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Abstract The orthogonal least squares (OLS) algorithm [l] is an efficient implementation 
of the forward-selection [2] method for subset model selection. The ability to find good sub- 
set parameters with only a linearly increasing computational requirement makes this method 
attractive for practical implementations. This technique, however, has been criticised [2] as it 
does not guarantee to find an optimum solution. 

In this paper, we examine why forward-selection technique can fail to find optimum subset 
models and present a modification scheme to improve the selection process. 

1. Introduction In signal prediction of time series with nonlinear dynamics, improved 
performance can normally be achieved by using a nonlinear predictor rather than a linear one. 
The current popular implementations of nonlinear predictors include the use of radial basis 
functions [ 1,3] expansions and Volterra expansions [4]. These implementations create nonlinear 
predictors that have the linear in pummeters structure (figure 1). The recent introduction of 
fuzzy basis functions by Wang and Mendel [5] also exhibits this linear in parameters structure. 
Such a structure dows  the predictor to be represented by a linear regression model, and thus 
permits the use of the forward-selection method for subset model selection. 

Initial models created from these nonlinear expansion techniques are usually very large. Such 
large models can normally be reduced to a smaller model without incurring much performance 
loss if we can select the parsimonious model carefully. 

This paper is organised as follows: Section 2 reviews the OLS algorithm for subset model 
selection. Some results are presented in section 3 showing performance of subset models found 
using the OLS algorithm. Section 4 examines the problem of sub-optimal selection in applying 
the OLS algorithm and introduces a simple backtracking approach to improve selection process. 
The results of using the backtracking OLS are presented along with some concluding remarks 
in section 5.  

2. OLS Algorithm 
parameters structure as a linear regression model: 

Let us represent these nonlinear predictors that have the linear in 

y = X h + e  
Y 

where y is the desired signal vector, X is the input matrix of size N x K ,  h is the parameter 
vector of the model and e the error vector of approximating y by Xh. The column vectors y 
and e contain N elements, i.e., there are N data samples and N values of error. 

The original X matrix have K columns. To create a parsimonious model which has R pa- 
rameters, we are trying to pick R columns from the input matrix X to form a subset input 
matrix Xs. The OLS selects columns from the input matrix sequentially. At each selection, all 
the unused columns are studied to determine how each column will contribute to fit the desired 
vector y with the current subset Xs. The column which forms the best combination with Xs 
to model y will be picked to form the new Xs. The above procedure is then repeated until the 
number of columns in Xs equals to R. 
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To understand the OLS algorithm, a brief review of orthogonal projection is presented. 
Given a pair of vectors U and v, the projection of vector U onto v, Proj,u, can be thought of 
as the shadow formed by vector U onto v when an imaginary light is directed to U ( see figure 
2). Orthogonal projection is useful because it possesses the property that the projected vector 
Proj,u is the best approximate of U using v. The followings are the definition of projection 
and the equation to find the orthogonal residual. 

Proj,u = v (5) 
w, = U -  Proj,u (3) 

where llv{l denotes the Euclidian norm of vector v. w, is the residual when v is used to 
approximate U. This vector is orthogonal to v. 

The orthogonal projection of a vector is used in the OLS algorithm to determine the cor- 
relation of each column [ C ~ , C ~ , - - - , C ~ - ~ ]  of the input matrix X to the output vector y. The 
column selected wiU be the one that has the smallest residual in the Euclidian norm sense when 
the vector y is projected to it. 

OLS Algorithm 

1. Initialise 
0 no-colfound = 0; 

0 copy the vector y to yorioino~. 

0 For columns i = 0 to (K - 1) of the 
input matrix X that are unused, 
- Project y onto ea& column ci 
- residud. = y - Proj,,y. 

Col-Found[ 1. . . RI = 0; 

2. Calculate the residual vector 

3. Select a column 
0 The column selected c, is the col- 

umn that has the smallest Euclid- 
ian norm for the residual vector, 
residual;. 

0 no-colfound = no-colfound + 1 
Col-Found[no-colfo~d] = j. 
This array Col-Found stores the in- 
dexes of the selected columns of X 

to form xs. 
Mark the selected column as used. 

0 Update y as residualj, i.e., 
y = y - Proj,,y. 

This new y can be thought of as 
the unexplained desired output of 
the present model. 

4. Update the X matrix 
For columns i = 0 to (K - 1) of X that 
are unselected, update each column ci as 
follows: 

ci = ci - Projc,ci. 
This is to remove the contribution al- 
ready given by the selected column c,. 

5.  Repeat steps 2-4 until the number of 
columns found to form Xs is equal to 
R, the desired number of coefficients for 
the subset model. 

Remark: The use of orthogonal projection to select the columns (steps 2,3) is the key to 
the OLS algorithm. In fact, this algorithm is very similar to the Gram-Schmidt (GS) orthogo- 
nalisation scheme [SI. The only difference is that instead of orthogonalising the X matrix from 
the first column to the last in a sequential order as in the GS scheme, the columns are now 
orthogonalised in the order of column’s contribution to the approximation of the desired output 
vector y. 

3. Simulations A Volterra predictor to perform single-step prediction on two different 
chaotic time series, the Duffing’s and the Mackey-Glass time series, is examined. The Volterra 
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predictor was created using a degree 3 and embedding vector length 6’ expansion which gener- 
ated a model with 84 parameters. 

The chaotic time series were generated using the following equations : 

Duffing’s time series 

d2s(t) ds ( t )  + a- - s ( t )  + s3 ( t )  = Pcos(t) dtz dt (4) 

where cy = 0.25, p = 0.3, s(0) = 0, 
added to this series to create a signal to noise ratio (SNR) of -50dB. 

= 0 and step-size = 0.2 sec. Gaussian noise were 

Mackey-Glass time series 

as ( t  - .) 
1 + s y t  - r )  

-- ds(t )  - -bs(t) + 
dt (5) 

where T = -21, a = 0.2 , b = 0.1, initial conditions s(t - r )  = 0.5 for 0 5 t 5 T ,  step-size 
= 2 sec. Gaussian noise were added to create a SNR of -50dB. 

The following measure of prediction quality, the normalised mean square error (NMSE), was 
used: 

N - 1  2 

Ci=o vi 
NMSE = 10loglo ( ‘i) 

where N is the number of signal samples. The element ei is the error between the desired 
signal yj and its estimation &. The approximation of the vector y, i.e. 3, was formed using 
9 = (Xs)(hs). The parameter vector hs was calculated using the least squares solution [6]. 

From equation (6), we can see that in the case when we have perfect prediction, ei = 0 for 
0 5 i 5 N - 1, the NMSE will be -00 dB. When there is no prediction, & = 0,ei  = yi for 
0 < i 5 N - 1, the NMSE will be 0 dB. 

In the simulation, the OLS algorithm was used to find subset models from the full 84 pa- 
rameter model. Using the subset models found, single step prediction performance for the two 
time series was calculated. The results in figure 3 show that for the Duffing’s test signal, a 
subset model of 10 parameters was sufficient to achieve a performance level within 1 dB of the 
full model. For the Mackey-Glass case (figure 4), a subset model of 40 parameters was required 
before the performance reaches within 1 dB of the full model. 

In both cases, it was shown that a performance very close to the full model’s performance 
can be achieved by using a parsimonious model selected by the OLS algorithm. 

4. Backtrack Algorithm V Before introducing the backtrack algorithm, an example is 
presented to show why the OLS algorithm may fail to select an optimal solution. Let the input 
matrix X and the desired output vector y have the following values: 

1 0  1 

x = [ o  0 0 0.1 1 . = [ ; I  
0 0 0.1 

The columns of X are numbered as co,cl and c2 respectively. When applying the OLS 
algorithm to the above problem, the order of columns selected to form the subset model Xs 
was c2, CO and c1. It is true that for the case of a one column Xs, using c2 will give the best 

‘Length 6 was chosen to satisfy Takens’ theorem [7] for the length of the embedding vector. 
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approximation of y. However, when a two parameter subset model is desired, the best choice of 
Xs will be to use columns ca and c1. Using any other combinations to form Xs will yield poorer 
results. As the present OLS algorithm does not backtrack to hunt €or a better Xs subset, this 
example shows that a sub-optimal subset of the two parameter Xs was formed using c2 and CO. 

From this example, it is clear that subset selection can be improved if we can change the 
columns selected in the previous stages, that is, a larger subset model does not necessarily 
contain all the columns of the smaller subset selected previously. This is the basic idea of the 
backtracking approach. 

To use the backtracking method, the OLS algorithm is first applied to select the initial subset 
model of R terms. As the subset model size is increased from 1 to R, the NMSE will decrease 
monotonously. The drop of NMSE at each parameter's inclusion is calculated. By studying how 
each parameter contributes to reducing the approximation error, we can determine if the order 
of parameter selection should be changed. The idea of the backtrack procedure is to introduce 
parameters that have provide better performance-gain before those that provide less significant 
gains. The details of the algorithm are given in the following paragraph: 

Backtrack OLS Algorithm 

1. Use the OLS approach to find the initial 
XSR set. The subscript R of Xs imply 
that the matrix Xs has R columns. 

2. For i = 1 to R 
determine the NMSE values of using 
Xsi to approximate y, where Xsi con- 
tains i columns selected from X by 
OLS algorithm. Store these values 
into the bench-mark array BM-NMSE, 
i.e., BM-NMSEEi] = NMSE attained 
using the subset model containing i 
columns. This array serves as a bench- 
mark for comparing against the perfor- 
mance of subset models selected using 
the backtracking approach. The array 
drop-NMSE is defined as: 

drop-NMSE[i] = 
BMXMSE[i] - BM-NMSEIi-I] 

3. For i = 2 to R 
- F o r j = i + l t o R  
if (dropJMSE[j] > dropJMSE[i]) 

Y 

(a) Form a Xtmp matrix using the first 
i - 2 columns of XsR and column 

j of XSR. This Xtmp matrix will 
have i - 1 columns. 
If i = 2, Xtmp matrix will be a sin- 
gle column matrix with the column 
from column j of XsR. 

Reapply the OLS method to find 
Xs', where Xs' is the selection of R 
columns from X based on the ini- 
tial set specified in Xt,,. 

(c) Determine the NMSE values us- 
ing Xs' to model y and store it 
into the array tmprJMSE. Each el- 
ement in tmp-NMSE will be com- 
pared to its corresponding element 
in BM-NMSE. Any performance 
improvement in tmp-NMSE im- 
plies that the new subset found us- 
ing the backtrack procedure is bet- 
ter. The indexes of the columns 
used to form this subset are stored. 
We then update the BM-NMSE ar- 
ray with the new improved values. 

(d) Skip the rest of j ,  i.e. set j = R+1. 

Remark: Step 3a is the key idea to the backtrack algorithm. A parameter that has provided 
a better contribution to model vector y albeit in a larger subset model Xs replaces the original 
selection. Although this exchange is not optimal in forming the (i - 1)-terms subset model 
X S ( ~ - ~ ) ,  to the i-terms subset model Xsi, it is possible for better combinations of Xs' to be 
formed. 
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5. Conclusions The backtracking algorithm was applied to find subset models for pre- 
dicting the two chaotic time series. The performance of the subset models found using the 
backtracking approach is shown in figure 3 and 4. For both sets of test data, the backtrack 
OLS algorithm achieves better performance than the standard OLS algorithm. However, the 
performance advantage is not significant and when viewed in combination with the additional 
computational complexity, it would be difficult to recommend it as a significant alternative to 
the standard OLS algorithm. 

One possible way of reducing computation time for the backtrack OLS is to first check the 
subset model Xs’ to be examined. We have observed that the backtracking OLS tends to re- 
examine many similar models during the selection process and thus computational requirement 
can be reduced by ignoring those subsets already tested. 
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Figure 1: Nonlinear Predictor of Order K 

Figure 2: Orthogonal projections 
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Figure 3: OLS and Backtrack OLS on Duff- 
ing's series 

0 1 0 2 0 3 0 4 0 5 0 6 0 1 0 8 0  
Subsetmodelwe 

Figure4: OLS and Backtrack OLS on 
Mackey-Glass series 
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