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Abstract 
The paper presents a novel two-layer 
learning method for radial basis function 
(RBP) networks. At the lower layer, a reg- 
ularised orthogonal least squares (ROLS) 
algorithm is employed to  construct RBF 
networks while the two key learning pa- 
ramet ers , t he regularis at ion par amet er 
and hidden node's width, needed by the 
ROLS algorithm are optimized using the 
genetic algorithm at the higher layer. Net- 
works constructed by this learning method 
have superior generalisation properties, 
and the computational complexity of the 
method is reasonable. Nonlinear time se- 
ries modelling and prediction is used as an 
example to demonstrate the effectiveness 
of this hierarchical learning approach. 

1 Introduction 
The genetic algorithm (GA) [l] is ,a pow- 
erful nonlinear optimisation technique and 
has attracted considerable attention of the 
neural network community. A key advan- 
tage of using the GA as a neural n'etwork 
learning method is that it is capable of 
achieving optimal or near optimal nsetwork 
parameter settings under given n'etwork 
structure and training conditions. 'This is 
however obtained at the cost of extensive 
computational requirements. 

Simpler learning can often be achieved 
if a neural network has a linear-in-the- 

parameters structure. When the width 
parameter is fixed, a RBF network has 
such a structure and an orthogonal least 
squares (OLS) algorithm [a] has been 
developed for constructing parsimonious 
RBF networks. A well constructed small 
neural network often has better general- 
isation properties compared with a large 
full-size1 neural network model. 

If training data are highly noisy, the par- 
simonious principle alone may not be suf- 
ficient to guarantee good generalisation 
performance. By combining the parsi- 
monious principle with the regularisation 
method [3], a ROLS algorithm has been 
derived [4], which has superior generalisa- 
tion properties under severely noisy con- 
ditions. A good regularisation parameter 
required by the ROLS algorithm can be 
obtained by iterations using a Bayesian 
formula, [ 5 ] .  The regularisation parameter 
so generated however may not necessarily 
be the best one as will be demonstrated 
later. 

We propose a two-level learning hierarchy 
for constructing RBF networks based on 
the combined GA and ROLS algorithms. 
Because the generalisation performance is 
a complex multimodal function on the 
space of the width and regularisation pa- 
rameter, these two key parameters are op- 
timised using the GA at the upper level. 
Given these two parameters, the ROLS 
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ROLS 1 

algorithm is employed to construct parsi- 
monious RBF networks at  the lower level. 
Since the GA only optimises two parame- 
ters and the lower layer only involves lin- 
ear learning problems, the computational 
complexity of this combined approach is 
much less than that of using the GA to 
learn all the network parameters. RBF 
networks produced by this learning hier- 
archy have significantly better generalisa- 
tion performance as is demonstrated by 
the included examples of nonlinear time 
series modelling and prediction. 

ROLS 2 0 e 0 /ROLS p , 

The RBF network considered in this paper 
has a Gaussian nonlinearity with a uni- 
form width p, and the network output is 
defined by 

n 

F,(x(F)) = w; exP(-Ilx(b)-ciI12/P) (1) 
z = 1  

where w, are the weights and c, are the 
centre vectors. The approach developed 
however is not restricted to this particular 
Gaussian RBF (GRBF) network. 

GA 

I 

fi : fitness value p : population size 

Figure 1: Schematic of two-layer learning 
hierarchy for RBF networks. 

2 The learning scheme 
Fig.1 illustrates the proposed two-layer 
learning scheme. At the upper layer, the 
GA, with a population size of p ,  learns the 
width p and the regularisation parameter 
X based on the fitness function f values 
provided by the lower layer. The Lower 
layer consists of the p parallel ROLS al- 
gorithms. The data  set is divided into a 
training set and a testing set. Given p, 

and A,, the ith ROLS algorithm constructs 
a RBF network. The generalisation per- 
formance, the mean square error (MSE) 
over the testing set, of the resulting RBF 
network is computed. The inverse of this 
generalisation performance is the fitness 
function value f ;  for the given p; and A;. 

The ROLS algorithm [4] uses a forward re- 
gression procedure to  construct parsimo- 
nious RBF networks based on the follow- 
ing zero-order regularised error criterion 
J R  = eT, + XgTg (2) 
where e is the error vector between the 
desired outputs and the network outputs, 
and g is the orthogonal weight vector. 
The implementation of this algorithm is 
similar to that of the OLS algorithm [a ] .  
The simple zero-order regularisation em- 
ployed significantly improves the general- 
isation properties of the constructed net- 
work model. 

I 

lo&)( 1 
Figure 2: Mean square error as a function 

of regularisation parameter. 

It was often observed that regularised 
learning exhibits the characteristics of 
Fig.2 [6,7] .  This appears to  suggest that  
generalisation performance curve may 
have a flat region. A good X value can 
be obtained using the following iterative 
procedure: Given an initial guess of A, the 
learning algorithm constructs a RBF net- 
work. This in turn allows an updating of 
X using the evidence formula 

m 

where y is the number of good parameter 
measurements [5], and N is the number of 
training data. 
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It should be emphasized that the above 
Bayesian procedure in general can only 
obtain a local optimal value of A arid Fig.2 
does not provide a complete picture. In 
fact, the generalisation performance or fit- 
ness function f is a highly complicated 
multimodal function on the space of p and 
A. The characteristics of Fig.2 may only 
be obtained under a particular value of p. 
We use a simple example to demonstrate 
these points. 

"I0 1 

lambda wdih 

Figure 3: Generalisation performance 
surface on space of p and A. 

Consider the modelling of the scalalr func- 
tion 

F,(x) = sin(2nz), O 5 II: 5 1 (4) 
by a GRBF network. The training data 
was generated from F,(z) + e ,  where the 
noise had a Gaussian distribution with 
zero mean and variance 0.02 and x was 
taken from the uniform distribution in 
(0, 1). The training data had a signal-to- 
noise ratio (SNR) of 14 dB. Given values of 
p and A, the ROLS algorithm constructed 
GRBF networks. The learning procedure 
was terminated when the regularised er- 
ror reduction ratio [7] was smaller than 
a preset threshold. GRBF networlks con- 
structed had 5 to 7 nodes depending on 
values of p and A. The MSE between the 
noise-free system output F,(x) and the 
network response FT(x) was computed. 
The inverse of this generalisation perfor- 
mance as the function of p and X is plotted 
in Fig.3. 

Even for such a simple example, the 

complexity of the generalisation perfor- 
mance surface is apparent. A local opti- 
mal method cannot in general learn the 
global optimal values of p and A. Fur- 
thermore, performance improvement by 
achieving the global optimum is very sig- 
nificant. The choice of the GA as the 
upper level learning method is therefore 
well justified. The lower level of the learn- 
ing hierarchy consists of p parallel linear 
learning problems. A population size of 
p = 100 is usually adequate. The overall 
computational complexity of this learning 
approach is within the computing power 
of a standard PC or workstation. 

* OLS 

+ ROLS 

p-30 

-50 0 is 4 6 8 10 12 14 16 18 
signaVnoise ratio (d8) 

Figure 4: Generalisation performance 
wi-th and without regularisation 

for example 1. 

3 Elxamples 
Example 1. This is the simple example of 
modelling the scalar function used to  gen- 
erate Fig.3. To demonstrate superior gen- 
eralisation properties of regularised learn- 
ing under severely noisy condition, we 
used the two-layer learning scheme to  con- 
struct GRBF networks for different SNR 
conditions with and without regularisa- 
tion. For the case of no regularisation, the 
lower level employed the OLS algorithm 
and the upper level only learnt p. Fig.4 de- 
picts the generalisation performance, the 
MSE between F,(II:> and F T ( z ) ,  for these 
two cases. It can be seen that the sim- 
ple regularisation technique employed has 
superior generalisation performance under 
highly noisy training conditions. For the 
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training data  of SNR=14 dB, it was ob- 
served that the optimal pop t  = 0.27 and 
Xop t  = 2.5 x lop3 (corresponding to the 
highest peak foPt = 1.5 x lo4 in Fig.3) was 
achieved by the combined GA and ROLS 
learning. 
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Figure 5: Multi-step prediction perfor- 
mance for Mackey-Glass time series. 

Example 2. The second example was 
Mackey-Glass time series prediction. To 
make the task more realistic, small noise 
was added to  the time series samples, 
giving rise to  a SNR of 40 dB. A data 
set of 1000 samples were generated with 
the first 500 samples used as the train- 
ing set and the last 500 samples as the 
testing set. The GRBF predictors were 
constructed with and without regularisa- 
tion. Again in the case of no regularisa- 
tion, the upper level only learnt p. In the 
both cases, the constructed GRBF net- 
works had 25 centres. The multi-step- 
ahead prediction accuracies over the test- 
ing set were then computed and the results 
were plotted in Fig.5. From Fig.5, it can 
be seen that better generalisation perfor- 
mance was achieved with regularisation. 

Example 3. This example was sunspot 
time series prediction based on the 280 
sunspot observations over the years 1700- 
1979. The observations of 1761-1979 were 
used as the training set and the observa- 
tions of 1700-1760 were used as the testing 
set. Two GRBF models of 25 centres were 
constructed using the learning hierarchy 
with and without regularisation. The nor- 

malized multi-step-ahead prediction accu- 
racies of the two resulting models over the 
testing set are plotted in Fig.6. Figs.7 
and 8 compare the 5-step-ahead predic- 
tions obtained by the two models while 
Figs.9 and 10 show the ll-step-step-ahead 
predictions of the two models. 

Prediction Step No 

Figure 6: Normalized prediction 
performance for sunspot time series. 

4 Conclusions 
A novel two-level learning hierarchy has 
been developed for RBF networks by com- 
bining the GA with the ROLS learning. 
The GA at the upper layer finds the global 
optimum of the width and regularisation 
parameters while the ROLS algorithm at  
the lower layer automatically constructs 
RBF networks. The method is computa- 
tionally more efficient compared with us- 
ing the GA to directly learn all the net- 
work parameters. Time series modelling 
and prediction has been used to illustrate 
superior generalisation properties of the 
proposed learning method. 
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Figure 7: 5-step-ahead prediction using 
model obtained without regularis,ation. 
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Figure 8: 5-step-ahead prediction using 
model obtained with regularisation. 
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Figure 9: 11-step-ahead prediction using 
modell obtained without regularisation. 
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Figure 10: 11-step-ahead prediction using 
mod el obtained with regularisation. 
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