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In this paper, we propose a new technique to im- 
prove the performance of quadtree (QT) based 
image coding through the utilization of a neural 
network based visual feature extraction model 
(VFEM). After QT reconstruction is completed, 
a trained VFEM uses the information contained 
in the QT reconstructed image to recover the 
QT reconstruction error. This results in a better 
quality reconstructed image than the one simply 
reconstructed from QT representation. Since 
no extra information other than QT structure 
itself needs to be transmitted, the VFEM im- 
provement does not increase the coding bit rate. 
Therefore, a better rate-distortion performance 
is achieved. 

Neural networks have widely been used for im- 
a,ge coding applications and considerable re- 
search progresses have been made in this area. 
In most cases, neural networks are used as part 
of coding systems to  replace some traditional 
techniques [l]. For example, multilayer percep- 
trons are used as nonlinear predictors in predic- 
tive coding [2] [ 3 ] ,  Hebbian networks are used to 
perform the Karhunen-Lo2ve transform (KLT) 
in transform coding [4] [5] and Kohonen self- 
organizing feature maps (KSOFM) are used to 
design codebooks in vector quantization [6] [7].  

In this paper, we introduce a new way of em- 
ploying neural. networks to improve image cod- 
ing performance. In the proposed method, a 
neural network model based on some character- 

istics of visual cortex, referred to as visual fea- 
ture extraction model (VFEM), is added to a 
standard image coding system. The VFEM ex- 
ploits the underlying physics between a recon- 
structed image and its reconstruction error im- 
age (the error between the reconstructed image 
and the original image), and is trained to gen- 
erate the reconstruction error image from the 
reconstructed image. The output of the VFEM 
is added to the reconstructed image to produce a 
better quality output image. Since the input t o  
the VFEM is the reconstructed image, no extra 
information needs to  be transmitted and, there- 
fore, a better quality image is obtained with- 
out increasing coding bit rate. This means that 
a better rate-distortion (R-D) performance is 
achieved. 

Hierarchical data structures are important 
representation techniques in image processing. 
Quadtree (QT) data structure belongs to a class 
of hierarchical data structures which are based 
on the principle of recursive decomposition of 
image data space [8]. Since QT was introduced 
into image representation, many research efforts 
have been made to enhance the QT algorithm 
itself [9] [lo].  In this paper, we use the VFEM 
to improve the performance of Q T  coding with- 
out altering the QT coding system at all. A 
VFEM is connected to  a QT coding system and 
is trained to  generate the error image of QT 
reconstruction. The output of the VFEM is 
added to  the QT reconstructed ima.ge to recover 
the QT reconstruction error. The proposed im- 
proving method produces a better quality re- 
constructed image without requiring any extra 
coding bit rate as the input to the VFEM is 
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supplied by QT reconstruction. 

The rest of the paper is organized as follows. 
Section 2 describes the structure of VFEM and 
the QT decomposition algorithm is summarisled 
in section 3. Section 4 discusses the application 
of VFEM t o  improve QT colding performance. 
Simulation results are presented in section 5 and 
some concluding remarks are given in section 6. 

2 Visual Feature Extract ion 
Neural Network Model 

Artificial neural netwroks have been studied for 
many years in the hope of achieving “human- 
like” performance in the field of image process- 
ing. According t o  the understanding of visual 
cortex [11], there are certain t.ypes of feature de- 
tectors in the visual cortex which are labelled as 
simple cells and complex cells. Simple cells do 
not respond t o  diffuse illumination but respond 
strongly t o  stimuli such as bars or edges, and 
complex cells also respond maximally to  stirn- 
uli but have larger receptive fields and can gen- 
eralise their response over a wider area of the 
visual field. 

Edge patterns (visual features) in a visual 
field can be represented t o  a certain degriee 
by the first order directional derivatives of dif- 
ferent scales (different size blocks). Deriva- 
tives of small blocks can represent visual fea- 
tures detected by simple cells, and derivativles 
of large blocks can represent visual features de- 
tected by complex cells. Horizontal and vertical 
derivatives are normally employed as directional 
derivatives since they can reprlesent the intensity 
changes (edges) in each direction and the corn- 
bination of them can determine orientations of 
edge patterns. 

Based on this knowledge, a neural network 
based visual cortex model for image reconstruc- 
tion has been proposed [12], in which directional 
derivatives are calculated for the residual ini- 
age which is generated by removing image block 
means from the image itself. Both derivatives 
and block means are coded and transmitted. At 
the receiver end, the residual image is reprlo- 
duced from the derivatives via the visual cor- 

tex model, and is then added to  block means to  
reconstruct the original image. 

In this paper, an artificial neural network 
model with some neurons specially designed to  
extract the visual features of the input image is 
presented. The model, referred to  as VFEM, 
is a two-hidden-layer feedforward neural net- 
work shown in Fig.1. The first hidden layer 
of the network is the visual feature extractor 
which calcultes multi-scale derivatives of the re- 
constructed image, and the rest of the network 
uses these visual feature information to  generate 
the error image. In our application, a VFEM 
is added to  a image coding system and is used 
to  generate the reconstruction error image from 
the reconstructed image supplied by the existing 
coding system. It should be emphasized that  the 
purpose of the VFENNM is different from that 
of the visual cortex model presented in [12]. 

x O  

X I  

x 2  

nxn-1 
Input First hidden Second hidden Output 
layer(nxn) layer(J) layer(K) layer(nxn) 

Figure 1: Visual feature extraction neural net- 
work model 

The input to  the VFEM, the reconstrcted im- 
age produced by the coding system, is first di- 
vided into blocks of size n x n and then fed into 
the VFEM. To calculate derivatives of image 
blocks in different scales, each image block is 
recursively divided into 4 equal-sized sub-blocks 
until the sub-block size is reduced to  2 x 2. For 
each block or sub-block X of size 726 x nb, its 
horizontal derivative dh and vertical derivative 
d, are calculated as: 
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The derivative kernels gh and gv can be written 
collectively in matrix form as 

L A I. 

where the bold numbers 1 in Gh and G, repre- 
sent x ?f matrices of Is, and the bold numbers 
-1 represent ?j x ?j matrices of -1s. 

The first hidden layer of the W E N  acts as 
a visual feature extractor t o  calculate block 
derivatives. Hence the number of neurons in the 
first hidden layer is equal t o  the number of total 
derivatives required for a block, and the weights 
G;j between the input layer and the first hidden 
layer are fixed according to equations (1) and (2) 
to serve the purpose of derivative calculation. 

The rest of the network, the second hidden 
layer and the output layer, are used to  recon- 
struct the error image from the derivative infor- 
mation supplied by the firsl hidden layer. The 
number of neurons in the output layer is equal to 
the number of pixels in an image block (n x n). 
The appropriate number of neurons in the sec- 
ond hidden layer is decided by experiment. The 
weights V j k  connecting the first hidden layer 
to the second hidden layer and W k l  connecting 
the second hidden layer t o  the output layer are 
learnt via supervised training [13]. 

3 Quadtree Decomposition 
Q T  decomposition is a simple and efficient tech- 
nique for image representation at  different reso- 
lution levels. This representation can be useful 
for a variety of image processing applications, 
such as pattern recognition and image compres- 
sion. QT decomposition divides an image into 
homogeneous regions of different sizes depend- 
ing on the activity in each region. Such kind 
of division makes compression adaptive to vari- 
ous activities of image regions and, therefore, is 
more efficient than regular one-size-block divi- 
sion. 

An image of size 2N x 2N can be represented 
by a QT of N + 1 levels. The root of the QT 
is associated with the whole image and the QT 
representation is built up as follows. If the im- 
age or an image block is homogeneous according 

to a chosen homogeneous criterion, it becomes a 
leaf of the tree; otherwise, it becomes a node of 
the tree and is further divided into four equal- 
sized sub-blocks (quadrants). Same operations 
are repeated on sub-blocks until all of them find 
homogeneity. It is obvious that leaves in differ- 
ent QT levels are associated with image blocks 
of different sizes and, in particular, leaves in QT 
bottom level are associated with individual im- 
age pixels. The QT decomposition can be done 
in either top-down or bottom-up manner. 

When QT decomposition is completed, the re- 
sulting tree is coded for transmission or storage. 
Both the tree structure information and leaf in- 
tensity information need to be coded. At recon- 
struction stage, the decoded QT structure data 
and leaf intensity data are used to rebuild the 
QT representation and then to reconstruct the 
original image. 

Given an image of size 2N x 2 N ,  let z , ( k ,  1) be 
the pixel value at position ( k ,  I) in Q T  level i and 
T be the homogeneous threshold. Then the Q T  
decomposition procedure can be summarized as 
follows [9]: 

Step 1: Set i = 1, T, = T. 
Step 2: FOR k , l  = 0,.--,2N-z - 1; 

IF all z,-1(2k + p ,  21 + q )  
for p ,  q = 0 , l  are leaves; 

THEN perform the homogeneity 
test according to  equation (3); 
if the test result is TRUE, 
then z , ( k ,  1) becomes a leaf; 
else z , ( k ,  1 )  becomes a node; 

ELSE z , ( k ,  1 )  becomes a node: 
NEXT k , l .  
IF i > N ,  goto Step 4; Step 3 :  
ELSE i = i + 1,T, = T,-l/2, 

and goto Step 2. 
Step 4: 
Step 5: 

Code tree structure information. 
Allocate bits for leaves in each 
level according to equation ( 5 )  
and quantize the leaves. 

Step 6: Stop. 

The homogeneity test is defined as 
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where 

p=o q=o 5 

The homogeneous threshold T controls the QT 
R-D performance trade-off. A smaller threshold 
results in a more complex tree structure, hence 
a higher coding bit rate and a better quality 
reconstructed image, and vice versa. 

The number of bits B; allocated for quantizing 
leaves in QT level i is 

( 5 )  

where L,t is the number of total leaves in the 
QT structure, a: is the variance of leaves within 
QT level i and D is a chosen distortion for quan- 
tization. 

4 Improving QT Coding Via 
VFEM 

A QT coding system with the VFEM improve- 
ment is illustrated in Fig.2. The first two parts 
of the system in Fig.2 comprise the standard $IT 
coding system which perform 1QT decomposition 
and reconstruction. After the Q T  reconstruc- 
tion is completed, the QT reconstructed image 
is passed to  the VFEM, and the output of the 
VFEM, the estimated error image, is added to  
the QT reconstructed image to  produce the final 
output image. 

Figure 2: Q T  Coding system improved by 
VFEM 

Obviously, in order for the VFEM to  be able 
to recover the error image of Q T  recostruction, it 
must be designed and trained properly. Training 
data is comprised of some Q T  reconstructed irn- 
ages as input to the VFEM and the correpond- 
ing QT reconstruction error images as desired 

output for the VFBNN. A QT reconstructed im- 
age contains blocks of different sizes, and each 
block is represented by its mean. Subtracting a 
QT reconstructed image from its corresponding 
original image generates the reconstruction error 
image which contains only edge patterns. Multi- 
scale derivative information calculated from the 
QT reconstructed image by the first hidden layer 
of the VFEM can already represent the edge pat- 
terns in the error image to  a certain degree. The 
rest of the VFEM is designed to  learn a more 
accurate representation of the underlying corre- 
lation between QT reconstructed image and QT 
reconstruction error image. Because VFEMs are 
usually large, we adopt the backpropagation al- 
gorithm [14] in training to  keep a minimum com- 
putational requirement. 

5 Simulation Results 
Simulation was conducted to study the perfor- 
mance of the VFEM and to  investigate the ef- 
fects of image block size, training images and 
number of neurons in the second hidden layer. 
Four 512 x 512 images shown in Fig.3, with 8 
bits per pixel, were involved in the simulation 
either as training images or test images. 

Lena Peppers 

Airplane Sailboat 

Figure 3: Original images used in simulation 
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A key parameter of the proposed scheme is the 
image block size. The design choice for this is a 
trade-off between performance and complexity. 
A Q T  reconstructed image consists of homoge- 
neous blocks (leaves) of different sizes. A QT 
leaf of certain size can contribute to  derivative 
information only when the image block size is 
larger than the size of the QT leaf. For exam- 
ple, a QT leaf of size 8 x 8 can only contribute 
to  the derivative information when image block 
size is 16 x 16 or over. In general, increasing 
image block size can provide more derivative in- 
formation and thus improve the VFEM’s perfor- 
mance, providing that enough training images 
are available t o  train the network properly. Oth- 
erwise, choosing a large image block size with- 
out enough training images can result in poor 
performance due to insufficient training. It is 
also obvious that increasing image block size in- 
creases the size of the network and consequently 
the computational load. 

The number of neurons in the second hid- 
den layer is decided by experiment. The exper- 
iment was started with a small number of neu- 
rons in the second hidden layer and gradually 
more neurons are added until further increase 
does not lead to  any additional improvements 
of the VFEM performance. 

Among the four images given in Fig.3, when 
one of them was chosen as test or coding image, 
the other three images were then used as train- 
ing images. An image block size 16 x 16 and 
a &neuron second hidden layer was found to 
be most appropriate. Table 1 gives the perfor- 
mance improvement on QT coding via VFBNN 
at a coding bit rate of 0.5 bits per pixel (bpp). 
The peak signal t o  noise ratio (PSNR) used in 
Table 1 is defined as 

Lena 
Peppers 

Sailboat 
Airplane 

where 

32.38 33.30 0.92 
33.28 34.15 0.87 
32.86 33.86 1.00 
29.53 30.48 0.95 

, 2 N - 1 2 N - I  

X is the original image of size 2N x 2“ and X 
is the reconstructed image. 

Table 1: Perfomance improvement on QT 
coding via VFEM ( bit rate = 0.5 bpp ) 

1 Coding 1 PSNR (dB) - . . I  1 image I QT QT+ Improve- 1 
I I VFEM ment I 

Fig.4 shows the QT reconstructed image 
(a) and VFEM improved image (b) of image 
“Lena”. 

(a) QT reconstructed (0.5 bpp, 32.38 dB) 

(b)  VFEMNN improved (0.5 bpp, 33.30 dB) 

Figure 4: QT reconstruction and VFEM iin- 
provement on image “Lena” 
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6 Conclusions 
A new technique for improving the performance 
of QT based coding using artificial neural net- 
works has been proposed. The proposed scheme 
improves the QT reconstructed image quality 
through the recovering of the QT reconstruc- 
tion error via a VFEM. It is worthy pointing out 
that  the VFEM is added t o  a QT coding system 
without altering the existing system at all. An 
important advantage of the proposed technique 
is that the reconstructed image quality is im- 
proved while the coding bit rate remains unin- 
creased. Experimental results show that signifi- 
cant improvements were obtained and even bet- 
ter improvement can be achieved if more train- 
ing images are available. This research opens up 
a promising future for a new category of tech- 
niques to  improve image coding performance us- 
ing the VFEM not only for QT based coding but 
also for other coding methods. 
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