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Abstract- The problem of constructing adaptive min- 
imum bit error rate (MBER) decision feedback equal- 
isers (DFE’s) for binary signalling is considered. Gradi- 
ent algorithms are developed for both conventional and 
state (or space) translation forms of the DFE. Kernel 
density estimation is demonstrated to provide a conveni- 
ent mechanism for approximating the BER as a smooth 
function of the available data. This leads to the devel- 
opment of a number of adaptive algorithms. Computer 
simulation is used to assess the performance of these al- 
gorithms. 

I. INTRODUCTION 

In developing training strategies for linear combiner de- 
cision feedback equalisers (DFE’s), it is convenient to 
adopt a minimum mean squared error (MMSE) cost 
function as this facilitates the use of standard adaptive 
filter techniques such as the least mean squares (LMS) 
and recursive least squares (RLS) algorithms. However 
it has long been understood that the MMSE cost func- 
tion is not optimal in this application - the minimum 
bit error rate (MBER) cost function being the more a p  
propriate choice [2]. Further, the BER rate of a DFE 
optimised using a MMSE criterion can be distinctly in- 
ferior to the true optimum solution [I]. 
Two methods currently exist which can be classified as 
training algorithms for minimum BER DFE’s in binary 
signalling. These are: the space or state translation al- 
gorithm of [8] and [l]; the approximate minimum bit 
error rate (AMBER) algorithm of [5].  The former is a 
batch or block adaptive filter in that the channel is es- 
timated and this estimate used in turn to form an estim- 
ate of the theoretical BER. A gradient search technique 
is used to find the weights that minimise the estimated 
BER. While this algorithm has been demonstrated to 
work reliably in the presence of errors in the estimate 
of the channel impulse response, it is not truly adapt- 
ive in the sense that it does not operate directly on the 
data but rather employs the intermediate step of chan- 
nel impulse response estimation. Further the gradient 
search algorithm can take many iterative steps to con- 
verge to the solution. The latter is a stochastic gradient 
algorithm which is identical to the signed error LMS al- 
gorithm except in the vicinity of the decision boundary 
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where it is modified to continue updating the weights 
when the signed LMS algorithm would not. The al- 
gorithm is appealing due to its computational simpli- 
city and straightforward extension to the complex sig- 
nalling case [4]. The difficulty with it is in selection of 
the stepsize: a small step size is required to ensure con- 
vergence to the min BER solution with the associated 
problem of slow initial convergence. A variant of the 
dual sign algorithm [7] has been applied in an attempt 
to overcome this problem [4]. 
In this paper the problem of constructing adaptive 
MBER DFE’s for binary signalling is addressed. Sec- 
tion I1 provides the necessary background and defin- 
ition of terms. In Section I11 a gradient search al- 
gorithm is developed for the conventional DFE rather 
the translated form of [I]. However the formulation is 
such that it can be applied to both conventional and 
state-translation architectures. Kernel density estima- 
tion is employed is section IV to approximate the bit 
error rate as a smooth function of the data. The advant- 
age of this approach is that an error does not need to be 
observed to guarantee an estimate of the error rate and 
the smooth function is a convenient route to gradient 
and Gauss-Newton algorithms. Section V provides an 
assessment of the various algorithms based on computer 
simulations. Finally conclusions are drawn in section 
VI. 

11. BACKGROUND 

The channel is modelled as a finite impulse response 
filter with an additive noise source, and the received 
signal at sample k is 

n,-1 

r ( k )  = ~ ( k )  + e ( k )  = ais(k - i) + e ( k )  (1) 

where F(k) denotes the noiseless channel output; n, is 
the channel length and ai are the channel tap weights; 
the Gaussian white noise e ( k )  has zero mean and vari- 
ance U:;  the symbol sequence {s(k)} is independently 
identically distributed and has a 2-PAM constellation. 
The signal to noise ratio (SNR) of the system is defined 

i = O  

as 

where CT: = E [ s 2 ( k ) ]  is the symbol variance. 
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For a conventional linear-combiner DFE the decision 
variable z at time k is a linear combination of received 
samples and past decisions: 

~ ( k )  = wTr(k) - bTi,(k) (3) 

where r(k) = [ r ( k )  r(k - 1) ... ~ ( k  - m + 1)IT is the 
channel observation vector, &(k) = [i(k - d - 1) s^(k - 
d - 2) ... S(k - d - .)IT is the past detected symbol vec- 
tor, w = [WO w1 ... wm-1IT is the feedforward coefficient 
vector and b = [b lbz  ... b,IT is the feedback coefficients 
vector. The integers d,  m and n will be referred to 
as the decision delay, the feedforward delay and feed- 
back orders respectively. Without loss of generality, 
d = n, - 1 ,  m = n, and n = n, - 1 will be used as 
this choice of DFE structure parameters is sufficient to 
guarantee the linear separability of the subsets of the 
channel states related to the different decisions [l]. Al- 
ternatively the linear-combiner DFE can be expressed 
in state translated form [9]: 

r(k) = wT (r(k) - F&(k)) 

= wTr’(k) (4) 

where F2 is constructed by partitioning the channel im- 
pulse response matrix F = [F1 Fz], where: 

0 1  ... r o  0 

In the case of 2-PAM, the reconstructed symbols with 
lag dare  obtained from the sign of the decision variable 
z(k) i.e. 

S(k - d )  = sgn(z(k).) (7) 

111. MINIMUM B I T  ERROR RATE EQUALISATION 

The bit error rate (BER) observed at the output of the 
equaliser is dependent on the distribution of the de- 
cision variable z ( k )  which in turn is a function of the 
equaliser tap weights. To be more specific, the probab- 
ility of error, PE, is: 

PE = P(sgn(s(k - d ) ) z ( k )  < 0) (8) 

The sign adjusted decision variable z J ( k )  = sgn(s(k - 
d ) ) z ( k )  is drawn from a Gaussian mixture. From the 
definition of z(k), 

z J ( k )  = sgn(s(k - d))(wTFs(k) - bT&(k)) 

+ sgn(s(k - d))wTe(k)  (9) 
= sgn(s(k - d))z‘(k) + e ’ ( k )  (10) 

e(k )  = [ e ( k )  e (k  - 1) ... e ( k  - d - .)IT is the vector of 
noise samples; s ( k )  = [ s ( k )  s ( k  - 1) ... s ( k  - d - nne)IT 
is the vector of transmitted symbols. The first term 
on the right hand side of (IO),sgn(s(k - d ) ) z ’ ( k ) ,  is 
the noise-free sign-adjusted equaliser output and is a 
member of a finite set with N ,  elements - these are the 
local means of the Gaussian mixture. Without noise the 
combination of channel and DFE is a finite state ma- 
chine whose state is defined by the vector s ( k ) .  Thus if 
s ( k )  E { S I  . . . si . . . S N , } ,  the state si uniquely defines 
the state of z ‘ ( k ) ,  r(k), s ( k  - d) and & ( k )  - label these 
Zi, ri, Si and &i respectively. Note that while s(k) 
has N, states, s ( k  - d)  has 2 possible values (2-PAM). 
However since s ( k - d )  is acomponent of the vector s ( k ) ,  
the state of s ( k )  uniquely defines the value of s ( k  - d) .  
The second term e ’ ( k )  is a zero mean Gaussian white 
noise process with variance a:wTw - defining the dis- 
tribution about the local means. 
The probability density function p ,  (zs) is thus: 

and the probability of error is: 
0 

PE = J_ oo P Z  (‘5 )d25 (12) 

As in [l] the weights that minimise PE can be obtained 
using gradient search techniques. Here the approach 
is “equaliser output referenced” i.e. in terms of z(k) 
rather than the “equaliser input referenced” technique 
discussed in [l] that is in terms of the noise free input 
vectors. There is a natural computational advantage 
in dealing with scalars rather than vectors. Further the 
development is in terms of the conventional feedforward 
and feedback coefficients rather than the channel estim- 
ate associated with [l]. Thus the gradient terms are: 

1 WWT - -  - 8PE 
d W  

wbT 
N, & u , ( w ~ w ) ~ / ~  

- 
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and 

NZ 1 
ab - - N , & a e G  C e x p  i=l (-A) 8PE 

x sgn(si)ibi (14) 

A gradient search technique would thus be defined: 

and 

where p is the stepsize. 
It is well known that equalisation is 
tion problem. The coefficient vector of 

(15) 

(16) 

a classifica- 
the equaliser 

[wT bT]* is orthogonal to the hyperplane that is used 
to separate the two classes in hyperspace. Since it is 
the orientation of this vector that defines the decision 
boundary, the size of the vector has no effect on the 
BER. Thus it is not necessary to constrain the size of 
this vector apart from avoiding the degenerative case 
where its size is zero and hence no hyperplane can be 
defined. The size of the vector is thus a nuisance para- 
meter in the optimisation procedure. One convenient 
way to remove it is to re-scale it after every iteration of 
the algorithm. From consideration of the expressions 
for the gradient and the Hessian it is obvious that res- 
caling by the size of the vector w simplifies many of the 
expressions. Thus: 

IV. ADAPTIVE ALGORITHMS 

The key to developing adaptive algorithms is the p.d.f. 
p z ( z s )  of the signed decision variable. Several tech- 
niques are available for estimating this scalar p.d.f., the 
simplest of which is box counting [lo]. However it is 
well known that box counting requires large amounts 
of data for reliable estimates. Further it does not ex- 
ploit the a priori knowledge of the structure of the p.d.f. 
that is available in this case. Kernel density estimation 

is known to produce far more reliable estimates with 
short data records and in particular is extremely nat- 
ural when dealing with Gaussian mixtures. 
Consider the case where I< training samples of the 
transmitted symbols { s(k)} and K associated received 
samples { r(lc)} are available (ignoring end effects). 
Given a set of weights w and b, a kernel density es- 
timate of the p.d.f. is: 

(zs - sgn(s(k - d))z(k))2 
x k = l  e e r p  (- 2pZwTw 

(19) 

The usual problem associated with kernel density estim- 
ation is in selecting the radius parameter p e .  However 
in this case it is clearly related to the noise r.m.s. re 
which is usually known roughly or can be estimated on 
line. In [lo] a lower bound of: 

Pe = (&)’.. 
is suggested. 
To illustrate the power of kernel density estimation in 
this application consider Figure 1 which shows the p.d.f. 
of the signed decision variable at the output of a DFE 
for a channel at SNR of 15 dB. The p.d.f. estimates 
are constructed using 100 received samples. It is clear 
that while the box counting method gives a good estim- 
ate of the underlying p.d.f. at the points at which it is 
evaluated, it provides little information about the tails 
of the distribution. In particular it is the p.d.f. in the 
range z, < 0 which is needed in order to evaluate the 
BER c.f. equation (12). The kernel density estimate 
provides better estimates of the tails of the distribution 
than the box counting method. A second and compel- 
ling reason for using equation (19) is that it provides 
an estimate of the p.d.f. in the form of smooth differ- 
entiable function - a necessity for developing gradient 
and Gauss Newton optimisation techniques. 
The key to developing the LMS algorithm from its re- 
lated steepest decent algorithm is to replace the en- 
semble average of the gradient with a single point es- 
timate of the gradient. In a similar manner, at sample 
k a point estimate of the p.d.f. is simply: 

1 

GG $*(z , (k ) )  = 

(zs - sgn(s(k - d ) ) ~ ( k ) ) ~  
2pZwTw x exp (- 
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An LMS style update follows from section I11 by repla- 
cing the exact p.d.f. with this crude estimate - assum- 
ing that the weights are rescaled after each update such 
that w*(k)w(k) = 1 we have: 

w(k+ 1) = w(k) 

xsgn(s(k - d))Sb(k) (23) 

For a state-translation DFE, equation (22) is modified 
by replacing r(k) with r’(k). 

w(k+ 1) = w(k) 

where: 

Equation (23) is not used, rather an LMS algorithm is 
used to form an estimate of the impulse response vector 
a = [a0 a1 ... uno-#’: 

This estimate of the impulse response provides the ele- 
ments of the matrix Fz. Note that equation (25)  can 
be implemented efficiently using the state-translation 
structure considered in reference [8]. For the sake of 
discussion the above techniques based on point estim- 
ates of the p.d.f. will be called “least bit error rate” 
(LBER) algorithms. 

An alternative approach is the approximate minimum- 
BER (AMBER) algorithm of [5]. It’s DFE form for 
2-PAM can be expressed as follows: 

w(k + 1) = w(k) + 2~l(k)sgn(e(k))r(k) (27) 

b(k + 1) = b(k) - 2pI(k)sgn(e(k))sa(k) (28) 

where the error is: 

e ( k )  = s(k - d) - wT(k)r(k) + bT(k)s^a(k)  (29) 

and the indicator function is: 

1 
2 I(k) = - (1 - sgn(s(k - d ) z ( k )  - T)) (30) 

The parameter T is the nonnegative threshold which 
permits the weights to be updated in the region of the 
decision boundary. 

Although the LBER and AMBER have been developed 
using different philosophies it is useful to compare them 
with respect to the parameter update mechanism. In 
the simplest form of AMBER [5], the threshold para- 
meter r is zero and the algorithm only updates when a 
decision error is observed. When the algorithm is ini- 
tialised the equaliser is unlikely to separate the noise 
free states and hence the indicator function will be on 
most of the time in which case AMBER is equivalent 
to the signed error LMS algorithm c.f. [6]. When the 
algorithm has converged to a point where it separates 
the noise free states correctly its BER performance will 
be similar to the Wiener MMSE DFE. However in this 
region errors will be predominately caused by thermal 
noise. Thus the probability of the algorithm updating 
may be low and hence further convergence may be slow. 
Introducing the variable T essentially defines a region 
around the decision boundary where the algorithm will 
continue to update even when errors do not occur. This 
region is defined by: 

lwTr - b*ibl< T (31) 

In the LBER algorithm the effect of the distance from 
the decision boundary is controlled by the exponential 
term exp(-z2/(2p2)). This can be viewed as a soft 
distance measure. The size of an update is a continu- 
ous and decreasing function of the distance from the 
boundary. The distance is scaled by the kernel radius 
pe which in turn is a function of the noise r.m.s. ue. 

V. RESULTS 

The convergence performance of 4 LMS-style adaptive 
DFE’s is compared in Figures 2 and 3. These are: the 
LBER conventional DFE of equations (22) and (23); 
a state translation LBER DFE of equations (24) (25)’ 
(26); the AMBER DFE of equations (27), (28), (29) 
and (30) with T = 0.1; an LMS conventional DFE. 
In Figure 2 the channel impulse response is (0.5, 1.0) 
with a SNR of 16 dB. The BER’s are evaluated us- 
ing equations (1 1) and (12) and averaged over an en- 
semble of 20 runs. The step size ,u for all algorithms 
was set at 1/18 to ensure fairly fast convergence for 

96 



the bench mark LMS algorithm. Figure 2 demon- 
strates the promise of the LBER approach in that 
both the the LBER-conventional-DFE and the LBER- 
state-translation-DFE outperforms the LMS and AM- 
BER algorithms. However this result is atypical of the 
LBER conventional DFE. In many cases the LBER- 
conventional-DFE is no better than AMBER and since 
AMBER is extremely simple computationally it would 
be the preferred choice. A more typical example is 
illustrated in Figure 3 where the channel impulse re- 
sponse is (0.25, 0.5, 1.0) with a S N R  of 17 dB. Here 
the step size for all algorithms was set at  1/30. Un- 
der these conditions there is little to distinguish the 
LBER-conventional-DFE from the AMBER DFE and 
the LMS DFE. It should be noted however that in both 
Figures the LBER-state-translation-DFE outperforms 
all the other algorithms. 

VI. CONCLUSIONS 

The problem of constructing adaptive MBER DFE’s 
for binary signalling has been considered. Gradient 
algorithms have been formulated in such a manner 
as to facilitate application to conventional and state- 
translation architectures. Kernel density estimation 
has been demonstrated to provide a convenient mechan- 
ism for approximating the BER as a smooth function of 
the available data. Adaptive algorithms in both conven- 
tional and state-translation form have been developed 
from this premise. A computer simulation study of the 
various algorithms leads to following conclusion that 
for LMS-style training the LBER state translation DFE 
outperforms existing algorithms. 
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Fig. 1.  Distribution of signed decision variable 
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Fig. 2. Convergence comparison of LMS-DFE, AMBER-DFE, 
LBER conventional DFE and LBER state translation DFE: 
channel impulse response (0.5, l.O}; S N R  = 16dB 
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Fig. 3. Convergence comparison of LMS-DFE, AMBER-DFE, 
LBER conventional DFE and LBER state translation DFE: 
channel impulse response (0.25, 0.5, l .O};  S N R  = 17dB 
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