem! = maxT2Rn�n f(T ) (26)with a measure of monitoring the singular values ofT to make sure that det(T ) 6= 0. In this study, weuse the simulated annealing [6℄ to solve for the unon-strained optimization problem (26). The orrespondingontroller realization is given by X(Topt) = Xopt.Notie that Xopt is not the optimal solution of the prob-lem (15) and does not have a sparse struture. We anmake Xopt sparse by hanging one nontrivial elementof Xopt into a trivial one at a step, under the on-straint that the value of �1l does not redue too muh.This proess will produe a suboptimal sparse realiza-tion Xsop, and the detailed stepwise algorithm is:



Step 1: Set � to a very small positive real number (e.g.10�5). The transformation matrix T is initially setto Topt so that X(T ) = Xopt.Step 2: Find out all the trivial elements f�1; � � � ; �rgin X(T ) (a parameter is onsidered to be trivialif its distane from 0, 1 or -1 is less than 10�8).Denote � the non-trivial element in X(T ) that isthe nearest to 0, 1 or -1.Step 3: Choose S 2 Rn�n suh thati) �1l(X(T + �S)) is lose to �1l(X(T )).ii) f�1; � � � ; �rg in X(T ) remain unhanged inX(T + �S).iii) � in X(T ) is hanged to as near to 0, 1 or -1 aspossible in X(T + �S).iv) kSkF = 1.If S does not exist, Tsop = T and terminate thealgorithm.Step 4: T = T + �S. If � in X(T ) is non-trivial, go tostep 3. If � beomes trivial, go to step 2.The step 3 is the key to guarantee that Xsop = X(Tsop)ontains many trivial elements and has good perfor-mane as measured by �1l. We now disuss how toobtain S. First, denote V e(S) the vetor ontainingthe olumns of the matrix S staked in olumn order.With a very small � , ondition i) means�V e�d�1ldT ��T V e(S) = 0 (27)Condition ii) means8>>>><>>>>: �V e�d�1dT ��T V e(S) = 0...�V e�d�rdT ��T V e(S) = 0; (28)Denote the matrixE 4= 266666664 �V e�d�1ldT ��T�V e�d�1dT ��T...�V e�d�rdT ��T
377777775 2 R(r+1)�n2 (29)V e(S) must belong to the null spae N (E) of E. IfN (E) is empty, V e(S) does not exist and the algo-rithm is terminated. If N (E) is not empty, it musthave basis fe1; � � � ; etg, assuming that the dimension of

N (E) is t. Condition iii) requires moving � loser toits desired value (0, 1 or -1) as fast as possible, andwe should hoose V e(S) as the orthogonal projetionof V e� d�dT � onto N (E). Noting ondition iv), we anompute V e(S) as followsai = eTi V e� d�dT � 2 R; 8i 2 f1; � � � ; tg (30)w = tXi=1 aiei 2 Rn2 (31)V e(S) = � wpwT w 2 Rn2 (32)The sign in (32) is hosen in the following way. If � islarger than its nearest desired value, the minus sign istaken; otherwise, the plus sign is used.4 The dual wrist assembly aseA MATLAB program implementing the above algo-rithm was applied to the dual wrist assembly. The ini-tial ontroller realizationXini, hosen to be theH1 on-troller given in [5℄, had a low-bound stability measure of�1l(Xini) = 1:1734� 10�4. The simulated annealing al-gorithm obtained Xopt with �1l(Xopt) = 1:5844�10�3,and the stepwise algorithmmadeXopt sparse to produeXsop with �1l(Xsop) = 4:3325� 10�4. Table 1 summa-rizes the performane of these three di�erent ontrollerrealizations. Notie that, although the algorithm oper-ates based on �1l, the FWL stability harateristis arejudged using �1 in Table 1.Realization �1 B̂mins NsXini 1:1734� 10�4 29 144Xopt 1:5844� 10�3 25 144Xsop 1:1171� 10�3 25 63Table 1: Comparison of di�erent realizations.It an be seen that, for this teleoperation system, bothXopt and Xsop an guarantee the losed-loop stabilitywhen implemented using a �xed-point proessor of 25bits while Xini requires 29 bits. Although the valueof stability measure is smaller for Xsop ompared withXopt, it has 81 trivial elements, out of the total of144 parameters. Thus this sparse ontroller realizationyields a omputationally e�etive struture while main-taining good FWL losed-loop stability robustness.Fig. 2 ompares the losed-loop fore traking errorsfrom the ative operator hand fore of the dual wristassembly when the di�erent ontroller realizations were



implemented with a 30-bit proessor. It an be seenfrom Fig. 2 that there is a lear di�erene between theperformane ofXini with FWL implementation and thatof the ideal ontroller implemented with in�nite bits.The 30-bit implemented Xopt and Xsop, however, pro-dued the responses very losed to that of the ideal on-troller. 5 ConlusionsWe have investigated the problem of digital ontrollerimplementations with FWL and sparseness onsidera-tions. A FWL losed-loop stability measure has beenderived, whih takes into aount the number of trivialparameters in a ontroller realization. A pratial step-wise proedure has been presented to obtain sparse on-troller realizations with satisfatory FWL losed-loopstability harateristis. A ase study involving a tele-operation system with a high-order ontroller demon-strates that the proposed design proedure yields om-putationally eÆient ontroller strutures suitable forFWL implementation in real-time appliations.AknowledgementsThe authors thank Dr J. Yan, Department of Eletrialand Computer Engineering, University of California atBerkeley, USA, for providing the model and ontrollerof the dual wrist assembly.Referenes[1℄ G. Li, \On the struture of digital ontrollers with�nite word length onsideration," IEEE Trans. Au-tomati Control, Vol.43, pp.689{693, 1998.[2℄ R.H. Istepanian, G. Li, J. Wu and J. Chu, \Anal-ysis of sensitivity measures of �nite-preision dig-ital ontroller strutures with losed-loop stabilitybounds," IEE Pro. Control Theory and Applia-tions, Vol.145, No.5, pp.472{478, 1998.[3℄ D.S.K. Chan,\Constrained minimization of round-o� noise in �xed-point digital �lters," in Pro.ICASSP'79, April 1979, pp.335{339.[4℄ M. Gevers and G. Li, Parameterizations in Con-trol, Estimation and Filtering Problems: AurayAspets. London: Springer Verlag, 1993.[5℄ J. Yan and S.E. Saludean, \Teleoperation on-troller design using optimization with appliationto motion-saling," IEEE Trans. Control SystemsTehnology, Vol.4, No.3, pp.244{258, 1996.
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Figure 2: Frequeny response plots for di�erent realiza-tions.


