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Abstract— A blind adaptive scheme is proposed for joint maximum
likelihood (ML) channel estimation and data detection of single-input
multiple-output (SIMO) systems. The joint ML optimization over chan-
nel and data is decomposed into an iterative optimization loop. An effi-
cient global optimization algorithm called the repeated weighted boost-
ing search is employed at the upper level to identify optimally the un-
known SIMO channel model, and the Viterbi algorithm is used at the
lower level to produce the maximum likelihood sequence estimation of
the unknown data sequence. A simulation example is used to demon-
strate the effectiveness of this joint ML optimization scheme for blind
adaptive SIMO systems. Our simulation study shows that this scheme
requires very few received data samples to achieve a near optimal solu-
tion of the joint ML SIMO channel estimation and data detection.

|. INTRODUCTION

The single-input multiple-output (SIMO) system, consist-
ing of a single-antenna transmitter and a receiver equipped
with multiple antennas, has enjoyed popularity owing to
its simplicity. A space-time equalizer (STE) based on this
SIMO structure is capable of mitigating the channel impair-
ment arising from hostile multipath propagation. For the sake
of improving the achievable system throughput, blind adap-
tation of the STE is attractive, since this avoids the reduction
of the effective throughput by invoking training. Blind space-
time equalization of the SIMO system can be performed
by directly adjusting the STE’s parameters using the con-
stant modulus algorithm (CMA) type adaptive scheme [1]-
[3]. Blind space-time equalization performance can further
be improved by aiding the CMA with a soft decision-directed
scheme [4]. Research for blind adaptive SIMO systems
has also been focused on blind channel identification [5]-
[7]. Once the SIMO channel impulse responses (CIRs) have
been identified, various designs, such as the minimum mean
square error or minimum bit error rate [8], can be invoked
for the STE. Alternatively, the decoupled weighted iterative
least squares with projection (DW-ILSP) algorithm [9],[10]
can be adopted. The DW-ILSP algorithm may be viewed as a
batch expectation-maximization type algorithm, which itera-
tively performs channel estimation and symbol detection. In
general, however, the DW-ILSP algorithm cannot achieve the
optimal joint maximum likelihood (ML) channel estimation
and data detection for the SIMO system.

In the content of single-input single-output (SISO) blind
channel equalization, the optimal joint ML channel esti-
mation and data detection can be realized or approximated

closely using for example the blind trellis search or per-
survivor processing techniques [11],[12], the quantized chan-
nel approach [13], and the combined genetic algorithm (GA)
for channel estimation and Viterbi algorithm (\A) for data
detection [14]. This paper develops a blind adaptive scheme
of joint ML channel estimation and data detection for the
SIMO system. The proposed algorithm decomposes the joint
optimization over channel and data into an iterative optimiza-
tion loop by combining a global optimization search method,
referred to as the repeated weighted boosting search (RWBS)
[15], for an optimal estimation of the SIMO channel and the
VA for the maximum likelihood sequence estimation of the
transmitted data sequence. Specifically, at the upper level,
the RWBS algorithm [15] searches the channel parameter
space to optimize the ML criterion, while at the lower level,
the VA decodes data based on the given channel model and
feeds back the corresponding likelihood metric to the RWBS
algorithm. The effectiveness of this joint ML estimation
scheme for blind equalization of the SIMO system is demon-
strated by a simulation example. We also point out that a GA
can be used in the place of the RWBS algorithm to optimize
the SIMO channel estimate. In this case the proposed scheme
becomes an extension of the joint ML channel and data es-
timation scheme using the GA originally developed for the
SISO system [14]. Our simulation results suggests that both
the RWBS-based and GA-based schemes attain a similarly
convergence speed but the RWBS-based methods achieves a
more accurate blind SIMO channel estimation.

Il. THE PROPOSED BLIND JOINT ML ESTIMATION
ALGORITHM

Consider the SIMO system employing a single transmitter
antenna and L (> 1) receiver antennas. The symbol-rate
sampled antennas’ outputs x;(k), 1 <1 < L, are given by
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where n; (k) is the complex-valued Gaussian white noise as-
sociated with the Ith channel and E[|n;(k)|?] = 202, {s(k)}
is the transmitted symbol sequence and is assumed to take
values from the quadrature phase shift keying (QPSK) sym-
bol set {£1 £ j}, and ¢, ; are the CIR taps associated with



the ith receive antenna. For notational simplicity, we have
assumed that each of the L channels has the same length of
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be the vector of N x L received signal samples, the cor-
responding transmitted data sequence and the vector of the
SIMO CIRs, respectively. The probability density function
of the received data vector x conditioned on the SIMO CIR
c and the symbol squence s is
1
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The joint ML estimate of ¢ and s is obtained by maximiz-
ing p(x|c, s) over c and s jointly. Equivalently, the joint ML
estimate is the minimum of the cost function
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The joint minimization process (7) can also be solved using
an iterative loop first over the data sequences § and then over
all the possible channels ¢:
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The inner or lower-level optimization can readily be carried
out using the standard VA. In order to guarantee a joint ML
estimate, the search algorithm used in the outer or upper-level
optimization should be capable of finding a global optimal
or near optimal channel estimate efficiently. We employ the
RWBS guided random search algorithm [15] to perform the
outer optimization task. The detailed RWBS algorithm as a
generic global optimizer is given in Appendix. The proposed
blind joint ML optimization scheme can now be summarized.

Outer level Optimization. The RWBS algorithm searches
the SIMO channel parameter space to find a global optimal
estimate ¢* by minimizing the mean square error (MSE)

Juse(€) = JuL(¢,s") )

TABLE|
THE SIMULATED SIMO SYSTEM.

l Channel impulse response

1| 0.365-0.274j  0.730+0.183] -0.440+0.176j
2 | 0.278+0.238] -0.636+0.104] 0.667-0.074j
3 | -0.639+0.249) -0.517-0.308]  0.365+0.183]
4 | -0.154+0.693j -0.539-0.077j  0.268-0.358j

Inner level optimization. Given the channel estimate ¢,
the VA provides the ML decoded data sequence s*, and
feeds back the corresponding value of the likelihood metric
Ju (€, %) to the upper level.

Let Cya be the complexity of the VA required to decode a
data sequence of N x L samples, and denote Nv the total
number of VA calls required for the RWBS algorithm to con-
verge. The complexity of the proposed scheme is obviously
Nvya x Cya. Note that the proposed blind SIMO equalization
scheme is capable of achieving a (near) optimal joint ML so-
lution for SIMO channel estimation and data detection with a
very small N. The RWBS algorithm is a simple yet efficient
global search algorithm. In several global optimization ap-
plications investigated in [15], including the blind joint ML
channel estimation and data detection for the SISO system,
the RWBS algorithm achieved a similar global convergence
speed as the GA and was seen to be more accurate than the
GA-based scheme. The RWBS algorithm has additional ad-
vantages of requiring minimum programming effort and hav-
ing very few algorithmic parameters that require to set.

I11. SIMULATION EXAMPLE

In the simulation, the number of receive antennas was L =
4, the transmitted data symbols were QPSK, and the SIMO
CIRs, listed in Table I, were simulated. The length of data
samples was N = 50. In practice, the value of the likelihood
metric Juse(€) is all that the upper level optimizer can see,
and the convergence of the algorithm can only be observed
through the MSE (9). In simulation, the performance of the
algorithm can also be assessed by the mean tap error which
is defined as

MTE = |lc —a-¢|]? (10)
where
+1, ifé— +c
-1, if¢— —c
@ =3 . ifée— +jc (11)
+j, ifé — —jc

Note that since (¢*,§8*), (—¢*,—§*), (—je*,+48*) and
(+j¢*,—78%) are all the solutions of the joint ML estima-
tion problem (7), the channel estimate ¢ can converges to
¢, —c, jc or —jc. Since the CIRs can always be normalized,
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Fig. 1. Mean square error against number of VA evaluations averaged over
50 runs using the RWBS for the SIMO channel listed in Table I. The
length of data samples N = 50.
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Fig. 2. Mean tap error against number of VA evaluations averaged over 50
runs using the RWBS for the SIMO channel listed in Table|. The length
of datasamples N = 50.

uniformly random sampling initialization with ¢; ; € [—1, 1]
was adopted by the RWBS algorithm.

Figs. 1 and 2 show the evolutions of the MSE and MTE
averaged over 50 runs and for different values of signal to
noise ratio (SNR), respectively, obtained by the proposed
blind joint ML optimization scheme using the RWBS. From
Fig. 1, it can be seen that the MSE converged to the noise
floor. Phase ambiguity of 90°, 180° or 270° associated with
the blind ML estimate for s cannot be resolved by the blind
adaptive scheme itself. In practice, this ambiguity is resolved
either by adopting differential encoding or by employing a
few pilot training symbols. We adopt the complete blind
adaptive scheme of using differential encoding. Fig. 3 de-
picts the bit error rate (BER) of the blind joint ML optimiza-
tion scheme with differential encoding, in comparison with
the BERs of the optimal maximum likelihood sequence esti-
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Fig. 3. Comparison of bit error rate performance using the maximum like-
lihood sequence detection for the SIMO channel listed in Table I. The
length of data samples for the blind schemeis N = 50.

mation in the known channel case with and without differen-
tial encoding. It is seen that the proposed blind scheme only
induced half dB degradation in SNR compared with the opti-
mal solution with differential encoding. We also investigated
using the GA to perform the upper-level optimization, and
the results obtained by this GA-based blind joint ML estima-
tion scheme are presented in Figs. 4 and 5. Comparing Fig. 1
with Fig. 4, it can be seen that both the RWBS and GA based
schemes have similar convergence speed, in terms of the total
number of required VA evaluations. It can also be seen that
the true estimation accuracy of the RWBS-based scheme is
more accurate than the GA-based one, as confirmed by com-
paring Fig. 2 with Fig. 5.

IV. CONCLUSIONS

A batch scheme using the global optimization method,
called the RWBS, has been developed for blind space-time
equalization of the SIMO system based on the joint ML chan-
nel estimation and data detection. The proposed algorithm
provides the best performance over other types of blind adap-
tive schemes for SIMO systems, at the expense of computa-
tional complexity. Our simulation study has shown that this
blind joint ML optimization scheme requires very few re-
ceived data samples to achieve a near optimal solution of the
joint maximum likelihood SIMO channel estimation and data
detection.

APPENDIX. REPEATED WEIGHTED BOOSTING SEARCH
Consider solving the generic optimization problem

min J(u)

ucld (12)
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Fig. 4. Mean square error against number of VA evaluations averaged over
50 runs using the GA for the SIMO channel listed in Table |. Thelength

of datasamples N = 50.
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Fig. 5. Mean tap error against number of VA evaluations averaged over 50
runs using the GA for the SIMO channel listed in Table |. The length of
datasamples N = 50.

where U defines the feasible set of u, with the RWBS algo-
rithm [15]. The algorithm is detailed in the following.

Specify the following RWBS algorithmic parameters: Pg
— population size, Ng — number of generations in the re-
peated search, and £g — accuracy for terminating the inner
weighted boosting search.

Outer loop: generations Forg =1: Ng

Generation initialization: Initialize the population by set-
ting u(g) = ul()ist and randomly generating rest of the pop-
ulation members u'”) € ¢4, 2 < i < Pg, where ul?_" de-
notes the solution found in the previous generation. If g = 1,

(g) is also randomly chosen

V\thted boosting search initialization: Assign the initial

distribution weightings §;(0) = , 1 <4 < Pg, for

the population, and calculate the cost functlon value of each
point

Jz' = J(ugﬂ), 1 S ) S PS
Inner loop: weighted boostingsearch Sett = 0;t = t+1

Sep 1. Boosting
1. Find
ibest = arg <mér}35 Jioand igorst = arg 123)1%5 J;
Denote u](;’)t = u(g) andul? , = Eilt

2. Normalize the cost function values
_ J;
Ji=—p——1<i<Ps

ZmS:1 Jm

3. Compute a weighting factor 3, according to

26 (t—1)J;, B, = 1

1—77t

4. Update the distribution weightings for 1 < i < Pg

si(t—1)B,  forg, <1
6i(t) = 1-J;
5t — )BT, for B > 1
and normalize them
5i(t) = Pfi(t) ,1<i<Ps

Zm:l Jm (t)

Sep 2: Parameter updating
1. Construct the (Ps + 1)th point using the formula

Ps
Upgi1 =Y 8i(tyuf”
i=1

2. Construct the (Ps + 2)th point using the formula

Upg42 = u’E)ge)st + (ul()i)bt

uPs—‘rl)

If up, 41 Or upgyo is outside the feasible set ¢/, it can always
be projected back to U.

3. Compute the cost function values J(up,41) and
J(up,2) for these two points and find

’L = arg min

1t=Ps+1,Ps+2 J(ul)
4. The pair (u,_, J(u;,)) then replaces (uﬁfgrsm i voret
the population
If lupg+1 — upsyo| < &g, exitinner loop
End of inner loop

The solution found in the gth generation is u = ul(j’e)St

) in



End of outer loop
This yields the solution u = uff:sf)

The inner loop, the weighted boosting search, can be
viewed as a local optimizer that searches for a local mini-
mum within the convex region defined by the initial popula-
tion. The outer loop resembles a multistar [16], which is a
tested strategy for converting a local optimizer into a global
one, with a randomly sampling initialization. To guarantee
a global optimal solution as well as to achieve a fast conver-
gence, the algorithmic parameters, Ps, Ng and &g, need to
be set carefully. The appropriate values for these algorith-
mic parameters depends on the dimension of u and how hard
the objective function to be optimized. Generally, these al-
gorithmic parameters have to be found empirically, just as
in any global optimization algorithm. The elitist initializa-
tion is very useful, as it keeps the information obtained by
the previous search generation, which otherwise would be
lost due to the randomly sampling initialization. In the in-
ner loop optimization, there is no need for every members
of the population to converge to a (local) minimum, and it is
sufficient to locate where the minimum lies. Thus, the accu-
racy for stopping the weighted boosting search, g, can be
set to a relatively large value. This makes the search effi-
cient, achieving convergence with a small number of the cost
function evaluations. The population size Pg and the num-
ber of generations N¢ should be set to be sufficiently large so
that the parameter search space will be sampled sufficiently
to guarantee a global optimal solution.
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