
Proceedings of the American Control Conference 
Chicago, Illinois June 2000 

Stability issues of finite precision state estimate feedback 
controller realizations for discrete time systems’ 

Jun Wu 
National Lab. of Industrial Control Tech. 
Institute of Advanced Process Control 

Zhejiang University 
Hangzhou, 310027, P. R. China 

jwu@iipc . zju. edu. cn 

Gang Li 
The school of EEE 

Singapore 
egli@ntu.edu.sg 

N anyang Technological University 

Jian Chu 
National Lab. of Industrial Control Tech. 

Institute of Advanced Process Control 
Zhejiang University 

Hangzhou, 310027, P. R. China 
chuj@iipc.zju.edu.cn 

Abstract 

This paper present a new effective algorithm for the op- 
timal realization of state estimate feedback controller 
structures for discrete time systems subject to Finite- 
Word-Length (FWL) constraints. The problem is for- 
mulated as a nonlinear programming to provide an easy 
and efficient optimization tool to solve such complex 
problem. Simulation results of the optimum realiza- 
tions of state estimate feedback controller structures 
are presented to illustrate the effectiveness of the pro- 
posed strategy. 

Index Terms-Finite word length, stability, discrete 
time system. 

1 Introduction 

The recent advances in fixed-point implementation of 
digital controllers such as the design of dedicated fixed- 
point Digital Signal Processors (DSP) and new Digital 
Control Processors (DCP) architectures made Finite 
Word Length (FWL) implementation an important is- 
sue in modern digital control engineering design appli- 
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cations. Improved control performance and increased 
levels of integration are especially important in many 
areas such as consumer electronic products, automo- 
tive and electro-mechanical control systems. This is be- 
cause hardware controller implementation with fixed- 
point arithmetic offer the advantages of speed, mem- 
ory space, cost and simplicity over floating-point arith- 
metic. 

The FWL effects have been well studied in digital sig- 
nal processing, especially in digital filter implementa- 
tion since the 1970’s [l]. The results have recently been 
extended to the study of FWL effects of digital con- 
troller on control systems. [2] studied the effects of 
FWL implemented digital controller on the degrada- 
tion of an LQG cost function from a statistical point of 
view. [3] analyzed the effects of FWL implemented dig- 
ital controller on the stability and performance of sam- 
pled data systems. A FWL stability measure po was 
presented in [3], but computing explicity this measure 
seems very hard and is still an open problem. Based on 
the first order approximation, [4] and [5] developed two 
tractable FWL stability measures which are the lower 
bounds of po respectively. 

In all these studies of FWL effects of digital con- 
trollers, the controllers are output feedback controllers. 
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It is well known that there are another type of con- 
trollers, i.e. state-estimate feedback controllers. [6] 
studied the sensitivity and the roundoff noise gain of 
the closed-loop transfer function of a system when the 
state-estimate feedback controller is implemented with 
a FWL and when the computations are performed in 
finite precision. This paper intends to study the sta- 
bility issues of finite precision state-estimate feedback 
controllers. One contribution of this paper is to com- 
pute the FWL stability measure for any realization of 
state-estimate feedback controllers. Another is to de- 
velop an algorithm of searching for the optimal state- 
estimate controller realization providing the maximal 
FWL stability measure. 

2 Notation 

Considering the discrete time closed-loop system! with 
state-estimate feedback controller shown in Figure 1. 

I !  4ZP Per) i I 

Figure 1. System with estimate feedback controller 

where P ( z )  = CO(ZI-AO)-~BO is discrete time strictly 
proper plant, A0 E Rnxn,  BO E Rnxp,Co E Rqxn, 
C(z )  is discrete time state-estimate feedback controller. 
(A,  B ,  C, K ,  J )  is called a realization of C(z ) .  The real- 
izations of C(z )  are not unique. In fact, all realizations 
of C ( z )  can be discribed as 

Sc = { (A ,  B ,  C, K ,  J )  I A = T-lAoT, B = T-lBo, 
C = COT, K = KoT, J = T-' Jo}. (1) 

The control gain KO E RPxn and the observer gain 
JO E Rnxq have been given in state-estimate feedback 
controller design to make the closed loop system stable. 
Define U be the column stacking operator such that, 
for matrix X, U ( X )  is a vector. Denote 

U(A0) 
U(B0) 

U( J >  U (  JO) 

w =  [ :'I = [ , W O =  [ "'1 = [ 
W N  U ( K )  WON 

N =nxn+nxp+qxn+pxn+nxq. Obviously, we 
can say realization w which has the same meaning as 

realization (A,  B,  C, K ,  J ) .  For any realization w ,  the 
system matrix of the closed loop system is given by 

where I,, I p ,  Iq denote n x n, p x p, q x q identity matrix 
respectively. Since the closed loop system is stable, it 
follows that Vi  E { 1, . . . ,2n}, 

I MA(w)) I=I MA(w0)) I (3) 

is in the open unit disk. It is shown in (3), if C ( z )  is 
implemented by an infinite precision DCP, all different 
realization w achieve the same stability performance. 
However, in fact, C(z )  can only be implemented by a 
DCP with FWL. Due to the FWL effect, w is perturbed 
into w + Aw and each element of Aw is bounded by 
~ / 2 ,  i.e. 

For a fixed point processor of B, bits, 

( 5 )  E = ~ - ( B ~ - B x )  

where 2BX is the biggest normalization factor such that 
each parameter of 2 - B x ~  is absolutely not bigger than 
1. Here, for simply, (4) assume an equal upper bound 
for all elements. Actually, if an element is 1, 0 or 
-1, there is no FWL perturbation on this element. A 
less conservative assumption involving the trivial ele- 
ments can be found in [4]. With the perturbation Aw, 
Ai(A(w)) is moved to &(A(w+Aw)) which may be out- 
side the open unit disk. Thus, the closed-loop system 
designed stable may be unstable with FWL considera- 
tion. 

Notice that FWL results different &(A(w + Aw)) for 
different realization w. we know that different realiza- 
tion w achieves different FWL stability performance. 
Next we will derive a FWL stability measure to de- 
scribe the FWL stability performance: When Aw is 
small, V i  E (1,. . . ,2n}, from a first order Taylor ex- 
pansion, we have 

bXj 
-Awj (6) bWj 

N 
AX, = &(A(w+Aw))-Ai(A(w)) M 

j = l  

and hence an upper bound of I A& 1 can be derived: 

Define 
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When p(Aw) < p1(w), from (6)-(8), we have 

I xi(A(w + Aw)) 151 xi(A(w)) I + 1 Axi I 

which means that the closed-loop system remains sta- 
ble under the FWL error Aw. In other words, for a 
given realization w, the closed-loop stability can toler- 
ate those FWL perturbations Aw, whose elements have 
magnitudes less than p1 (w). Hence p1 (w) can be taked 
as an FWL stability measure: the larger pl(w) is, the 
larger FWL errors the closed-loop system can tolerate. 

For computation of p1 (w), the following theorem is im- 
portant. 

Theorem 1: Suppose n x n square matrix A = 
MlXM2 + M3XM4 is diagonalizable and has {A i }  as 
its eigenvalues, matrix X E R P x 9 ,  matrix M I ,  M2, 
M3 and M4 has proper dimension respectively. Let 
xi be a right eigenvector of A corresponding to the 
eigenvalue Xi. Denote M, = [ X I  2 2  x, ] and 
My = [ y1 y2 . . y, ] = M L H ,  where yi is called 
the reciprocal left eigenvector corresponding to Xi. 
Then 

Bxi . . .  
- -  axa - [ a;1 . . .  7 

Bxi . . .  axi 
8 X P l  

dX 

= M,Ty;xTM,T + MTY~XTMT (10) 

where superscript 'H '  denotes the transpose and con- 
jugate operation, superscript '2" denotes the transpose 
operation. 'ya' is conjugate to yi. 

Proof: Let a be a variable indenpendent of M I ,  M2, 
M3 and M4. It follows from yrxi = 1 that 

Notice that Axi = Aixi and A i  = y?Axi. Hence, 

It follows.from (11) and = Xiy? that 

aA 
= $%Xi 

Let a = X k j .  Then, 

where ( y y M ~ ) ~ ,  ( M ~ x + ) ~ ,  ( y y M ~ ) ~  and ( M 4 ~ i ) ~  is the 
kth element of y?M1, the j t h  element of Mzxi, the 
lcth element of yFM3 and the j t h  element of M42i 
respectively. This leads to (10). 

Using Theorem 1, we have 

= [ O  I, 

0 -JT [ 0 I, ] d X T  [ -:T :] [ 51 

With 3, $&, $&, $, and %, pl(w) can be com- 
puted easily using (8). Based on pl(w), we compute 

B,",'" = Int(- log, p1(w) - 1 + Bx) (20) 

where In t (x )  rounds 2 to the nearest integer towards 
+W. From the analysis of this section, we know the 
closed loop system is still stable when w is implemented 
by a DCP of a t  least Bzin bits. 

3 Optimal Realization 

From the last section, we know that there are different 
realizations for a given C(z) ,  and the FWL stability 
measure pl(w) is a function of the realization w. Hence 
there is an interesting problem of finding out the real- 
ization such that pl(w) is maximized. This realization 
is called optimal realization in such a sense. The digital 
state-estimate feedback controller implemented with an 
optimal realization means the minimum hardware re- 
quirements in terms of less word length (i.e optimized 
controller data path hardware design) and such that 
the closed loop system remains stable. 

Let xi0 be a right eigenvector of A(w0) corresponding 
to the eigenvalue Xi0 = Xi(A(wo)), yio be the reciprocal 
left eigenvector corresponding to xio. It is easy to see 
from (2) that V i  E { 1, . . . ,2n}, the right eigenvector of 
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A(w) corresponding to the eigenvalue Xi(A(w)) = Xi0 

is xi = [ zio E C2n, and the reciprocal left 

eigenvector is yi = [ yio E C2". Applying 

( 15)-( 19), we have 

dXi 
- =  [ O  TT]y:ox$ [ O ] (22) dB -K,T 

dX. 
2 = [ 0  T T ] y { o x $  [ d J  (25) 

For complex matrix X = E c m x n ,  

denote 

IIXIIS = cc I "ij I (26) 
i=l j=1 

We can describe the optimal FWL realization problem 
of state-estimate feedback controller as the optimiza- 
tion problem: 

- - min max g(A, B ,  C, K ,  J, i) (27) 
T E  R"X" i~ { 1 ,.. .,Zn} 
d e t ( T ) # O  

where 

From (21)-(25), we can define 

which is a function of T .  Then the optimal state- 
estimate feedback controller realization problem can be 
posed as 

U =  min f(T) (30) 
T E R " X n  
d a t ( T ) # O  

the above problem is a nonconvex nonlinear program- 
ming problem. We intend to search for the minimum 
of problem (30) with iterative optimization methods, 
i.e. a sequence {TO, T I ,  T2, . . .} which converges to the 
minimum Topt is generated. In the iterative procedure 

we can neglect the constraint det T # 0, i.e. we solve 
the problem 

U =  min f(T) (31) 
T E R " X "  

with iterative methods. There are two reasons for us 
to do so: 

0 R = {T I detT = 0,T E Rnxn} is a very small 
set in space RnXn. Hence the case is rare that 
the iterate Ti moves into R when we search the 
space Rnxn for Topt $ R by an iterative sequence 
from the start point TO $ R. 

0 Even if it happens that Ti moves into R in the 
iterative procedure, we can add a small pertur- 
bation TI, to Ti such that Ti +TI,, $ R. This 
small perturbation would not affect the conver- 
gence of the iterative sequence to Topt. 

In this paper, the simplex search method is applied 
to solve problem (31) which is an unconstrained non- 
convex nonlinear programming problem. There are 
many existing optimization software which uses the 
simplex search method, for example, the fmins func- 
tion in MATLAB Ver5.1 optimization toolbox. It is 
well known, even if for a nonconvex nonlinear program- 
ming problem, the simple search algorithm can always 
converge to a locally optimal point. In order to "glob- 
alize" the algorithm, we repeatedly run the algorithm 
starting from various initial point to obtain "random- 
ized" solutions for U ;  then pick the smallest solution 
obtained. 

4 Illustrative Example 

To show how the optimization approach presented in 
this paper can be used efficiently for the parameteri- 
zation issues of optimal FWL state-estimate feedback 
controller realization with improved stability bounds 
and minimum word-length requirements. We consider 
an example given in [6] to confirm our theoretical re- 
sults. 

The discrete time plant is given by 

O.O022(z + 1)2 P(z )  = 
(Z - 0.9588)(~ - 0.9231)(~ - 0.8763) 

a state space description of P(z )  is 

2.7582 -2.5342 0.7756 
A0 = 1.0000 0 0 ] , B o =  [:I, [ 0 1.0000 0 
CO = [0.0022 0.0044 0.00221 

Given the initial realization of the controller C ( z )  

Ain* = Ao, Bin* = Bo,Cjn, = CO, 
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Kini = [0.4761 -0.8183 0.3506 
118.2995 [ 81.88591 

Jini = 101.0891 

, 

The corresponding transition matrix A can then be 
formed using (2), from which the poles of the ideal 
closed loop system can be computed and given as 

0.9067 [ ]  = 1::g:j 0.5761 

0.6231 
the corresponding eigenvectors zio, yio can be com- 
puted and hence problem (31) can be constructed. For 
problem (31), we get the solution using the simplex 
search method: 

1 19.2056 1.9810 -1.2562 [ -2.2033 -1.0608 21.3406 
Topt = 8.6287 1.4078 8.9271 

and U = 1.0525 x lo4. The optimal realization corre- 
sponding to Topi is 

1 1.4973 -0.0311 -0.4183 
0.7003 0.9125 -0.5379 , 

10.5937 0.1081 0.3484 

Bopt = [ ::!::;] , 

Cop, = I0.0754 0.0082 0.08351, 
Kopt = (1.3101 -0.5808 -0.4223 

5.8678 

4.7327 
Jopt = [ 5.83051 

The results for the initial realization and optimal real- 
ization are summarized in Table 1: 

Table 1. Measures and stabilized word lengths 
Realization 

9.5012 x 10- 

The comparative results clearly show that optimal re- 
alization wopt needs only 16 bits (including fractional 
part and part of integer) and provides larger stabil- 
ity measure while the initial realization wini requires 
22 bits (including fractional part and part of integer) 
with lower stability bound. 

5 Conclusions 

In this paper we have presented an efficient approach 
for the stability measure of state estimate feedback 

controllers with FWL consideration. It has also been 
shown that the optimal realization problem for state es- 
timate feedback controller with FWL consideration can 
be interpreted as a nonlinear programming problem. 
The computation of the relevant FWL optimization 
problem was solved using the simplex search algorithm 
to illustrate that such problem can be efficiently and 
easily computed using existing mathematical program- 
ming techniques. The theoretical results were verified 
using a numerical example which illustrate that the 
optimum realization based on the optimization method 
presented here greatly improves the stability robustness 
of the relevant controller realizations with minimum 
word-length characteristics compared to non-optimal 
realizations. 
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