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Abstract 

A blind adaptive algorithm for channel equalisation is 
proposed based on a joint channel estimation and data 
detection approach. A basic unit of the algaithm umsists of a 
bank of least mean square (LMS) adaptive film and Bayesian 
symbol-by-symbol decision feedback equalisen (DFEs). To 
increase reliability, a variety of initial conditions can be 
mered by including several such units. The pedormance of 
each unit is monitmd by examining its estimated mean square 
error (MSE), and those units which perform poorly can then 
be switched of€. The nature of this blind adaptive algorithm 
leads to simple and efficient parallel implematation. As is 
demonstrated in the simulation, convergence can be achieved 
within a few hundred symbols when a 4level symbol 
constellation is used. 

1. Introduction 

Since the pioneering work of Sat0 [ll. thm families of blind 
equalisers for nonminimum phase channels have emerged. The 
first family of blind adaptive algorithms. often referred to as 
Bussgang algorithms, constructs a transversal equaliser by 
optimizing some nonconvex criterion function using a gradient 
algorithm [1]-[71. A Bussgang-type blind equaliser typically 
has very low computational complexity but suffers fran the 
drawback of slow convergence. The second family of blind 
adaptive algorithms identifies the channel impulse response 
using techniques based on higher order cumulants (HOCs) 
[81-[141 and uses the resulting channel model to design au 
equaliser. This second class of blind equalisers, although very 
general and powerful. requires a large amount of data samples 
and extensive computation to estimate HOCs. Recently, blind 
equalisers based cm joint channel and data estimation have 
been proposed [151-[201. This third family of blind adaptive 
algorithms typically employs some blind approximation of 
maximum likelihood sequence estimation or its variants. The 
resulting blind equalisers are therefore computationally very 
expensive. However, a major advantage of this third approach 
is that relatively few signal samples are required to achieve 
equalisation objective. 

The present study derives a blind implementation of the 
Bayesian symbol-by-symbol DFE [211-[231 for joint data and 
channel estimation. It should be emphasized that the 
mechanism of Bayesian symbol-by-symbol DFE is quite 
different from that of the Bayesian sequence detection [241 
and, therefore, the blind equaliser proposed in this study is 

very merent frm that proposed in [181. A DFE consists of a 
feedforward section and a feedback section. If the feedforward 
section contains m channel output samples and the size of the 
transmitted symbol constellation is M, there are M" symbol 
combinaticms for the length of the feedforward section. At 
each sample instant, each of these M" symbol sequences can 
be used to produce an LMS channel estimate. Each 
"conditional" channel estimate is employed to design a 
Bayesian DFE fa: symbol detection. The best Bayesian D E  
in terms of a posterior probability density function (p.df.) is 
then chosen frm the M" "conditional" DFEs, and its detected 
symbol is fed back to the equaliser feedback section and used 
to update an "unconditional" channel estimate. These 
operations form a basic unit of the proposed blind equaliser. 
This blind equaliser can be expanded to include several such 
units. each covering a guessed initial condition. The 
performance of each unit is monitored and those units which 
perform poorly can then be switched off. The proposed blind 
equaliser is conceptually very simple and its total 
computational load is naturally decomposed into many simple 
and identical components, leading to an efficient parallel 
implementation. Simulation results are included to 
demonstrate its fast carvergence property. 

Throughout this study, the channel and symbols are assumed 
to be real-valued. This corresponds to the use of multilevel 
pulse amplitude modulation scheme ( M - m y  PAM). For the 
complex-valued chanuel and modulation schemes such as 
quadrature amplitude modulation, the derivation of the 
proposed blind equaliser is similar to the current real case. 

Specifically, the channel is modelled as a finite impulse 
response filter with a transfer function 

n,-1 

'10 
A(z) = a,z-'. (1) 

where n, is the length of the channel impulse response and U ,  
are the channel tap weights. The symbol sequeme {s (k) }  is 
independently identically distributed (i.i.d.1 and has an M-ary 
PAM constellation &efined by the set 

s , = 2 i - M - 1 .  1 S i 5 M .  (2) 
The received signal is given by 

r (k )  = i ( k )  + e( t )  = 

where ?(k) is the noiseless channel output and e(k) is an i.i.d. 
Gaussian noise with zero mean and variance He2(k)] = m:. 

n.-1 

1-0 

a,s(k - i) + e(k),  (3) 
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2. The Bayesian decision feedback equaliser 

The structure of a generic DFE is depicted in Fig.1. The 
equalisation process defined in Fig.1 uses the infarmation 
present in the observed channel output vector and the past 
detected symbol vector to produce a delayed estimate of the 
transmitted symbol, The three important structural parameters 
of the equaliser are the decision delay d .  the feedforward order 
m and the feedback order n respectively. The feedfmard 
order is usually related to the decision delay by m = d + 1 and 
the feedback order is given by n = nu + m -  d - 2  = nu - 1. In 
practice. d = n, - 1 is often chosen to m e r  the entire channel 
dispersion. 

f decisi. - device 
filtering J(k-  d )  

7" 

Fig.1 Schematic of a generic decision feedback equaliser. 

Given the channel in (l), the value of the noiseless channel 
output vector 

(4) 
is specified by the symbol sequence s(k) = [s?(k) st(k)lT, 
where 

(5 )  
and 
sb(k) = [s(k - d - 1). . . s(k - d - n)F. (6) 
Under the assumption that the given feedback vector is 
wmt, that is, &(k) = sb(k), the state of3 (k )  is determined by 
sf(k). For the M-ury PAM constellation, s f ( k )  has 
N ,  = Md+' = M" combinations and, therefore, i(k) has N, 
states. The states of 3(k) can be grouped into M sets according 
to the value of s(k - d): 

(7) 

i(k) = [ i ( k )  . . . i ( k  - m + l) lT 

S f ( k )  = [ s ( k ) .  . . s(k - d)IT 

R:' = {i(k) = ry)Is(k - d )  = si 1, 1 I; i s M. 
Each R Y  mth~ N,'" = N , / M  = M d  states. 

The Bayesian DFE [211,[231 can now be summarized. The 
p.df. of r(k) = [r(k)  . . . r ( k  - m + l)]' conditioned on 
s(k - d )  = si is 

N2' 
p,(r(k)ls(k - d )  = s i )  = ay)pe(r(k) - ry'). 1 < i I; M. (8) 

where ry)ERy, ay) 82e the a-priori probabilities of ry) and 
pJ.1 is the 8.d.f. of the noise vector e(k) = [e(k 
. . .e(k - m + 111 . Since all the channel states can be assumed 
to be equiprobable and the noise p.d.f. is Gaussian, (8) leads to 
the M Bayesian decision variables 

j=  1 

N? 
qi(k, a) = (9) 

 ere a = [ao u1 . . . ana-llT is included in the expressian of 
Bayesian decision variables to emphasize that the channel 
states are computed based on the given channel a. The 
minimumerrur-probabfity decision is defined by 
J(k - d )  = si* if q,.(k, a) = max{ q;(k, a), 1 I; i I; M}, (10) 
which provides the optimal solution for the equalisation 

exp(+ r(k) - ry\l 2/2az). 1 s i I; M. 
j-1 

structure of Fig. 1. 

3. Joint channel estimation and symbol detection 

When the channel is unknown and no training period is 
provided. joint channel estimation and symbol detection can 
be performed based on a bliid implementation of the Bayesian 
D E .  The basic idea is to identify the N ,  "conditional" 

design the N ,  cormponding Bayesian DFEs. The detected 
symbol is chosen to be the best solution of these N, 
"conditional" DFES. Specifically. at sample k, given the 
feedback vector ib(k),  an "unumditional" channel estimate 
l(k- 1 - d )  and an estimated MSE &k- 1 - d ) ,  the 
operations of the blind equaliser are as follows: 

ch-1 estimates wing the N ,  s e ~ u e n ~ e s  of s f ( k )  and to 

N, "Conditiml" normalized LMS (NLMS) channel 
estimators update N, "conditional" channel estimates. 
Given &(k - 1 - d )  = l(k - 1 - d) ,  the Ith estimator 
forms &(k) from [s?,(k) $E(k)lr and dk), where sf ,r(k)  
is the Ith sequence of s f (k ) .  
For each l,(k), a Bayesian DFE is desigoed with the 
required noise variance 0; being substituted by 
&- 1 - 4 .  The lth "conditional" Bayesian DFE 
provides a tentative decision +')(k - d )  = si*. 

The detected symbol J(k - d )  is then chosen to be the 
best solution of the N, tentative decisions $)(k- d), 
1<15N, .  
Given r(k - d )  and IJ(k - d )  . . . s'(k - d - n, + 1)1*, 
l(k- 1 - d )  is updated to P(k - d) using the NLMS 
algorithm. The estimated MSE is adjusted wcording to 

~ ( k  - d )  = r(k - d )  - n.-1 

id 
di (k  - d)s^(k - d - i). 

ff,2(k - d )  = (1 - p,)& - 1 - d )  + pee2(k - 

where 0 e p, e 1 is an adaptive gain. 

The complexity of the above bliid adaptive equaliser depends 
on N ,  = M", and the steps (i) and (ii) involve extensive 
computation. However, these two steps consist of N, identical 
compents  and are suitable for parallel implementation. 
Although k r e a s i n g  the length m of dk) generally speeds up 
the convergence of the adaptive algorithm, it is advisable to 
choose a modest value of m such as is normally used in the 
DFE. 

3.1. Sign ambiguity of the channel estimate 

Before discussing how to initialize the above blind equaliser, it 
is necessary to discuss the phenomenon known as sign 
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ambiguity. When the adaptive algorithm m e r g e s ,  the 
cbanrvtl estimate Q can convtqe either to a or -a. This 
phenomenon is essentially due to the symmetry of the signal 
constellation and because there is insufficient information for 
the blind channel estimator to distinguish between a and -a. 
This ambiguity problem is not unique to the present blind 
equaliser. All other existing blind adaptive algorithms based 
on joint channel and data estimation suffer the same problem. 

3.2. Initialization 

Initial choices of ~:(k - 1 - d) .  &(k) and i(k - 1 - d )  at k = 0 
are required to start the blind adaptive process. The initial 
value of the estimated MSE does not have any serious effect 
on the performance of the blind equaliser, and &-1- d )  can 
simply be set to a small positive value. A previous simulation 
study [231,[251,[261 has suggested that perfor" of the 
Bayesian equaliser is relatively insensitive to ermr in the 
estimated noise variance. A choice for the initial 
feedback vector is $(O) = [O . * * OIT with the initial channel 
estimate usually set to P(-1 - d )  = [O . . .OIT. However, g iva  
this zero initial estimate, the blind channel estimator tends to 
converge falsely to an "equivalent" minimum phase channel. 
To overcome this difficulty. one element of P can be initialized 
to a non-zero value. 

If the ith channel tap ai is known to have the largest 
amplitude, setting cii(-l - d )  to 1.0 and the rest of Q(-1 - d )  to 
zeros is obviously a better initialization strategy. Since the 
chamel tap which has the largest amplitude is unknown, 
several possibilities must be tested. This suggests an expansion 
of the blind equaliser to include several units of the basic 
algorithm (steps (i) to (iv)). In thew. n, units are needed to 
cover the nu initial estimates, and the ith unit, 0 5 i S nu - 1, 
is given the initial channel estimate 
Gj(-1-d) = 1. ci,(-1 - d )  =0, OS j 5 nu - 1 and j f i. (12) 
In practice. not all of these candidates need to be examined. 
For example, statistically speaking, it is unlikely that the last 
channel tap ana-l will have the largest amplitude. There are 
another nu candidates, each having an initial channel estimate 
iii(-l - d )  = -1, iij(-l - d )  = 0.0 I; j 5 n, - 1 and j it i .  (13) 
However, these n, units need not be tested since the blind 
equaliser is incapable of distinguishing between a and -a. If a 
unit converges. its channel estimate converges either to a or to 
-a, and its estimated MSE a: will be significantly smaller 
than those of the units which do not achieve convergence. 
Thus those units which perform poorly in terms of estimated 
MSE can then be switched off. Similar expansion can be 
applied to the initial feedback vector. This enhances the 
reliability of the blind equaliser at the cost of increased 
complexity. A reduced constellation approach may be adopted 
to assign the initial choices of &(O) by assuming that 
s^(-d); . .. 3(-d - nu + 1) are binary. The number of initial 
choices can further be reduced by only assigning 
s^(-d), . . ., 8(-d - i), i < nu - 1. to nonzero values. 

3.3. Simulation study 

A simulated channel involving the 4-ary PAM symbol 
constellation is used to illustrate the behaviour of the proposed 

blind equaliser. In practice, the performance of the blind 
equaliser can only be observed through the estimated MSE 
(1 1). In simulation. the true perfcamance of the blind equaliser 
can be assessed by the channel estimation e.rror, which is 
defined as the following mean tap error 0 

n.-1 

1 1 0  

~ z ( k - d )  =II*P(k-d)-a(12 = z ( M j ( k - d ) - ~ i ) ~ .  (14) 

In the expression (14). -P(k - d )  is used if Q converges to -a. 
otherwise. P(k - d )  is used. The example used was a five-tap 
channel with the transfer function 
A(z) = 4 .205-0 .513~- '+O.719~-~+O.369~~~  

4. 205z4. (15) 
The three structure parameters of the Bayesian DFE were 
chosentobed = n u  - 1 =4,  m = d +  1 = 5 and n = n, - 1 =4 .  
 he noise variance was chosen as U," = 0.005, giving rise to a 
SNR=3odB for the 4-ary PAM constellation. The NLMS 
algorithm had an adaptive gain of 0.1 while the adaptive gain 
for estimating the MSE was 0.02. Fig.2 depicts the estimated 
MSEs and the h4TEs of the blind adaptive algorithm starting 
from different initial channel estimates (12), where the label I, 
indicates that the nonzero element of the initial estimate is 
iI(-l - d). From Fig.2, it can be seen that the blind adaptive 
unit 12 achieved convergence. The channel estimate of this 
m e r g e d  unit is plotted in Fig.3. Average performance of the 
blind adaptive unit 9 over 10 different runs with 
Sb(0) = [s(-5) s(-6) 0 01 is illustrated in Figs. 4 and 5. 

The simulation results clearly demonstrate the fast 
m e r g e -  of the b l i i  Bayesian DFE for joint channel 
estimation and symbol detection. For the 4-level symbol 
constellation, ccmvergenoe was achieved in a few hundred 
symbols. In the case of the channel (15) with 4-ary PAM 
symbols, the convergence rate was observed to be less 
consistent in the different runs in comparison to 2-ary PAM 
simulation results not presented here. In some runs, the 
algorithm acbieved convergence in less than 500 samples, 
while in o h  runs it needed 600 to 700 symbols to achieve 
converge-. Increasing the decision delay to d = 5 and. 
consequently. m = 6 will result in faster and more consistent 
converge- perfonnance. However. this would result in a 
dramatic increase in computational complexity. For multiple 
signal levels, the estimation error fluctuates more violently 
compared with the binary case. Consequently, care must be 
exercised in the selection of the two adaptive gains. 

4. Conclusions 

A blind Bayesian decision feedback equaliser has been 
developed for joint channel estimation and symbol detection. 
It has been shown how the complete blind equaliser is built up 
with many identical adaptive units. Each of these units 
consists of a bank of simple least mean square channel 
estimators and Bayesian decision feedback equalisers. An 
efficient parallel implementation can therefore be realized 
readily. Simulation results have demonstrated fast convergence 
of this blind equaliser. Convergence can generally be achieved 
in less than 100 symbols when binary symbol constellation is 
used and within a few hundred symbols when a 4-level symbol 
constellation is used. 
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