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tWe study the �nite word length (FWL) implementationof digital 
ontroller stru
tures with sparseness 
onsider-ation. A FWL stability measure is derived, taking intoa

ount the number of trivial elements in a 
ontrollerrealization. The 
ontroller realization that maximizesa lower bound of this measure is �rst obtained, and astepwise algorithm is then applied to make the realiza-tion sparse. A test 
ase involving a dual wrist assem-bly shows that the proposed design pro
edure yieldsa 
omputationally eÆ
ient 
ontroller realization withgood FWL 
losed-loop stability performan
e.1 Introdu
tionIn real-time appli
ations where 
omputational eÆ
ien
yis 
riti
al, a digital 
ontroller implemented in �xed-point arithmeti
 has 
ertain advantages. However, astable 
ontrol system may a
hieve a lower than pre-di
ted performan
e or even be
ome unstable when the
ontrol law is implemented with a �xed-point devi
e dueto the FWL e�e
ts. The FWL e�e
ts on the 
losed-loopstability depend on the 
ontroller realization stru
ture.Earlier studies have addressed the problem of �ndingthe \optimal" realization of �nite-pre
ision 
ontrollerstru
tures, whi
h has a maximum toleran
e to FWL er-rors but may not have a sparse stru
ture [1, 2℄.It is highly desirable that a 
ontroller realization has asparse stru
ture, 
ontaining many trivial elements of 0,1 or -1. It is known that 
anoni
al 
ontroller realizationshave sparse stru
tures but may not have the requiredFWL stability robustness. An optimal 
ontroller real-ization that maximizes the stability measures of [1, 2℄usually is a fully parameterized stru
ture. A sparsestru
ture is parti
ularly important for real-time appli-


ations with high-order 
ontrollers, as it will a
hievebetter 
omputational eÆ
ien
y. This poses a 
omplexproblem of �nding sparse 
ontroller realizations withgood FWL 
losed-loop stability 
hara
teristi
s.We present an FWL stability measure, taking into a
-
ount the sparseness 
onsideration. The true optimalrealization that maximizes this measure will possess anoptimal trade-o� between robustness to FWL errors andsparse stru
ture. Unfortunately, it is not known howto obtain su
h an optimal realization. We extend aniterative algorithm [3, 4℄ to sear
h for a suboptimal so-lution. Spe
i�
ally, we �rst obtain the realization thatmaximizes a lower bound of the proposed stability mea-sure. This 
an easily be done [1, 2℄ but the resultingrealization is not sparse. A stepwise algorithm is thenapplied to make the realization sparse without redu
ingthe FWL stability measure too mu
h.The design pro
edure is tested on a dual wrist assembly,whi
h is a prototype teleroboti
 system used in mi
ro-surgery experiments [5℄. This dual wrist assembly is atwo-input two-output system with a plant order of 4,and the digital 
ontroller designed using H1 methodhas an order of 10 [5℄. The total number of 
ontrollerparameters is 144. As this 
ontroller is a high-orderone and fast sampling is used, a sparseness realizationwith good FWL stability 
hara
teristi
s is 
ru
ial for
omputational eÆ
ien
y in real-time operation.2 A FWL stability measurewith sparseness 
onsiderationConsider the dis
rete-time 
ontrol system with plantP (z) and 
ontroller C(z), depi
ted in Fig. 1. P (z) isassumed to be stri
tly 
ausal. Let (Az ; Bz; Cz ; 0) be astate-spa
e des
ription of P (z) with Az 2 Rm�m, Bz 2



Rm�l and Cz 2 Rq�m, and (A
; B
; C
; D
) be a state-spa
e des
ription of C(z) with A
 2 Rn�n, B
 2 Rn�q,C
 2 Rl�n and D
 2 Rl�q . Then the stability of the
losed-loop 
ontrol system depends on the poles of the
losed-loop system matrixA = � Az +BzD
Cz BzC
B
Cz A
 � (1)
P(z)

C(z)Figure 1: Dis
rete-time 
ontrol system 
onsisting ofplant P (z) and 
ontroller C(z).Any linear system with a given transfer fun
tion ma-trix has an in�nite number of state-spa
e des
riptions.In fa
t, if (A0
 ; B0
 ; C0
 ; D0
) is a state-spa
e des
ription ofthe digital 
ontroller C(z), all the state-spa
e des
rip-tions of C(z) form a setSC 4= �(A
; B
; C
; D
) : A
 = T�1A0
T;B
 = T�1B0
 ; C
 = C0
T;D
 = D0
	 (2)where T 2 Rn�n is any nonsingular matrix, 
alled asimilarity transformation. Any (A
; B
; C
; D
) 2 SC isa realization of C(z). Denote N 4= (l + n)(q + n) andX 4= � D
 C
B
 A
 � = 264 p1 � � � pN�l�n+1... � � � ...pl+n � � � pN 375 (3)We will also refer to X as a realization of C(z). From(1), we know that A is a fun
tion of XA(X) = � Az 00 0 �+ � Bz 00 I �X � Cz 00 I �4=M0 +M1XM2 (4)When the �xed-point format is used to implement the
ontroller, X is perturbed into X +�X , where�X 4= 264 �p1 � � � �pN�l�n+1... � � � ...�pl+n � � � �pN 375 (5)and ea
h element of �X is bounded by "=2 su
h that�(�X) 4= maxi2f1;���;Ng j�pij � "2 (6)

Obviously, �(�X) is a norm of the FWL error �X . Fora �xed-point pro
essor of Bs bits" = 2�(Bs�BX ) (7)where 2BX is a normalization fa
tor. With the pertur-bation �X , a 
losed-loop pole �i(A(X)) of the origi-nally stable system is moved to �i(A(X +�X)), whi
hmay be outside the open unit disk and hen
e 
auses the
losed-loop to be
ome unstable.Note that the parameters 0, 1 and -1 are trivial , sin
ethey require no operations in the �xed-point implemen-tation and do not 
ause any 
omputation error at all.Thus �pi = 0 when pi = 0, 1 or �1. Let us de�neÆ(p) = � 0; if p = 0; 1 or � 11; otherwise (8)When �X is small, we noti
e that��i 4= �i(A(X +�X))� �i(A(X))� NXj=1 ��i�pj�pjÆ(pj); 8i 2 f1; � � � ;m+ ng (9)It follows thatj��ij �vuutNs NXj=1 ������i�pj ����2 j�pj j2 Æ(pj)� �(�X)vuutNs NXj=1 ������i�pj ����2 Æ(pj); 8i (10)where Ns is the number of the nontrivial elements in X .De�ne�1(X) = mini2f1;���;m+ng 1� ���i(A(X))��sNs NPj=1 Æ(pj) �����i�pj ���2 (11)If �(�X) < �1(X), it follows from (10) and (11) thatj��ij < 1� ���i(A(X))��. Therefore���i(A(X +�X))�� � j��ij+ ���i(A(X))�� < 1 (12)whi
h means that the 
losed-loop system remains sta-ble under perturbation �X . In other words, the larger�1(X) is, the bigger FWL error that the 
losed-loop sys-tem 
an tolerate. Hen
e �1(X) is a measure des
ribingthe FWL stability 
hara
teristi
s of X .The measure (11) takes into a

ount the sparseness
onsideration. Furthermore, it is 
omputationallytra
table, as shown in the following theorem (see [2℄for a proof).



Theorem 1 Let f�ig = f�i(A(X))g be the eigenval-ues of A(X) = M0 +M1XM2. Denote xi and yi theright and re
ipro
al left eigenve
tors 
orresponding to�i, respe
tively. Then��i�X = 2664 ��i�p1 � � � ��i�pN�l�n+1... � � � ...��i�pl+n � � � ��i�pN 3775 =MT1 y�i xTi MT2 (13)where the supers
ript � denotes the 
onjugate operationand T the transpose operation.Let Bmins be the smallest word length that, when usedto implementX , 
an guarantee the 
losed-loop stability.An estimate of Bmins is given byB̂mins = Int[� log2(�1(X))℄� 1 +BX (14)where Int[x℄ rounds x to the nearest integer and Int[x℄ �x. The optimal sparse 
ontroller realization with a max-imum toleran
e to FWL perturbation in prin
iple is thesolution of the optimization problem� 4= maxX2SC �1(X) (15)However, we do not know how to solve the above prob-lem be
ause �1(X) in
ludes Æ(pj) and is not a 
ontinu-ous fun
tion with respe
t to 
ontroller elements pj .3 Sparse realizations with goodFWL stability 
hara
teristi
sConsider a lower bound of �1(X)�1l(X) = mini2f1;���;m+ng 1� ���i(A(X))��sN NPj=1 �����i�pj ���2 (16)In fa
t, (16) is the stability measure given in [1℄, whi
hdoes not take into a

ount the number of trivial pa-rameters in X but is a 
ontinuous fun
tion. Obviously,�1l(X) � �1(X). The \optimal" realization that maxi-mizes �1l is the solution of the following problem! 4= maxX2SC �1l(X) (17)and is relatively easy to obtain [1, 2℄ via the followingoptimization pro
edure.Assume that an initial 
ontroller realization is given asX0 = � D0
 C0
B0
 A0
 � (18)

From (2) and (4), we haveX = X(T ) = � I 00 T�1 �X0 � I 00 T � (19)andA(X) = � I 00 T�1 �A(X0) � I 00 T � (20)Obviously, A(X) has the same eigenvalues as A(X0),denoted as f�0i g. Applying theorem 1 to (20) results in��i�X ����X(T ) = � I 00 T T � ��i�X ����X0 � I 00 T�T � (21)For a 
omplex-valued matrix M 2 C(l+n)�(q+n) withelements mij , de�ne the Frobenius normkMkF 4=vuutl+nXi=1 q+nXj=1m�ijmij (22)Then the optimization problem (17) is equivalent to! = maxT2Rn�ndet(T )6=0 f(T ) (23)with the 
ost fun
tionf(T ) =mini2f1;���;m+ng 1pN 



� I 00 T T ��i � I 00 T�T �



F (24)where�i 4= ��i�X ��X=X01� j�0i j (25)The optimal similarity matrix Topt 
an be obtained bysolving for the un
onstrained optimization problem! = maxT2Rn�n f(T ) (26)with a measure of monitoring the singular values ofT to make sure that det(T ) 6= 0. In this study, weuse the simulated annealing [6℄ to solve for the un
on-strained optimization problem (26). The 
orresponding
ontroller realization is given by X(Topt) = Xopt.Noti
e that Xopt is not the optimal solution of the prob-lem (15) and does not have a sparse stru
ture. We 
anmake Xopt sparse by 
hanging one nontrivial elementof Xopt into a trivial one at a step, under the 
on-straint that the value of �1l does not redu
e too mu
h.This pro
ess will produ
e a suboptimal sparse realiza-tion Xsop, and the detailed stepwise algorithm is:



Step 1: Set � to a very small positive real number (e.g.10�5). The transformation matrix T is initially setto Topt so that X(T ) = Xopt.Step 2: Find out all the trivial elements f�1; � � � ; �rgin X(T ) (a parameter is 
onsidered to be trivialif its distan
e from 0, 1 or -1 is less than 10�8).Denote � the non-trivial element in X(T ) that isthe nearest to 0, 1 or -1.Step 3: Choose S 2 Rn�n su
h thati) �1l(X(T + �S)) is 
lose to �1l(X(T )).ii) f�1; � � � ; �rg in X(T ) remain un
hanged inX(T + �S).iii) � in X(T ) is 
hanged to as near to 0, 1 or -1 aspossible in X(T + �S).iv) kSkF = 1.If S does not exist, Tsop = T and terminate thealgorithm.Step 4: T = T + �S. If � in X(T ) is non-trivial, go tostep 3. If � be
omes trivial, go to step 2.The step 3 is the key to guarantee that Xsop = X(Tsop)
ontains many trivial elements and has good perfor-man
e as measured by �1l. We now dis
uss how toobtain S. First, denote V e
(S) the ve
tor 
ontainingthe 
olumns of the matrix S sta
ked in 
olumn order.With a very small � , 
ondition i) means�V e
�d�1ldT ��T V e
(S) = 0 (27)Condition ii) means8>>>><>>>>: �V e
�d�1dT ��T V e
(S) = 0...�V e
�d�rdT ��T V e
(S) = 0; (28)Denote the matrixE 4= 266666664 �V e
�d�1ldT ��T�V e
�d�1dT ��T...�V e
�d�rdT ��T
377777775 2 R(r+1)�n2 (29)V e
(S) must belong to the null spa
e N (E) of E. IfN (E) is empty, V e
(S) does not exist and the algo-rithm is terminated. If N (E) is not empty, it musthave basis fe1; � � � ; etg, assuming that the dimension of

N (E) is t. Condition iii) requires moving � 
loser toits desired value (0, 1 or -1) as fast as possible, andwe should 
hoose V e
(S) as the orthogonal proje
tionof V e
� d�dT � onto N (E). Noting 
ondition iv), we 
an
ompute V e
(S) as followsai = eTi V e
� d�dT � 2 R; 8i 2 f1; � � � ; tg (30)w = tXi=1 aiei 2 Rn2 (31)V e
(S) = � wpwT w 2 Rn2 (32)The sign in (32) is 
hosen in the following way. If � islarger than its nearest desired value, the minus sign istaken; otherwise, the plus sign is used.4 The dual wrist assembly 
aseA MATLAB program implementing the above algo-rithm was applied to the dual wrist assembly. The ini-tial 
ontroller realizationXini, 
hosen to be theH1 
on-troller given in [5℄, had a low-bound stability measure of�1l(Xini) = 1:1734� 10�4. The simulated annealing al-gorithm obtained Xopt with �1l(Xopt) = 1:5844�10�3,and the stepwise algorithmmadeXopt sparse to produ
eXsop with �1l(Xsop) = 4:3325� 10�4. Table 1 summa-rizes the performan
e of these three di�erent 
ontrollerrealizations. Noti
e that, although the algorithm oper-ates based on �1l, the FWL stability 
hara
teristi
s arejudged using �1 in Table 1.Realization �1 B̂mins NsXini 1:1734� 10�4 29 144Xopt 1:5844� 10�3 25 144Xsop 1:1171� 10�3 25 63Table 1: Comparison of di�erent realizations.It 
an be seen that, for this teleoperation system, bothXopt and Xsop 
an guarantee the 
losed-loop stabilitywhen implemented using a �xed-point pro
essor of 25bits while Xini requires 29 bits. Although the valueof stability measure is smaller for Xsop 
ompared withXopt, it has 81 trivial elements, out of the total of144 parameters. Thus this sparse 
ontroller realizationyields a 
omputationally e�e
tive stru
ture while main-taining good FWL 
losed-loop stability robustness.Fig. 2 
ompares the 
losed-loop for
e tra
king errorsfrom the a
tive operator hand for
e of the dual wristassembly when the di�erent 
ontroller realizations were



implemented with a 30-bit pro
essor. It 
an be seenfrom Fig. 2 that there is a 
lear di�eren
e between theperforman
e ofXini with FWL implementation and thatof the ideal 
ontroller implemented with in�nite bits.The 30-bit implemented Xopt and Xsop, however, pro-du
ed the responses very 
losed to that of the ideal 
on-troller. 5 Con
lusionsWe have investigated the problem of digital 
ontrollerimplementations with FWL and sparseness 
onsidera-tions. A FWL 
losed-loop stability measure has beenderived, whi
h takes into a

ount the number of trivialparameters in a 
ontroller realization. A pra
ti
al step-wise pro
edure has been presented to obtain sparse 
on-troller realizations with satisfa
tory FWL 
losed-loopstability 
hara
teristi
s. A 
ase study involving a tele-operation system with a high-order 
ontroller demon-strates that the proposed design pro
edure yields 
om-putationally eÆ
ient 
ontroller stru
tures suitable forFWL implementation in real-time appli
ations.A
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Figure 2: Frequen
y response plots for di�erent realiza-tions.


