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Abstract

Adaptive beamforming is capable of separating user signals transmitted on the same carrier fre-

quency, and thus provides a practical means of supporting multiusers in a space-division multiple-

access scenario. Moreover, for the sake of further improving the achievable bandwidth efficiency, high-

throughput quadrature amplitude modulation (QAM) schemes have becomes popular in numerous wire-

less network standards, notably, in the recent WiMax standard. This contribution focuses on the design of

adaptive beamforming assisted detection for the employment in multiple-antenna aided multiuser systems

that employ the high-order QAM signalling. Traditionally, the minimum mean square error (MMSE)

design is regarded as the state-of-the-art for adaptive beamforming assisted receiver. However, the recent

work [1] proposed a novel minimum symbol error rate (MSER) design for the beamforming assisted

receiver, and it demonstrated that this MSER design provides significant performance enhancement,

in terms of achievable symbol error rate, over the standard MMSE design. This MSER beamforming

design is developed fully in this contribution. In particular, an adaptive implementation of the MSER

beamforming solution, referred to as the least symbol error rate algorithm, is investigated in details.

The proposed adaptive MSER beamforming scheme is evaluated in simulation, in comparison with the

adaptive MMSE beamforming benchmark.

Index Terms

Smart antenna, adaptive beamforming, quadrature amplitude modulation, minimum symbol error

rate, minimum mean square error, stochastic algorithm, least mean square algorithm, least symbol error

rate algorithm

I. INTRODUCTION

The ever-increasing demand for mobile communication capacity has motivated the develop-

ment of antenna array assisted spatial processing techniques [2]-[14] in order to further improve

the achievable spectral efficiency. A specific technique that has shown real promise in achieving

substantial capacity enhancements is the use of adaptive beamforming with antenna arrays

[3],[10]. Through appropriately combining the signals received by the different elements of an

antenna array, adaptive beamforming is capable of separating user signals transmitted on the same

carrier frequency, provided that they are separated sufficiently in the angular or spatial domain.

Adaptive beamforming technique thus provides a practical means of supporting multiusers in

a space-division multiple-access scenario. For the sake of further improving the achievable

bandwidth efficiency, high-throughput quadrature amplitude modulation (QAM) schemes [15]
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have become popular in numerous wireless network standards. For example, the 16-QAM and

64-QAM schemes were adopted in the recent WiMax standard. Classically, the beamforming

process is carried out by minimising the mean square error (MSE) between the desired output

and the actual array output, and this principle is rooted in the traditional beamforming employed

in sonar and radar systems. An advantage of this minimum MSE (MMSE) beamforming design

is that its adaptive implementation can readily be achieved using the well-known least mean

square (LMS) algorithm [16]-[21]. The MMSE design has been regarded as the state-of-the-art

for adaptive beamforming assisted receiver, despite of the fact that, for a communication system,

it is the bit error rate (BER) or symbol error rate (SER) that really matters.

Ideally, the system design should be based directly on minimising the BER or SER, rather than

the MSE. Adaptive beamforming design based directly on minimising the system’s BER has been

proposed for the binary phase shift keying (BPSK) modulation [22]-[28] and quadrature phase

shift keying (QPSK) modulation [29],[30]. These studies have demonstrated that the adaptive

minimum BER (MBER) beamforming design can significantly improve the system performance,

in terms of achievable BER, over the conventional MMSE design. The MBER beamforming is

the true state-of-the-art and it is more intelligent than the MMSE solution, since it directly

optimises the system’s BER performance, rather than minimising the MSE, where the latter

strategy often turns out to be deficient in the rank-deficient situation when the number of the users

supported exceeds the number of the receiver antennas. Thus, the adaptive MBER beamforming

design has a larger user capacity than its adaptive MMSE counterpart. Simulation results also

show that the MBER design is more robust in near-far situations than the MMSE design. For

the system that employs high-order QAM signalling, it is computationally more attractive by

minimising the system’s SER. This has led to the adaptive minimum SER (MSER) beamforming

design for QAM systems [1]. The present constribution expands the work of [1] and provides

a detailed investigation for the adaptive MSER beamforming design for the generic multiple-

antenna assisted multiuser system employing high-order QAM signalling.

The organisation of this contribution is as follows. Section II introduces the system model,

which is used in Section III for studying the adaptive MMSE and MSER beamforming designs.

Section IV concentrates on investigating the achievable SER performance of the proposed

adaptive MSER scheme in both the stationary and Rayleigh fading channels, using the adaptive

MMSE scheme as a benchmark, while Section V presents the concluding remarks.
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II. SYSTEM MODEL

The system supports S users, and each user transmits an M -QAM signal on the same carrier

frequency of ω = 2πf . For such a system, user separation can be achieved in the spatial or

angular domain [12],[14] and the receiver is equipped with a linear antenna array consisting of

L uniformly spaced elements. Assume that the channel is narrow-band which does not induce

intersymbol interference. Then the symbol-rate received signal samples can be expressed as

xl(k) =
S∑

i=1

Aibi(k)ejωtl(θi) + nl(k) = x̄l(k) + nl(k), (1)

for 1 ≤ l ≤ L, where tl(θi) is the relative time delay at array element l for source i with

θi being the direction of arrival for source i, nl(k) is a complex-valued Gaussian white noise

with E[|nl(k)|2] = 2σ2
n, Ai is the narrow-band channel coefficient for user i, x̄l(k) denotes the

noiseless part of xl(k) and bi(k) is the k-th symbol of user i which takes the value from the

M -QAM symbol set

B 4
= {bl,q = ul + juq, 1 ≤ l, q ≤

√
M} (2)

with the real-part symbol <[bl,q] = ul = 2l −√M − 1 and the imaginary-part symbol =[bl,q] =

uq = 2q − √M − 1. Assume that source 1 is the desired user and the rest of the sources are

interfering users. The desired-user signal-to-noise ratio (SNR) is given by SNR= |A1|2σ2
b/2σ

2
n

and the desired signal-to-interferer i ratio (SIR) is SIRi = A2
1/A

2
i , for 2 ≤ i ≤ S, where σ2

b

denotes the M -QAM symbol energy. The received signal vector x(k) = [x1(k) x2(k) · · · xL(k)]T

can be expressed as

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (3)

where n(k) = [n1(k) n2(k) · · ·nL(k)]T , the system matrix P = [A1s1 A2s2 · · ·ASsS] with the

steering vector for source i given by si = [ejωt1(θi) ejωt2(θi) · · · ejωtL(θi)]T , and the transmitted

QAM symbol vector b(k) = [b1(k) b2(k) · · · bS(k)]T .

Before it is proceeded further, the assumptions implied for the above system model are

explained and justified. Although a linear antenna array structure with uniformly spaced elements

is assumed, the approach is actually more general, and it is equally applicable to the generic

narrow-band multiple-input multiple-output (MIMO) system [12],[14] modelled by x(k) =

Pb(k)+n(k), where the (l, i)-th element of the channel matrix P represents the non-dispersive

channel connecting the i-th transmit antenna to the l-th receive antenna. Except for the reference
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user’s channel coefficient A1 and steering vector s1, the receiver does not need to know the

interfering users’ channel coefficients Ai and steering vector si, 2 ≤ i ≤ S. The adaptive

beamforming approach considered is based on the so-called temporal reference technique, and

during the training the reference user’s transmitted symbols are available at the receiver for the

adaptation purpose. The receiver, however, does not have access to the interfering users’ data

symbols. As will be explained latter, the first column p1 of the system matrix P, corresponding

to the desired user, is required at the receiver in order to detect the desired user’s data symbols

unbiasedly.

In the system model (3), the desired user and interfering signals are assumed to be symbol-

synchronised. For the downlink scenario synchronous transmission of the users is guaranteed. By

contrast, in an uplink scenario the differently delayed asynchronous signals of the users are no

longer automatically synchronised. However, the quasi-synchronous operation of the system may

be achieved with the aid of adaptive timing advance control, as in the global system of mobile

(GSM) communications [31]. The GSM system has a timing-advance control accuracy of 0.25 bit

duration. Since synchronous systems perform better than their asynchronous counterparts [32],

the third-generation partnership research consortium (3GPP) is also considering the employment

of timing-advance control in next-generation systems. In general, when the number of users

is large, the users are asynchronous and the idealistic assumption of perfect power control is

stipulated, the performance gain of the (symbol-rate) MSER solution over the MMSE beamformer

may be expected to diminish, since the interference becomes nearly Gaussian at the symbol-rate

samples. One way of maintaining the benefits of the MSER solution for asynchronous systems is

to perform a joint MSER detection and synchronisation by sampling faster than the symbol rate.

During each symbol period, several signal samples are taken and the receiver maintains several

tentative MSER detectors. The detector having the smallest SER is chosen to perform symbol

detection. In this study, symbol-rate synchronisation is assumed. For such a symbol-synchronised

interference-limited QAM system the non-Gaussian nature of the interfering signals is effectively

exploited by the MSER beamforming receiver, resulting in an improved SER performance.

A beamformer is employed at the receiver, whose soft output is given by

y(k) = wHx(k) = wH(x̄(k) + n(k)) = ȳ(k) + e(k), (4)

where w = [w1 w2 · · ·wL]T is the complex-valued beamformer weight vector and e(k) is
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Gaussian distributed with zero mean and E[|e(k)|2] = 2σ2
nw

Hw. Define the combined system

impulse response of the channel and beamformer as wHP = wH [p1 p2 · · ·pS] = [c1 c2 · · · cS].

The beamformer’s output can alternatively be expressed as

y(k) = c1b1(k) +
S∑

i=2

cibi(k) + e(k), (5)

where the first term in the righthand side of equation is the desired user signal and the second

term is the residual multiuser interference. Note that, in any detection scheme, the main tap

c1 must be known. That is, the desired user’s channel and associated steering vector, namely

p1 = A1s1, must be known at the receiver. If this fact is overlooked, the decision will be

biased [33]. Provided that c1 = cR1 + jcI1 satisfies cR1 > 0 and cI1 = 0, the symbol decision

b̂1(k) = b̂R1(k) + jb̂I1(k) can be made as

b̂R1(k) =





u1, if yR(k) ≤ cR1(u1 + 1),

ul, if cR1(ul − 1) < yR(k) ≤ cR1(ul + 1)

for 2 ≤ l ≤ √
M − 1,

u√M , if yR(k) > cR1(u
√

M − 1),

(6)

b̂I1(k) =





u1, if yI(k) ≤ cR1(u1 + 1),

uq, if cR1(uq − 1) < yI(k) ≤ cR1(uq + 1)

for 2 ≤ q ≤ √
M − 1,

u√M , if yI(k) > cR1(u
√

M − 1),

(7)

where y(k) = yR(k) + jyI(k) and b̂1(k) is the estimate for b1(k) = bR1(k) + jbI1(k). Fig. 1

depicts the decision thresholds associated with the decision b̂1(k) = bl,q. In general, c1 = wHp1

is complex-valued and the rotating operation

wnew =
cold
1∣∣∣cold
1

∣∣∣
wold (8)

can be used to make c1 real and positive. This rotation is a linear operation and it does not

change the system’s SER.

III. ADAPTIVE BEAMFORMING ASSISTED RECEIVERS

Different beamforming designs derive the beamformer’s weight vector w based on optimising

different design criteria. The best-known design criterion is the MMSE criterion, while the

novelty of this constribution is to optimise the beamformer’s weight vector based on the MSER

criterion. The MMSE and MSER designs are considered in this contribution.
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Fig. 1. Decision thresholds associated with point c1bl,q assuming cR1 > 0 and cI1 = 0, and illustrations of symmetric

distribution of Yl,q around c1bl,q .

A. Minimum Mean Square Error Beamforming Design

The traditional design for the beamformer (4) is the MMSE solution, which minimises the

MSE criterion E[|b1(k)− y(k)|2], leading to the solution for the weight vector given by

wMMSE =

(
PPH +

2σ2
n

σ2
b

IL

)−1

p1, (9)

where IL denotes the L×L identity matrix. The MMSE beamforming design is computationally

attractive, because it admits the closed-form solution given the second order statistics of the

underlying system. Furthermore, it can be implemented adaptively using the classical LMS

algorithm [20],[21]. Given the current beamformer’s output y(k) = ŵH(k)x(k), the LMS

algorithm modified for the adaptation of the QAM beamformer (4) is expressed as

w̃(k + 1) = ŵ(k) + µ (b1(k)− y(k))∗ x(k), (10)

c̃1(k + 1) = w̃H(k + 1)p̂1, (11)

ŵ(k + 1) =
c̃1(k + 1)

|c̃1(k + 1)|w̃(k + 1), (12)

where µ is a small positive step size, p̂1 is an estimate of p1, and (11) and (12) implement the

weight rotation operation. Given a training data block {b1(k),x(k)}N
k=1, a block-based estimate
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of p1 is given by

p̂1 =
1

N

N∑

k=1

x(k)

b1(k)
. (13)

Alternatively, the receiver can track p1 using the simple moving average

p̂1(k + 1) = (1− α)p̂1(k) + α
x(k)

b1(k)
, (14)

where 0 < α < 1 is a positive step size. Note that ĉ1(k) = ŵH(k)p̂1 is real-valued and positive.

B. Minimum Symbol Error Rate Beamforming Design

Since the SER is the true performance indicator, it is desired to consider the optimal MSER

Beamforming solution. Denote the Nb = MS number of legitimate sequences of b(k) as bi,

1 ≤ i ≤ Nb. The noise-free part of the received signal x̄(k) takes values from the signal set

defined by X 4
= {x̄i = Pbi, 1 ≤ i ≤ Nb}. The set X can be partitioned into M subsets,

depending on the value of b1(k) as Xl,q
4
= {x̄i ∈ X : b1(k) = bl,q}, 1 ≤ l, q ≤ √

M .

Similarly the noise-free part of the beamformer’s output ȳ(k) takes values from the scalar set

Y 4
= {ȳi = wH x̄i, 1 ≤ i ≤ Nb}, and Y can be divided into the M subsets conditioned on b1(k)

Yl,q
4
= {ȳi ∈ Y : b1(k) = bl,q}, 1 ≤ l, q ≤

√
M. (15)

The following two lemmas summarise the properties of the signal subsets Yl,q, 1 ≤ l, q ≤ √
M ,

which are useful in the derivation of the SER expression for the beamformer (4).

Lemma 1: The subsets Yl,q, 1 ≤ l, q ≤ √
M , satisfy the shifting properties

Yl+1,q = Yl,q + 2c1, 1 ≤ l ≤
√

M − 1, (16)

Yl,q+1 = Yl,q + j2c1, 1 ≤ q ≤
√

M − 1, (17)

Yl+1,q+1 = Yl,q + (2 + j2)c1, 1 ≤ l, q ≤
√

M − 1. (18)

Proof: Any point ȳ
(l+1,q)
i ∈ Yl+1,q can be expressed as

ȳ
(l+1,q)
i = wHPb

(l+1,q)
i = wHP

(
b

(l,q)
i + [2 0 · · · 0]T

)
= ȳ

(l,q)
i + 2c1

where ȳ
(l,q)
i ∈ Yl,q. This proves the shifting property (16). Proofs for the other two equations are

similar.

Lemma 2: The points of Yl,q are distributed symmetrically around the symbol point c1bl,q.

This symmetric distribution is with respect to the two horizontal decision boundaries and the

two vertical decision boundaries that separate Yl,q from the other subsets.
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Lemma 2 is a direct consequence of symmetric distribution of the symbol constellation (2) and

Lemma 1. This symmetric property is also illustrated in Fig. 1.

For the beamformer with weight vector w, denote

PE(w) = Prob{b̂1(k) 6= b1(k)}, (19)

PER
(w) = Prob{b̂R1(k) 6= bR1(k)}, (20)

PEI
(w) = Prob{b̂I1(k) 6= bI1(k)}. (21)

PE(w) is the total SER, while PER
(w) and PEI

(w) are the real-part and imaginary-part SERs,

respectively. It is then easy to see that the SER is given by

PE(w) = PER
(w) + PEI

(w)− PER
(w)PEI

(w). (22)

From the beamforming model (4) and the signal model (3), the conditional probability density

function (PDF) of y(k) given b1(k) = bl,q is a Gaussian mixture (hence a non-Gaussian PDF)

defined by

p(y|bl,q) =
1

Nsb2πσ2
nw

Hw

Nsb∑

i=1

e
− |y−ȳ

(l,q)
i

|2

2σ2
nwHw , (23)

where Nsb = Nb/M is the size of Yl,q, ȳ
(l,q)
i = ȳ

(l,q)
Ri

+ jȳ
(l,q)
Ii

∈ Yl,q, and y = yR + jyI . Noting

that c1 is real-valued and positive and taking into account the symmetric distribution of Yl,q

(Lemma 2), for 2 ≤ l ≤ √
M − 1, the conditional error probability of b̂R1(k) 6= ul given

bR1(k) = ul can be shown to be [34]

PER,l(w) =
2

Nsb

Nsb∑

i=1

Q(g
(l,q)
Ri

(w)), (24)

where

Q(u) =
1√
2π

∫ ∞

u
e−

z2

2 dz, (25)

and

g
(l,q)
Ri

(w) =
ȳ

(l,q)
Ri

− cR1 (ul − 1)

σn

√
wHw

. (26)

Further taking into account the shifting property (Lemma 1), it can be shown that

PER
(w) = γ

1

Nsb

Nsb∑

i=1

Q(g
(l,q)
Ri

(w)), (27)
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where γ = 2
√

M−2√
M

. It is seen that PER
can be evaluated using (real part of) any single subset

Yl,q. Similarly, PEI
can be evaluated using (imaginary part of) any single subset Yl,q as

PEI
(w) = γ

1

Nsb

Nsb∑

i=1

Q(g
(l,q)
Ii

(w)) (28)

with

g
(l,q)
Ii

(w) =
ȳ

(l,q)
Ii

− cR1 (uq − 1)

σn

√
wHw

. (29)

Note that the SER is invariant to a positive scaling of w.

The MSER solution wMSER is defined as the weight vector that minimises the upper bound

of the SER given by

PEB
(w) = PER

(w) + PEI
(w), (30)

that is,

wMSER = arg min
w

PEB
(w). (31)

The solution obtained by minimising the upper bound (30) is practically equivalent to that of

minimising PE(w), since the bound PE(w) < PEB
(w) is very tight, that is, PEB

(w) is very

close to the true SER PE(w). Unlike the MMSE solution, the MSER solution does not admits

a closed-form solution. However, the gradients of PER
(w) and PEI

(w) with respect to w can

be shown to be respectively

∇PER
(w) =

γ

2Nsb

√
2πσn

√
wHw

Nsb∑

i=1

e
−

(
ȳ
(l,q)
Ri

−cR1
(ul−1)

)2

2σ2
nwHw

×

 ȳ

(l,q)
Ri

− cR1(ul − 1)

wHw
w − x̄

(l,q)
i + (ul − 1)p1


 , (32)

∇PEI
(w) =

γ

2Nsb

√
2πσn

√
wHw

Nsb∑

i=1

e
−

(
ȳ
(l,q)
Ii

−cR1
(uq−1)

)2

2σ2
nwHw

×

 ȳ

(l,q)
Ii

− cR1(uq − 1)

wHw
w + jx̄

(l,q)
i + (uq − 1)p1


 , (33)

where x̄
(l,q)
i ∈ Xl,q. With the gradient ∇PEB

(w) = ∇PER
(w) + ∇PEI

(w), the optimisation

problem (31) can be solved iteratively using a gradient-based algorithm. Since the SER is
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invariant to a positive scaling of w, it is computationally advantageous to normalise w to a

unit-length vector w̌ after every iteration, so that the gradients (32) and (33) are simplified to

∇PER
(w̌) =

γ

2Nsb

√
2πσn

Nsb∑

i=1

e
−

(
ȳ
(l,q)
Ri

−cR1
(ul−1)

)2

2σ2
n

×
((

ȳ
(l,q)
Ri

− cR1(ul − 1)
)
w̌ − x̄

(l,q)
i + (ul − 1)p1

)
(34)

and

∇PEI
(w̌) =

γ

2Nsb

√
2πσn

Nsb∑

i=1

e
−

(
ȳ
(l,q)
Ii

−cR1
(uq−1)

)2

2σ2
n

×
((

ȳ
(l,q)
Ii

− cR1(uq − 1)
)
w̌ + jx̄

(l,q)
i + (uq − 1)p1

)
. (35)

The following algorithm, which is a modified version of the simplified conjugate gradient

algorithm of [35],[36], provides an efficient means of finding an MSER solution.

• Initialisation. Choose a step size of µ > 0 and a termination scalar of β > 0; given w̌(1)

and d(1) = −∇PEB
(w̌(1)); set the iteration index to ι = 1.

• Loop. If ‖∇PEB
(w̌(ι))‖ =

√
(∇PEB

(w̌(ι)))H∇PEB
(w̌(ι)) < β: goto Stop. Else,

w̃(ι + 1) = w̌(ι) + µd(ι),

c1(ι + 1) = w̃H(ι + 1)p1,

w̄(ι + 1) =
c1(ι + 1)

|c1(ι + 1)|w̃(ι + 1),

w̌(ι + 1) =
w̄(ι + 1)

‖w̄(ι + 1)‖ ,

φι =
‖∇PEB

(w̌(ι + 1))‖2

‖∇PEB
(w̌(ι))‖2

,

d(ι + 1) = φιd(ι)−∇PEB
(w̌(ι + 1)),

ι = ι + 1, goto Loop.

• Stop. w̌(ι) is the solution.

At a minimum, ‖∇PEB
(w̌)‖ = 0. Hence the termination scalar β determines the accuracy

of the solution obtained. The step size µ controls the rate of convergence. Typically, a much

larger value of µ can be used compared to the steepest-descent gradient algorithm. As the SER

surface PEB
(w̌) is highly nonlinear, occasionally the search direction d may no longer be a good
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approximation to the conjugate gradient direction or may even point to the “uphill” direction,

when the iteration index becomes large. It is thus advisable to periodically reset d to the negative

gradient in the above conjugate gradient algorithm. With this resetting mechanism, this conjugate

gradient algorithm has been shown to converge fast to the theoretical MSER solution, typically

in tens of iterations, in many simulation studies. Although in theory there is no guarantee that

the above conjugate gradient algorithm can always find the global minimum point of the SER

surface PEB
(w̌), in practice we have found that the algorithm works well and we have never

observed any occurrence of the algorithm being trapped at some local minimum solution.

It is worth emphasising that there exist infinitely many global MSER solutions which forms

an infinite half line in the beamforming weight space. This is because the SER is invariant to a

positive scaling of w, i.e. the size of w does not matter (except for zero size). Thus, the SER

surface has an infinitely long valley, and any point at the bottom of this valley is a true global

MSER solution. For an illustration, see the simple example given in [36]. Once we restrict to the

unit-length w̌, the MSER solution becomes unique. As alternatives to the simplified conjugate

gradient algorithm, global optimisation search algorithms, such as the genetic algorithm [37],[38]

and adaptive simulated annealing [39],[40], can be used to obtain a global minimum solution of

PEB
(w), at an expense of considerably increased computational requirements.

C. Adaptive Minimum Symbol Error Rate Beamforming

In practice, the system matrix P is unknown (except its first column). Therefore adaptive

implementation is required to realise the MSER beamforming. To adaptively implement the

MMSE solution, the unknown second-order statistics can be estimated based on a block of

training data. Furthermore, by considering a single-sample “estimate” of the MSE, the stochastic

adaptive algorithm known as the LMS algorithm is derived. A similar adaptive implementation

strategy can be adopted for adaptive MSER beamforming. The PDF p(y) of y(k) can be estimated

using the Parzen window estimate [41]-[43] based on a block of training data. This leads to

an estimated SER for the beamformer. Minimising this estimated SER based on a gradient

optimisation yields an approximated MSER solution. To derive a sample-by-sample adaptive

algorithm, consider a single-sample “estimate” of p(y)

p̃(y, k) =
1

2πρ2
n

e
− |y−y(k)|2

2ρ2
n (36)

January 23, 2007 DRAFT



13

and the corresponding one-sample SER “estimate” P̃EB
(w, k). The parameter ρn is known as

the kernel width. Using the instantaneous stochastic gradient of ∇P̃EB
(w, k) = ∇P̃ER

(w, k) +

∇P̃EI
(w, k) with

∇P̃ER
(w, k) =

γ

2
√

2πρn

e
−(yR(k)−ĉR1

(k)(bR1
(k)−1))

2

2ρ2
n

× (−x(k) + (bR1(k)− 1)p̂1) (37)

and

∇P̃EI
(w, k) =

γ

2
√

2πρn

e
−(yI (k)−ĉR1

(k)(bI1
(k)−1))

2

2ρ2
n

× (jx(k) + (bI1(k)− 1)p̂1) (38)

gives rise to the stochastic gradient adaptive algorithm referred to as the least symbol error rate

(LSER) algorithm

w̃(k + 1) = ŵ(k) + µ
(
−∇P̃EB

(ŵ(k), k)
)
, (39)

c̃1(k + 1) = w̃H(k + 1)p̂1, (40)

ŵ(k + 1) =
c̃1(k + 1)

|c̃1(k + 1)|w̃(k + 1). (41)

The rotating operation (40) and (41) ensures that ĉ1(k)
4
= ŵH(k)p̂1 = ĉR1(k) + jĉI1(k) satisfies

ĉR1(k) > 0 and ĉI1(k) = 0. The step size µ and the kernel width ρn are the two algorithmic

parameters that should be set appropriately in order to ensure an adequate performance in terms

of convergence rate and steady-state SER misadjustment. Note that there is no need to normalise

the weight vector after each updating. That is, it does not restrict to the unit-length solution.

The estimate of p1 can be provided by either (13) or (14).

Theoretical proof for convergence of this LSER algorithm is very difficult if not impossible

and it is still under investigation. However, it can be pointed out that this LSER algorithm

belongs to the general stochastic gradient-based adaptive algorithm investigated in [44]. There-

fore, the results of local convergence analysis presented in [44] is applicable here. Our previous

investigations [1],[34] have suggested that the LSER algorithm behaves well, has a reasonable

convergence speed, and is consistently outperforms the LMS algorithm in terms of the achievable

SER. Influence of the two algorithmic parameters of the LSER algorithm, namely µ and ρn, to

the SER performance will be investigated in the following simulation.
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λ /2λ /2
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2
−θ

65
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interferer3

−70
o

o

Fig. 2. Locations of the user sources with respect to the three-element linear array with λ/2 element spacing, λ being the

wavelength, where θ < 65◦.

IV. SIMULATION STUDY

The prototype system investigated consisted of four sources and a three-element antenna array.

Fig. 2 shows the locations of the desired source and the interfering sources graphically, where

the angular separation between the desired user and the interfering user 4 was θ < 65◦. Note that

the performance of a beamforming receiver mainly depends on the minimum angular separation

between the desired user and the interfering users (in this case θ), and whether or not the desired

user is at the broadside of the antenna array is not critical at all. As emphasised in Section II,

the column of the system matrix associated with the desired user, namely p1, must be known

in receiver. Usually, p1 can be estimated accurately during training. Thus, in the following

simulation study, a perfect p1 is assumed at receiver.

A. Stationary System

The modulation scheme was 16-QAM and all the channels Ai, 1 ≤ i ≤ 4, were time-invariant.

Fig. 3 compares the SER performance of the MSER beamforming solution to that of the MMSE

beamforming solution under four different conditions: (a) the minimum anugular separation

between the desired user 1 and the interfering user 4 was θ = 32◦, and all the four users had

an equal signal power, i.e. SIRi = 0 dB for 2 ≤ i ≤ 4; (b) θ = 30◦, and all the four users

had an equal signal power; (c) θ = 28◦, and all the four users had an equal signal power; and

(d) θ = 30◦, user 1 and user 2 had the same signal power but users 3 and 4 had 2 dB more power

than users 1 and 2, i.e. SIR2 = 0 dB and SIR3 =SIR4 = −2 dB. The MMSE beamformer was
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(c) θ = 28◦, SIRi = 0 dB, 2 ≤ i ≤ 4 (d) θ = 30◦, SIR2 = 0 dB, SIR3 =SIR4 = −2 dB

Fig. 3. Desired user’s symbol error rate performance comparison for the non-fading channel system employing the three-element

array of Fig. 2 to support four 16-QAM users.

provided by the closed-form solution (9), while the MSER solution was obtained numerically

using the conjugate gradient algorithm.

For the case of equal user power with the minimum anugular separation θ = 32◦, the MSER

beamforming solution had an SNR gain of 2 dB over the MMSE solution at the SER level of 10−3,

as can be seen from Fig. 3 (a). When the minimum anugular separation of the system was reduced

to θ = 30◦, as depicted in Fig. 3 (b), the SNR gain of the MSER beamformer over the MMSE

one was increased to 4 dB. With the minimum anugular separation further reduced to θ = 28◦,

the MMSE beamforming solution became incapable of removing the interference and exhibited
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a high SER floor, as illustrated in Fig. 3 (c). In contrast, the MSER beamformer remained

capable of effectively removing the interference and achieving an adequate SER performance.

By comparing Fig. 3 (b) with Fig. 3 (d), it can be seen that, with the minimum anugular separation

θ = 30◦ and when facing stronger interfering users 3 and 4, the MMSE solution faltered while

the MSER solution sufferred from very little degradation. This clearly demonstrated that the

MSER beamformer is more robust in near-far situations than the MMSE beamformer.

The MSER solution is defined as the weight vector that minimises the upper bound SER

PEB
(w) = PER

(w) + PEI
(w), and in Section III-B it is pointed out that this is practically

equivalent to minimise the true SER. The true SER is given by the sum of the inphase and

quadrature components’ error rates minus the appropriate correction term used for preventing

the “double-counting” error-events as follows PE(w) = PER
(w) + PEI

(w) − PER
(w)PEI

(w).

The probability of simultaneous inphase and quadrature errors, which is represented by the term

PER
(w)PEI

(w) tends to be quite low, unless the SNR is extremely low. More explicitly, the

last term is typically orders of magnitude lower than the first two terms. Hence the bound

PE(w) < PEB
(w) is very tight, i.e. PEB

(w) is very close to PE(w). In fact, PEB
(w) is almost

indistinguishable from PE(w). This is not surprising, since the term PER
(w)PEI

(w) is negligible

in comparison to the dominant term PER
(w) + PEI

(w). For example, when PER
(w) or PEI

(w)
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Fig. 4. Comparison of the true symbol error rate and its upper bound for the non-fading channel system employing the

three-element array of Fig. 2 with a minimum angular separation of θ = 30◦ to support four equal-power 16-QAM users.
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(they are symmetric) is of the order of 10−2, then PER
(w)PEI

(w) is of the order of 10−4, which

constitutes an almost negligible factor. This is confirmed by the results of Fig. 4, where both the

true SER PE(w) and its upper bound PEB
(w) are plotted for the MMSE and MSER solutions

under the channel conditions of θ = 30◦ and equal user power.

Both the LMS and LSER based adaptive beamforming algorithms were next investigated using

the system of the minimum angular separation θ = 30◦, equal user power and SNR= 26 dB.

Given ŵ(0) = [0.1 + j0.1 0.1− j0.01 0.1− j0.1]T and the step size µ = 0.0005, the learning

curves of the LMS algorithm averaged over 20 different runs are plotted in Fig. 5. There were two

types of learning curves depicted in Fig. 5, namely, the learning curve realted to the training-based

adaptation, when the desired user’s transmitted symbol b1(k) was known to the receiver, and the

learning curve related to the decision-directed (DD) adaptation, where at the sample k = 250 the

beamformer’s decision b̂1(k) was used to substitute for b1(k). Similarly, the learning curves of

the LSER algorithms under the same initial condition of ŵ(0) and given the step size 0.001 and

the kernel width ρn = σn are depicted in Fig. 5, in comparison with those of the LMS algorithm.

Lastly, the SER performance of both the LMS and LSER based beamformers are compared with

those of the theoretic MMSE and MSER solutions in Fig. 6 under the same condition of Fig. 3

(b). The superiority of the adaptive LSER beamformer over the adaptive LMS beamformer is
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LSER-training
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Fig. 5. Learning curves of the stochastic adaptive LMS and LSER algorithms averaged over 20 runs for the non-fading channel

system employing the three-element array of Fig. 2 with a minimum angular separation of θ = 30◦ to support four equal-power

16-QAM users given SNR= 26 dB, where DD denotes decision-directed adaptation with b̂1(k) substituting for b1(k).
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Fig. 6. Desired user’s symbol error rate performance comparison for the non-fading channel system employing the three-element

array of Fig. 2 with a minimum angular separation of θ = 30◦ to support four equal-power 16-QAM users.

clearly demonstrated in Fig. 6, where it can be seen that the performance of the adaptive LMS

beamformer was notably deviated from its theoretic MMSE solution at high SNRs.

B. Rayleigh Fading System

The modulation scheme was 64-QAM. Fading channels were simulated, where the magnitudes

of Ai for 1 ≤ i ≤ 4 were Rayleigh processes with the normalised Doppler frequence f̄D and

each channel Ai had the root mean power of
√

0.5 + j
√

0.5. Thus the average SIRi = 0 dB

for 2 ≤ i ≤ 4. Continuously fluctuating fading was used, which provided a different fading

magnitude and phase for each transmitted symbol. The transmission frame structure consisted of

50 training symbols followed by 450 data symbols. Decision-directed adaptation was employed

during data transmission, in which the adaptive beamforming detector’s decision b̂1(k) was used

to substitute for b1(k). The SER of an adaptive beamforming detector was calculated using the

450 data symbols of the frame based on Monte Carlo simulation averaging over at least 2× 105

frames, depending on the value of f̄D. Two initialisations were used for the adaptive LMS and

LSER algorithms, where the initial weight vector ŵ(0) was initialised to either the MMSE

solution (corresponding to the initial channel conditions) or [0.1+ j0.0 0.1+ j0.0 0.1+ j0.0]T ,

and the performance were observed to be very similar for these two initialisations.
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Fig. 7. Desired user’s symbol error rate performance comparison for the fading channel systems of the two normalised Doppler

frequencies f̄D = 10−4 and 10−3 employing the three-element array of Fig. 2 with a minimum angular separation of θ = 27◦

to support four 64-QAM users. The LMS algorithm has a step size µ = 0.0002, while the LSER algorithm has a step size

µ = 0.00005 and a kernel width ρn = 4σn.
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Fig. 8. Influence of the adaptive algorithm’s parameters to the SER performance for the fading channel system employing the

three-element array of Fig. 2 to support four 64-QAM users, given θ = 27◦ and f̄D = 10−4.
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Given the minimum angular separation θ = 27◦, Fig. 7 compares the SER of the adaptive

LSER beamformer with that of the LMS-based one, for the two normalised Doppler frequencies

f̄D = 10−4 and 10−3. It can be seen from Fig. 7 that the SER performance of the adaptive LSER

beamformer degraded only slightly when the fading rate increased from f̄D = 10−4 to 10−3.

This demonstrates that the LSER algorithm has an excellent tracking ability, capable of operating

in fast fading conditions. The influence of the adaptive algorithm’s parameters, the step size µ

for the LMS algorithm, and the step size µ and kernel width ρn for the LSER algorithm, were

next investigated. Given f̄D = 10−4, Fig. 8 (a) show the influence of the adaptive algorithm’s

parameters, µ for the LMS algorithm, and µ and ρn for the LSER algorithm, on the SER

performance for a low average SNR value of 15 dB (Note that this was a 64-QAM system,

and a SNR of 15 dB was relatively low), while Fig. 8 (b) depicts the results for a high average

SNR value of 30 dB. These results also explain why µ = 0.0002 for the LMS algorithm and

µ = 0.00005 and ρn = 4σn for the LSER algorithm were used in the simulation of Fig. 7.
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Fig. 9. Desired user’s symbol error rate performance as a function of the minimum angular separation θ for the fading channel

system of the normalised Doppler frequency f̄D = 10−3 employing the three-element array of Fig. 2 to support four 64-QAM

users, given an average SNR of 25 dB. The LMS algorithm has a step size µ = 0.0002, while the LSER algorithm has a step

size µ = 0.00005 and a kernel width ρn = 4σn.

Lastly, the combining influence of the Rayleigh fading channels Ai, 1 ≤ i ≤ 4, and the uni-

formly varying minimum anugular seapration θ was investigated. Given the normalised Doppler
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Fig. 10. Desired user’s average symbol error rate performance comparison for the fading channel system of the normalised

Doppler frequency f̄D = 10−3 employing the three-element array of Fig. 2 with the minimum angular separation θ uniformly

distributed in [20◦, 50◦] to support four 64-QAM users. The LMS algorithm has a step size µ = 0.0002, while the LSER

algorithm has a step size µ = 0.00005 and a kernel width ρn = 4σn.

frequency f̄D = 10−3 and an average SNR of 25 dB, the minimum angular separation θ was

varied in [20◦, 50◦] and the SER performance of the LMS and LSER adaptive beamformers

corresponding to each θ are depicted in Fig. 9. It can be seen from Fig. 9 that the performance of

an adaptive beamformer depends on the combination of the channel coefficients Ai, 1 ≤ i ≤ 4,

and the value of θ, and the adaptive LSER beamformer always performs better than the adaptive

LMS beamformer. Finally, the average SER performance of the two adaptive beamformers over

the uniformly distributed θ ∈ [20◦, 50◦] are plotted in Fig. 10.

V. CONCLUDING REMARKS

An adaptive MSER beamforming technique has been developed for multiple-antenna aided

multiuser communication systems employing high-throughput QAM signalling. It has been

demonstrated that the MSER beamforming design can provide significant performance en-

hancement, in terms of the achievable system’s SER, over the standard MMSE design. It has

also been demonstrated that the MSER beamforming design offers a higher user capacity and

is more robust in the near-far senario, compared with the conventional MMSE beamforming

design. An adaptive implementation of the MSER beamforming solution has been realised
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using the stochastic gradient adaptive algorithm known as the LSER technique. The simulation

results presented in this study clearly show that the adaptive LSER beamforming is capable of

operating successfully in fast fading conditions and it consistently outperforms the adaptive LMS

beamforming benchmarker.

Since the discovery of turbo codes [45], iterative detection [46] has been applied to joint

channel estimation and equalisation [47], multiuser detection [48] and numerous other coded

communication systems [49]-[51]. Most of the available literature discuss the MMSE based

iterative receivers [49]-[53]. It is however highly desired to consider the MBER based iterative

receivers, and the recent work [54],[55] has studied turbo-detected MBER beamformer designs

for BPSK and QPSK systems. Currently, the Communication Research Group at the University

of Southampton is carrying out extensive investigation to design iterative MSER beamforming

detection techniques for employment in the systems that adopt high-order QAM signalling.

The narrow-band MIMO model is considered in this study and beamforming is a spatial only

processing technique. In order to deal with the generic frequency-selective MIMO system, space-

time processing techniques should be employed. The recent work [56],[57] has designed the novel

MBER space-time equalisation for the space-division multiple-access induced MIMO system

with BPSK modulation. Extension to the MSER space-time equalisation for the generic MIMO

system employing high-throughput QAM modulation schemes is currently being conducted.
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