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Abstract 

We propose a novel complex radial basis function 
(RBF) network. The network has complex centres and 
weights but the response of its hidden nodes remains 
real. Several leaming algorithms for the existing real 
RBF network are extended to th is  complex network. 
The proposed network is capable of generating 
complicated nonlinear decision surface or 
approximating an arbitrary nonlinear function in multi- 
dimensional complex space and it provides a powerful 
tool for nonlinear signal processing involving complex 
signals. This is demonstrated using two practical 
applications to communication systems. The first case 
considers the equalisation of time-disperisve 
communication channels, and we show that the 
underlying Bayesian solution has an identical structure 
to the complex RBF network. In the second case, we use 
the complex RBF network to model nonlinear channels. 
and this application is typically found in channel 
estimation and echo cancellation involving nonlinear 
distortion. 

1. Introduction 

Many signal processing applications are perfamed in 
multi-dimensional complex space. For example, in 
many communication systems, information is 
transmitted in the form of complex digital symbols, and 
the channel distortion can be modelled as a finite 
impulse response filter with complex taps. Removing 
channel distortion and interference can be formulated 
concisely and elegantly as a signal processing problem 
in multi-dimensional complex space. Most available 
artificial neural networks however are real-valued and 
a~ suitable for signal processing applications in multi- 
dimensional real space. Some research has been done on 
complex multilayer perceptrm (MLP) and on extension 
of the backprapagatim algorithm to complex form (e.g. 
[11-[31). Like its real counterpart, the complex MLP is 
highly nonlinear in the parameters and suffers the same 
drawbacks of slow convergence and unpredictable 
solutions during learning. 

The present paper proposes a complex RBF network, 
which is a logic extension of the existing real RBF 
network [41-[61. The inputs and outputs of the network 
are both complex. Each node in the hidden layer has a 
real radially symmetric response around a complex 
vector called the node centre which has the same 
dimension as the network input vector. The output layer 
of the network contains a set of l i a r  combiners with 

complex weights. The existing real RBF network can be 
viewed as a special case of this complex network. In 
fact, if the desired outputs for the network are to be real 
the network weights also become real and, similarly, if 
the network inputs are real the RBF centres become 
real. When both the network inputs and desired outputs 
are reduced to real, this complex RBF network 
degenerates ~ t ~ r a l l y  into the real RBF network. The 
intrinsic Bayesian inteqretation for the real RBF 
network is preserved in this complex RBF network. 
Since the response of a hidden node can be interpreted 
as some kind of generalized potential function, it should 
be real. It will be shown later in the application to 
channel equalisation that a hidden node actually realizes 
the conditional probability density function for a given 
channel state. Furthermm we show that existing 
learning algorithms for real RBF networks [41,[61-[101 
can easily be extended to the complex RBF network. 

This novel network provides a powerful means for 
nonlinear signal processing in multi-dimensional 
complex space, and this is demonstrated using two 
applications to communication systems. In the first 
application, equalisation of time-dispersive channels is 
formulated as a decision problem. It is shown that the 
Bayesian solution for this decision problem has an 
identical structure to the complex RBF network, and 
therefore the latter provides an ideal means to realize 
the Bayesian performance. Superiority of the Bayesian 
approach Over the conventional equalisation approach is 
highlighted using both the stationary and multi-path 
fading channels [ 1 I]. In surne equalisation schemes, it is 
necessary to identify a channel model. Echo 
cancellation 1121 can also be viewed as an identification 
problem. When nonlinear distortion is present in 
transmission path, nonlinear approximation capability is 
required. The second application considers modelling 
nonlinear complex channels based on the complex RBF 
network. 

2. The complex radial basis function network 

The topology of the complex RBF network is similar to 
the real RBF network and is depicted in Fig.1. By 
convention a complex quantity y is defined as 

y = Re[yl + jIm[yl= YR + jy,. (1) 
w h e ~  y~ and y I  are the real and imaginary parts of y 
respectively; j =a. The network input and output 
spaces are both complex and have dimensions n, and no 
respectively. Assume that the network has n h  hidden 
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nodes. The outputs of the hidden nodes are defined by 

++i = ++((x - C y ( X  - CJ/Pj), 1 s i s nh, (2) 
where x is a n,dimensional complex network input 
vector; ci are n,-dimensional complex vectors called 
RBF centtes; pi are real positive scalars known as 
widths; the operator ( . )H 33: ( ( . )T )* ,  ( - )T  denotes vector or 
matrix transpose and (.)* represents complex conjugate; 
,(.) is a real nonlinear function. Each output node is a 
complex linear combiner given by 

nh 

fi(x) = # i IV l / .  1 5 1 n,. (3) 
i- 1 

where wif are the complex Connection weights. 

Network o u t p u t s  

... Y 

Network i n p u t s  
Fig. 1. Topolosy of radial basis function network. 

This network realizes a mapping from the ni- 
dimensional complex space onto the no- dimensional 
complex space. The real response of the hidden nodes 
bear close resemblance to some probability density 
functions and this complex RBF network preserves the 
Bayesian interpn3ation of the real RBF netwcxk. As in 
the case of real RBF networks, many real n d k a r  
functions can be chosen for the hidden nodes. Two 
examples are the thin-plate-spline function 

#(x )  = x2108(x). (4) 

# ( X I  = exP(-x2/P). (5 )  

and the Gaussian function 

where log(.) and exp(.) are both real functions; x is ~ a l  
and non-negative. 

3. Learning algorithms 

An advantage of the RBF network is that linear learning 
laws can be derived. Many such learning algorithms 
have been developed for real RBF networks. These 
algorithms can easily be extended to the complex RBF 
network. 

(i) Least squares algorithm with fixed centm [41. 
Extension of this leaming algorithm to complex 
RBF networks is simple. As in the ~ a l  case, 
complex RBF centres are randomly selected from 
network input data or from the region where input 
data exist. Once the centres have been fixed, the 
least squares algorithm is used to identify 

weights. Except that the weight vector and the 
error signal between the desired output and the 
network output are complex, the rest of the 
variables in the least squares algorithm remain 
real. 

Orthogonal least squares algorithm [61.[91. 
This is a powerful constructive algorithm based 
on a block of training data. The algorithm 
identifies appropriate RBF centres from the 
training data and estimates the corresponding 
weights simultauemsly in an efficient manner. 
With some obvious modifications to take into 
8ccoullt the complex nature of the centres and the 
weights, the algorithm remains the same and can 
readily be applied to complex RBF networks. 

Recursive clustering and LS algorithm [71,[81. 
In this algorithm, the RBF centres are adjusted 
using a recursive clustering algorithm and the 
weights are updated using the recursive least 
squares algorithm. To extend the clustering 
algorithm to the complex RBF network, we only 
need to define the squared distance between the 
network input vector x and a centre ci as 
( X - C ~ ) ~ ( X - C ~ ) .   he use of the m i v e  least 
squares algorithm to adjust the complex weights 
is staightfcuward as in the case (i). 
Dynamic complexity learning algorithm [ 101. 
In this recursive learning procedure, whether to 
add a new basis function to the network is based 
on the angle formed between a new basis function 
and the existing basis functions and the prediction 
error. With minor notation modifications, it can 
readily be applied to complex RBF networks. 

4. Application to c h a ~ d  equalisation 
Many digital communications channels are subject to 
intersymbol interfere- @SI) and can be characterised 
by a finite impulse response Nter and an additive noise 
source [lll. The relationship between the transmitted 
complex symbol s(k) and the channel output y (k )  can 
be summarized as follows 

y(k) = q s ( k  - 1) + e@). (6) 

where n, is the length of the channel impulse response; 
a/ m the complex channel taps; e(k) is a complex 
Gaussian white noise. Without the loss of generality, we 
will assume that s(k) are 4QAM symbols, that is, the 
constellation of s(k) is given by the set 

At the receiver, the IS1 must be compensated in order to 
reconstruct the transmitted symbols, and this is known 
as the equalisation. A generic equalisation structure is 
shown in Fig.2. where the integers m, n and d are 
known as the feedforward order, feedback order and 
decision delay respectively. The equaliser uses the 
information present in the observed output vector y(k) = 
[y(k). . . y ( k  - m + 1)IT and the detected symbol vector 
O,(k - d)  = [f(k - d - 1 ) .  . . i(k - d - n)lT to produce 

ne-1 

1 4  

{s(1)= l+ j ,  s(2'=-1+ j , s ( 3 ) =  1 -  j , . + ' ) = - l - j } .  
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an estimate s^(k-d) of s (k -d ) .  The transmitted 
symbols that influence equaliser decision at k are 
s(k) = [ s ( k ) .  . s(k - m - n, + 2)IT. and this vector has 
N ,  = 4nc+m-1 combinations. This gives rise to N ,  
channel states of j(k) = [ Y ( k )  . . . j ( k  - m + I N T ,  where 
g ( k )  = y ( k )  - e(k).  The set of these N, states is denoted 
as Y m . d .  It is sufficient to consider a feedback order of 
n = n, + m -d - 2. The feedback vector &,(k - d )  has 
N f  = 4" states, and these states are denoted as sfj. 
1 < i <  N,. The set of channel states Y m , d  can be 
divided into N ,  subsets conditioned on B,(k - d )  = ~ f , ~  

(7) 

Each Y m , d , ,  can further be divided into 4 subsets 
according to the value of s(k - d )  

where Y:!d,t = { f(k)ls(k - d )  = s(')&,(k - d )  = s ~ , ~  ] 
and the number of states in Y g d ,  is NE! = 4d. 1 < 1 < 4. 

Fig.2. Schematic of decision feedback equaliser. 

By applying the Bayes decision theory, we can derive 
the optimal solution which minimizes the average error 
probability in symbol detection for the structure of 
Fig.2. This is known as the Bayesian decision feedback 
equaliser @FE) and it takes the form 

(9) 
where sgn(.)  is the complex signum function, and the 
conditional Bayesian decision function given 
&,(k - d)  = s,,~ is 

s (̂k - d)  = sp(fB(y(k)lB,(k - d )  = Sf,,)). 

fs(y(k)l&,(k - d)  = S,J = 

4 NS? 
E E h?' exd-(y(k) - y j V ~ )  - y j 4 ) ~ ~ ) .  (10) 

where p = 202 is the noise variance; the inner sums are 
over the subset states Y ~ ~ ) E Y $ $ , ~ .  1 < q < 4 ,  
respectively; the coefficients hi" = a:') +jail), hy' 
= -ar 
a:') are related to the a-priori probabilities of y?. Since 
the a-priori probabilities of yjq' are all equal, all the 
can be set to one. Compared the Bayesian DFE with the 
complex REF network, we can readily draw the 
following equivalent relationships. The RBF centres 
correspond to the channel states; the network weights 
can be interpreted as the generalized a-priori 

p l  1-1 

(2) + jay h'3' = ($3) - jay), h(4) = - jay), * I  1 I 

probabilities of channel states; the nonlinearity of 
hidden nodes is equal to the noise probability density 
function (p.d.f.) which is Gaussian; the response of 
hidden nudes realizes the conditional p.df. for given 
states; the response of the network has an identical form 
to the Bayesian decision function. 

0 

-1 

-2 

-3 

-4 

-5 

-6 ' I 1 I 

0 5 1 0  15  20  
S i g n a l  to Noise Ratio (dB) 

Fig.3. Performance comparison for stationary channel. 
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Fig.4. Tap trajectories of three-path fading channel. 
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FigS. Performance comparison for fading channel. 

Better performance of the Bayesian DFE over the 
conventional DFE [ill is demonstrated using two 
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examples. The first example is a three-tap stationary 
channel with a transfer function A(z) = (0.4313 + 

equalisers had a structure of d = 2, m = 3 and n = 2. 
The error rate curves of these two equalisers are plotted 
in Fig.3. The second example is a three-path Rayleigh 
fading channel 1111, and the trajectories of the channel 
taps are shown in Fi.4. The least mean square 
algorithm was used to track this time-varying channel 
and the channel estimate was then employed to design 
equaliser. The error rates of the conventional and 
Bayesian DFEs are depicted in FigS. 

j0.43 11)( 1 - (0.5 + j)~-')(l- (0.35 + j O . 7 ) ~ - I ) .  Both 

5. Nonlinear modelling and prediction 

In some c0"Unication systems. significant nonlinear 
distortion is present in transmission path and it is 
necessary to represent these channels by the model 

(11) 
where fc(.) is some complex nonlinear function. In this 
situation, it is required to iden@ the nonlinear channel 
(11) in order to implement the maximum likelihood 
Viterbi detection [lll.  Another application of nonlinear 
modelling and prediction is the echo cancellation in the 
communication network 1121. In this scenario, the 
received signal contains three compomts 

y ( k )  = Yl(k) + Y A k )  +e (k ) .  ( 12) 
where yl(k) is the f a r a d  signal. and y2(k)  is the echo. 
The aim of echo cancellation is to produce an accurate 
estimate of the echo and to subtract this estimate from 
the received signal. When the echo path contains 
significant nonlinear elements, nonlinear modelling 
capability is required. In the current application, we use 
the complex RBF network to model the nonlinear 
channel (1 1). 

Assume that digital symbols are 4QAM and the 
nonlinear channel contains three elements in cascade. 
The symbols s(k) are first distorted by a static 
nonlinearity 

y (k )  = fc(s(k), . . e. s(k - n, + 1)) + e W .  

where exp(j/) = cos(+) + jsin(/). This is followed by a 
finite impulse response filter with the transfer function 
A(z) = (0.3725 + j0.2172)(1- 

(0.5 + j)Z-l)(l- (0.35 + jo. 7)z-I). ( 14) 
The output of this linear filter v(k) is further distorted by 
a third-order camplex Voterra nonlinearity and an 
additive Gaussian white noise 

(15) 
We first fitted a linear model y(k)=d,,s(k)+ 
dls(k - 1) + &(k - 2) to this nonlinear channel using 
the complex RLS algorithm. At every recursion, a 
separate block of test data was used to calculate the 
mean square error (MSE). The MSE trajectories for 
Merent noise powers are plotted in Fig.6. Since 
s(k) = [ s (k )  s(k - 1) s(k - 2)IT has 64 combinations, the 
channel has 64 states. The errors between the channel 

y (k )  = v(k) + 0. 2v2(k) - 0 .13(k)  + e(k). 

states and the linear model states are depicted in Fig.7. 
Next we identified a RBF network model of 30 centres 
using tbe recursive clustering and least squares 
algorithm. The MSE trajectories a shown in Figs  and 
the modelling errm are given in Fig.9. Fmally we used 
a RBF network model of 64 centres. The centres were 
fixed to the 64 states of dk). and we only estimated the 
weights using the IUS algorithm. The MSE plots are 
shown in Fig.10 and the modelling errors me given in 
Fig. 11. 
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Fig.6. Mean square enrw plot of linear model 
using recursive least squares algorithm. 
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Fig.7. State errors of linear model. Noise power is -3OdB. 
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Fig.8. Mean square error plot of RBF model with 30 
centres using reculsive clustering and LS algorithm. 
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6. Conclusions 

A complex RBF network has been proposed for 
nonlinear signal processing in multi-dimensional 
complex space. This network contains the usual real 
RBF network as a special case. Furthermore it has been 
shown that the existing learning algorithms for the real 
RBF network can easily be extended to the complex 
RBF network. The application of this complex RBF 
network to communication systems has been 
demonstrated using the equalisation of time-dispersive 
channels and the modelling of nonlinear channels. 
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