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1. Introduction 

Since the pioneering work of Sat0 [l], three main types of 
blind equalisers for nonminimum phase channels have ben 
developed. The first family of blind adaptive algorithms, often 
referred to as Bussgang algorithms, constructs a transversal 
equaliser by optimising some nonconvex criterion function 
using a gradient algorithm [1]-[7]. A Bussgang-type blind 
equaliser typically has very low computational complexity but 
suffers from the drawback of slow convergence. The second 
family of blind adaptive algorithms identifies the channel 
impulse response using techniques based on higher order 
cumulants (HOCs) [8]-[14] and uses the resulting channel 
model to design an equaliser. This second class of blind 
equalisers, although very general and powerful, requires a 
large number of data samples and extensive computation to 
estimate HOCs. Recently, blind equalisers based on joint 
channel and data estimation have been proposed [ 151-[20]. 
This third family of blind adaptive algorithms typically 
employs some blind approximation of maximum likelihood 
sequence estimation or its variants. The resulting blind 
equalisers are therefore computationally very expensive. 
However, a major advantage of this third approach is that 
relatively few signal samples are required. 

In this paper a blind implementation of the Bayesian symbol- 
by-symbol DFE [21]-[23] for joint data and channel 
estimation is derived. A DFE consists of a feedforward 
section and a feedback section. If the feedforward section 
contains m channel output samples and the size of the 
transmitted symbol constellation is M. there are M" symbol 
combinations for the length of the feedforward section. At 
each sample instant, each of these M" symbol sequences can 
be used to produce an LMSRLS channel estimate. Each 
"conditional" channel estimate is employed to design a 
Bayesian DFE for symbol detection. The best Bayesian DFE 
in terms of a posterior probability density function (p.d.f.) is 
then chosen from the M" "conditional" DFEs, and its detected 
symbol is fed back to the equaliser feedback section and used 
to update an "unconditional" channeI estimate. These 
operations form a basic unit of the proposed blind equaliser. 
This blind equaliser can be expanded to include several such 
units, each covering an estimated initial condition. The 
performance of each unit is monitored and those units which 
perform poorly can then be switched off. The proposed blind 
equaliser is conceptually very simple and its total 

computational load is naturally decomposed into many simple 
and identical components, leading to an efficient parallel 
implementation. Simulation results are included to 
demonstrate its fast convergence property. 

Throughout this study, the channel and symbols are assumed 
to be real-valued. This corresponds to the use of multilevel 
pulse amplitude modulation scheme (M-ary PAM). For the 
complex-valued channel and modulation schemes such as 
quadrature amplitude modulation, the derivation of the 
proposed blind equaliser is similar to the current real case. 

Specifically, the channel is modelled as a finite impulse 
response filter with a transfer function 

n,-1 

i=o 
A(z)= C u ~ z - ~ ,  (1) 

where n,, is the length of the channel impulse response and ai 
are the channel tap weights. The symbol sequence ( s ( k ) ]  is 
independently identically distributed (i.i.d.) and has an M-ary 
PAM constellation defined by the set 

s i = 2 i - M - l .  1 S i l M .  (2) 

The received signal is given by 
nu-1 

i=O 
r(k) = i ( k )  + e( t )  = 2 ais(k - i) + e(k) ,  (3) 

where P(k) is the noiseless channel output and e(k)  is an i.i.d. 
Gaussian noise with zero mean and variance E[e2(k)] = 0,'. 

2. The Bayesian decision feedback equaliser 

The structure of a generic DFE is depicted in Fig.1. The 
equalisation process defined in Fig.1 uses the information 
present in the observed channel output vector and the past 
detected symbol vector to produce a delayed estimate of the 
transmitted symbol. The three important structural parameters 
of the equaliser are the decision delay d, the feedforward order 
m and the feedback order n respectively. The feedforward 
order is usually related to the decision delay by m = d + 1 and 
the feedback order is given by n = nu + m - d - 2 = nu - 1. In 
practice, d = nu - 1 is often chosen to cover the entire channel 
dispersion. 
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3. Joint channel estimation and symbol detection 

i ( k - d - . n )  f ( k - d - 2 )  S ( k - d - 1 )  

r ( k )  m-+l r ( k -  I )  r ( k - m + l )  

h - - - - - b  - I 
Fig.1 Scticmatic of a generic decision feedback equaliser. 

Given the channel in ( l ) ,  the value of the noiseless channel 
output vector 

(4) 
is specified by the symbol sequence s ( k )  = [ s > ( k )  s : ( k ) l T ,  
where 

( 5 )  

i ( k )  := l i ( k )  ' ' ' i ( k  - m + l)]T 

T 
S! ( k )  = [ ~ ( k ) .  . . s ( k  - d) ]  

and 

s h ( k )  = js(k - r i  - 1 ) .  I . s(k - d - n)] ' .  ( 6 )  
Under the assumption that the given feedback vector is 
correct. that is. S,(k)  = s h ( k ) ,  the state of i ( k )  is determined by 
s , ( k ) .  For the M-ary PAM constellation, s , ( k )  has 
N, = Aid+' = M" combinations and, therefore, i(k) has N,c 
states. The states of i(k) can be grouped into M sets according 
to the value of s ( k  - d) :  

R;) = (i(k) = ry)Iz(k - d )  = I I i I M. (7) 

Each RY' contains .Wy' = N , / M  = M d  states. 

The Bayesian DFE [21],[23] can now be summarised, The 
p.d.f. of r r k )  = Ir (k)  . . . a ( k  - m + 1 ) I T  conditioned on 
s i x  - U )  = s, is 

p, (r (k) l s (k  - r i )  = s,) = c a:)pc(r (k j  -- ry'). I 5 i 2 M ,  (8) 

where ry'czRy', ay) are the a-priori probabilities ol ry' and 
p , ( . )  is the p d.f. of the noise vector e i k )  =: Ie(k 
. . .e(.( - m + t ) I '  Since all the channel states can br assumed 
io be equiprobable and the noise p.d.f. is Gaussian, (8) leads to 
the ill Bayesian decision variables 

N:' I 

I= I 

&+I 

I =  I 
q , ( k ,  a)  = exp(-/j r(k)  -- r~) I1 ' /2a~~,  1 2 i 2 M .  (9)  

Here a = [ao a i  . . . u ~ , , - ~ ] ~  is included i n  the expression of 
Bayesian decision variables to emphasise that the channel 
states are computed based on the given channel a. The 
minimum-error-probability decision is defined by 

s ^ ( k - d ) = s , -  if  ~ l - ( k , a ) = m r u r ( q , ( k . a ) .  1 < i S M } ,  ( I O )  

which provides the optimal solution for the equalisation 
structure of Fig. 1. 

When the channel is unknown and no training period is 
provided, joint channel estimation and symbol detection c m  
be performed based on a blind implementation of the Bayesian 
D E .  The basic idea is to identify the N,< "conditional" 
channel estimates using the N ,  sequences of s f ( k )  and to 
design the N, corresponding Bayesian D E S .  The detected 
symbol is chosen to be the best solution of these N ,  
"conditional" D E S .  Specifically, at sample k ,  given the 
feedback vector S,(k) ,  an "unconditional" channel estimate 
i ( k  -. 1 - - d )  and an estimated MSE q ? ( k  - I -d ) ,  the 
ciwrations of the blind equaliser are as follows: 

N, "conditional" normalised I M S  (NLhfS) channel 
esumators update N ,  "conditional" channel esrimates. 
Given a / ( k  - 1 - d )  = i ( A  -. I - d) ,  the Ith esumato: 
forms i i / ( k )  from [ S T , / ( k )  s l ( k ) J T  and r ( k ) ,  where S,.l(X) 

is the fth sequence ofsf(k) .  

For each i / ( k ) ,  a Bayesian DFE is decicned u i t h  the 
required noise vanance CT: being 5ubstitu:ed by 
a: (k  - 1 - d).  The Ith "conditional" Bayesian D E  
provides a tentatlve decision S"'(R - d )  = s,,. 

The detected symbol i i k  - d )  is then chosen 10 be the 
best solution of the N ,  tentatlve decisions s^"'(k - dj, 
1 2 1 I N,T.  

Given r ( k  - d )  and [ f (k - d )  . . . f (k  - d - no + 
l ( k -  1 - d )  is updated to a ( k - d )  using the NLMS 
algorithm. The estimated MSE is adjusted according to 

n - I  1 ." . 
~ ( k  - d )  = r ( k  - d )  - C 6 , ( k  - d ) i ( k  - d - i), 

I* 

a?(k - d )  = ( 1  - /&(k - 1 - d )  + & E ? ( k  -. d) .  

where 0 < pr < 1 is an adaptive gam. 

(11)  

The complexity of the above blind adaptive equaliser depends 
on N ,  = Mm, and the steps ( I )  and j i i )  involve ertensibe 
computation However, these two steps consis[ of A', identical 
components and are suitable for parallel miplementatim 
Although increasing the length m of r(L) generally >peeds up 
the convergence of the adaptive aljmrithm I[ is advisable 10 
Lhoox a modest value of m such as ' s  normally used in  the 
D E  

3. I Sign ambiguity of the channel estimare 

Before discussing how to initialise the above blind equaliser. I[ 

is necessary to discuss the phenomenon known a sign 
ambiguity. When !he adaptive algorithm converges. t.he 
channel estimate i can converge either to a or -3. 731s 
phenomenon is essentially due to the symmetry of this 5igna! 
constellation and because there is insufficient infomiation for 
the blind channel estimator to distinguish between 3 ana -a 
This ambiguity problem is not unique to the present blinc 
equaliser. All other existing blind adaptive alponthms basec 
on joint channel and data estimation suffer the same problem. 
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3.2. Initialisation 

Initial choices of c$(k - 1 - d), B&) and d(k - 1 - d )  at k = 0 
are required to start the blind adaptive process. The initial 
value of the estimated MSE does not have any serious effect 
on the performance of the blind equaliser, and .,'(-I - d )  can 
simply be set to a small positive value. A previous simulation 
study [23],[25],[26] has suggested that performance of the 
Bayesian equaliser is relatively insensitive to e m r  in the 
estimated noise variance. A common choice for the initial 
feedback vector is gb(0) = [0 - - - OIT with the initial channel 
estimate usually set to &I-  d)  = [O e - Of. However, given 
this zero initial estimate, the blind channel estimator tends to 
converge falsely to an "equivalent" minimum phase channel. 
To overcome this difficulty, one element of d can be initialised 
to a non-zero value. 

If the ith channel tap a; is known to have the largest 
amplitude, setting hi(-l - d)  to 1.0 and the rest of ii(-I - d) to 
zeros is obviously a better initialisation strategy. Since the 
channel tap which has the largest amplitude is unknown, 
several possibilities must be tested. This suggests an expansion 
of the blind equaliser to include several units of the basic 
algorithm (steps (i) to (iv)). In theory, nu units are needed to 
cover the nu initial estimates, and the ith unit, 0 I i I nu - 1, 
is given the initial channel estimate 

h;(-l -d )  = 1, hi(-1 - d )  =0, OS j 5 n u  - 1 and j #  i. (12) 
In practice, no: all of these candidates need to be examined. 
For example, statistically speaking, it is unlikely that the last 
channel tap uno-l will have the largest amplitude. There are 
another nu candidates, each having an initial channel estimate 
bi(-l - d )  =-1. hj(-l - d )  = 0.0 I j I nu - 1 and j f i. (13) 
However, these nu units need not be tested since the blind 
equaliser is incapable of distinguishing between a and -a. If a 
unit converges, its channel estimate converges either to a or to 
-a, and its estimated MSE 0,' will be significantly smaller 
than those of the units which do not achieve convergence, 
Thus those units which perform poorly in terms of estimated 
MSE can then be switched off. Similar expansion can be 
applied to the initial feedback vector. This enhances the 
reliability of the blind equaliser at the cost of increased 
complexity. A reduced constellation approach may be adopted 
to assign the initial choices of 5(0) by assuming that 
P(-d). . ., P(-d - nu + 1) are binary. The number of initial 
choices can further be reduced by only assigning 
f(-d), - ., f(-d - i ) ,  i < n, - 1, to nonzero values. 

3.3. Simulation study 

A simulated channel involving the 4-ary PAM symbol 
constellation is used to illustrate the behaviour of the proposed 
blind equaliser. In practice, the performance of the blind 
equaliser can only be observed through the estimated MSE 
(1 1). In simulation, the true performance of the blind equaliser 
can be assessed by the channel estimation error, which is 
defined as the following mean tap error (MTE) 

n.-l 

w 
~ : ( k  - d )  = 11 f B(k - d )  - 4l2 = C (krij(k - d )  - ai)2. (14) 

In the expression (14). -B(k - d )  is used if B converges to -a. 
Otherwise, ii(k - d)  is used. The example used was a five-tap 
channel with the transfer function 

A(z) = -0.205 - 0.513~" + 0.719~-~ + 0.369~"~ 

+O. 2 0 5 ~ ~ .  (15) 
The three structure parameters of the Bayesian DFE were 
chosen to bed = nu- 1 =4, m = d+ 1 = 5  and n = n,- 1 =4. 
The noise variance was chosen as U,' = 0.005, giving rise to a 
SNR=3OdB for the 4-ary PAM constellation. The NLMS 
algorithm had an adaptive gain of 0.1 while the adaptive gain 
for estimating the MSE was 0.02. Fig.2 depicts the estimated 
MSEs and the MTEs of the blind adaptive algorithm starting 
from different initial channel estimates (12). where the label Ii 
indicates that the nonzero element of the initial estimate is 
di(-1 - d). From Fig.2, it can be seen that the blind adaptive 
unit I2 achieved convergence. The channel estimate of this 
converged unit is plotted in Fig.3. Average performance of the 
blind adaptive unit + over 10 different runs with 
9(0) = [s(-5) ~(-6) 0 01 is illustrated in Figs. 4 and 5. 

The simulation results clearly demonstrate the fast 
convergence of the blind Bayesian DFE for joint channel 
estimation and symbol detection. For the Clevel symbol 
constellation. convergence was achieved in a few hundred 
symbols. In the case of the channel (15) with Cary PAM 
symbols, the convergence rate was observed to be less 
consistent in the different runs in comparison to 2-ary PAM 
simulation results not presented here. In some runs, the 
algorithm achieved convergence in less than 500 samples, 
while in other runs it needed 600 to 700 symbols to achieve 
convergence. Increasing the decision delay to d = 5 and, 
consequently. m = 6 will result in faster and more consistent 
convergence performance. However, this would result in a 
dramatic increase in computational complexity. For multiple 
signal levels, the estimation error fluctuates more violently 
compared with the binary case. Consequently, care must be 
exercised in the selection of the two adaptive gains. 

4. Conclusions 

A blind Bayesian decision feedback equaliser has been 
developed for joint channel estimation and symbol detection. 
It has been shown how the complete blind equaliser is built up 
with many identical adaptive units. Each of these units 
consists of a bank of simple least mean square channel 
estimators and Bayesian decision feedback equalisers. An 
efficient parallel implementation can therefore be realised 
readily. Simulation results have demonstrated fast convergence 
of this blind equaliser. Convergence can generally be achieved 
in less than 100 symbols when binary symbol constellation is 
used and within a few hundred symbols when a 4-level symbol 
constellation is used. 

5. References 

[ I ]  Y. Sato. "A method of self-recovering equalisation for 
multilevel amplitude-modulation systems," IEEE Trans. 
Communications, Vol.COM-23, pp.679-682, 1975. 

4 13 

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on April 07,2021 at 12:29:28 UTC from IEEE Xplore.  Restrictions apply. 



D. Godard, "Self-recovering equalization and carrier 
tracking in two-dimensional data communication 
systems, " IEEE Trans. Communications. Vol .COM-28 e 

pp. 1867- 1 875. 1980. 

J.R. Treichler and B.G. Agee. "A new approach to 
multipath correction of constant modulus signals," IEEE 
Trans. Acoustics, Speech and Signal Processing, 
Vol.ASSP-3 1, No.2. pp.459-472, 1983. 

G. Picchi and G. Prati, "Blind equalization and carrier 
recovenng using a stop-and-go decision-directed 
algonthm." IEEE Trans. Communications, 
V0l.C0M-35. pp.877-887, 1987. 

J.R. Treichler, "Application of blind equalizalon 
techniques to voicehand and RF modems," in Preprints 
4th IFAC Inl. Symposium Adaptive Sysrem in Conrrvl 
and Signai Processing (France), 1992. pp.705-713. 

J .  Karaoguz and S.H. Ardalan, "A soft decision-directed 
blind esualization algorithm applied to equalizatlon of 
mcbile communication channels," i n  Proc. ICC'92 
(Chcago). 1992, VOI.3, pp.343.4.1-343.4.5. 

S. Chen. S. McLaughlin. P.M. Grant and B. Mulgrew, 
"Reduced-complexity mu1 ti-stage blind clustering 
equaliser," in Proc. ICC'93 (Geneva), 1993, V01.2, 
pp.1 149-1 1.53. 

K.S. Lii and M. Rosenblatt, "Deconvolution and 
estimation of transfer function phase and coefficients for 
non-Gaussian linear processes." Ann. Starist.. Vol. 10, 
pp.1195-1208. 1982. 

G.B. Giannakis and J.M. MendeI, "Identification of 
nonminimum phase system using tugher order 
statistics," IEEE Trans. Acousncs. Speech and Signal 
Pmcrssing. Vo1,ASSP-37, pp.360-377, 1989. 

H H Chiang and C L Nikias, "Adaptive deconvolution 
. m i  identihcauon of nonminimum phase FIR systems 
bawd o n  cumulants," IEEE Trans Automatic Conrml, 
Vol.AT-35, p p  36-47. 1990. 

D fiarinahos and C.L. Niluas, "Blind equalizabon 
using a tncepst"-based algorithm," IEEE Trans. 
C O U I ~ I U ~ ~ ~ ~ - J ~ I U ~ S .  VOI 39. No.5, pp.669-682, 199 I .  

A G Bessios arid C L. Nikias, "Blind equaliutioe based 
09 cepstra of power spectrum and tncoherence." in  

Ptoc SPIE (San Diego), 1991. Vol 1565. pp.166-177. 

F.-0. Zheng, S. McLaughlin and B Mulgrew, 
"Cumulant-based deconvolution and identification: 
several new families of linear equations," EURASIP 
Signa1 Processing J., Vo1.30. No.2. pp. 199-219, 1993. 

F.-C. Zheng. S. McLaughlin and B. Mulgrew, "Blind 
equalizaticjn of nonminimum phase channels: higher 
order cumulant based algorithm." IEEE Truns. Signal 
Processing. vo1.41, No.2, pp.681-691, 1993. 

G. Kawas and R. Vallet, "Joint detection and estimation 
for transmission over unknown channels,'' i n  Pmc. 
Douzienne Colloque GRETSI (France), 1989. 

M. Ghosh and C.L. Weber. "Maximum-likelihood blind 
equalization," in Proc. SPiE (San Diego). 1941, 
V0I.1565, pp.188-195. 

N. Seshadn, "Joint data ;2 1 channel esumation using 
blind trellis search techi ues," submitted to I E E  
Trans. Communications, I I. 

I(. Giridhar, J.3. Shynk ,d R.A Uus, "A modified 
Bayesian algonthm H I ~ I I  decisioi-, teedback for blind 
adaptwe equalizauon, in  Prepnnts 4th IE4C Int. 
Symposium Adaptive L5 s t e m  in Control m d  SigMf 
Processing (France), 1432, pp.737-742. 

E. Zervas. 1. ProaLs and V Eyuboglu, "A quantized 
channel approach 10 blind equalization,' in Proc. 
ICC'92 (Chicago), 1992. Vol 3. pp 35 1 8 1-35 1.8.5. 

J C'a Proakis, "Adaptwe algonthms for blind channel 
equalizatmn," in Proc. 3rd IMA Conf Mathematics 
Sigrul Processing (University of Warwich, UK), 1992. 

S. Chen, B. Mulgrew and S. McLaughlin. "Adaptive 
Bayesian decision feedback equaliser based on a radial 
basis function network," in Proc. ICC'92, (Chicago), 
1992, V01.3, pp.343.3.1-343.3.5. 

D. Williamson, R.A. Kennedy and G.W. Pulford, "Block 
decision feedback equalization," IEEE Tram 
Communications. Vo1.40, No.2, pp.255-264. 1992. 

S .  Chen. B Mulgrew and S McLaughlin, "Adaptwe 
Bayesian equaliser with decision feedback," lEEE 
Tram Signal Processrng. to appear, September, 1993 

K Abend and B.D. Fntchman, "Stausticd detecuon for 
communication channels with inters) mbol 
interference," Pruc IEEE, Voi 5 8 ,  No 5 ,  pp.779-785. 
1970. 

S Chen and B. Mulgrew, "Overcoming co-channel 
interference using an adaptive radial basis function 
equaliser," EURASIP Signal ProcessinR J.. Vol.28. No.  I ,  
pp.9 1-  107, 1992. 

S Chen, B. Mulgrew and P.M Grant. " A  clusrenng 
technique for digital corniTiunlcations channel  
equalisation using radial basis iuriction netvr,orks.' jE€€ 
Trans. Neural Netwvrh. to Appear. May, 1993. 

4/4 

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on April 07,2021 at 12:29:28 UTC from IEEE Xplore.  Restrictions apply. 



5 I I 1 1 1 1 1 ~  . . . . . . . 

0 

m -5 
-10 

-15 

-2 0 

-2 5 

h 

a 
W 

W 

0 200 400 600 800 
k 

m a 
w 

10 

0 

-10 

-20 

-3 0 

-40 

-50 
0 200 400 600 800 

k 
Fig.2 Estimated mean square errors and mean tap errors of 
adaptive units with different initial estimates. &,(O)= 
[O,O 0 0IT and the label Ii  indicates the ith unit. 
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Fig.3 Channel estimate of adaptive unit 12. Bh(0) = (0 0 0 0IT. 
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Fig.4 Average estimated mean square error and mean tap error 
of adaptive unit I ,  over IO runs. = [s(-s) ~(-6) o 0 1 ~ .  
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Fig.5 Average channel estimate of adaptive unit I2 over 10 
runs. s,,(o) = [s(-s) ~(-6) o 0 1 ~ .  
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