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ABSTRACT 

The orthogonal least squares (OLS) algorithm is an 
efficient implementmation of t.he forward regression pro- 
cedure for subset model selection. The ability to find 
good subset parameters with only linear increase in 
computa.tiona1 complexity makes this method attra.c- 
tive for practical implementat,ions. In this paper, we 
will examine the computation requirement of the OLS 
algorit,hm to reduce a model of K terms to a subset, 
model of R terms when the number of training data 
avaihble is N .  We will show that in the case where 
N >> Ii, we can reduce the computation requirement 
by int,roducing an unitary transformation on the prob- 
lem. 

1. INTRODUCTION 

Most nonlinear predictors created using radial basis 
funct.ions (RBF) [2, 51 and Volterra expansion [B] re- 
sults in a very large initial model that has the linear- 
in-parameter characteristic (figure 1). We can normally 
reduce this big model to a parsimonious one without 
significant degradation in performance if the subset 
model’s pammeters are chosen carefully. In fact, parsi- 
monious models are sometimes preferred as they have 
better generalisation characteristic. This is especially 
h u e  when models are used for time-series prediction. 
Large models t,end to over-fit in the training phase and 
t,lius have poor prediction performance in t,he t,esting 
phase. 

To find tlhe optimum R parameter subset model from 
a original I< parameter model, we must find the per- 
formance of models using all combinations of R pa- 
mmeters from the full set of It‘ parameters a.nd choose 
the best one. This requires exponent,ial computa.tion 
power and is thus prohibitively expensive. In the case 
of using the OLS algorithm to select subset model, t,he 
model found is not guamnteed to be optimum [3, 41. 
However, we do normally get good selection wit,h only 
linearly increasing computation complexity to find ad- 
ditional parameters for the subset model. 

2. OLS ALGORITHM 

Let, us represent these nonlinear predictors that have 
the linear in parameter structure as a linear regression 
model. 

y = X h + e  (1) 
where y is t,he desired signal vector, X is the informa- 
tIon mat,rix of size A’ x I(, h is the parameter vector of 
t.he model to be found and e the error vector of approx- 
iinathg y by Xh. The column vector y and e conta.in 
N elements. i.e., the N test data and the N values of 
error in prediction. 

The original X matrix will have K columns. To cre- 
ate a parsimonious model which has R parameters, we 
are actually trying to pick R columns from the input 
niatrix X to form a subset input, matrix Xs. The OLS 
algorithm selects columns from t,lie input matrix se- 
quent,ially. At each selection, all the unused columns 
are studied to find out how each column will contribute 
to fit the desired vec,tor y with the current subset Xs. 
The column that. provides the best combination with 
Xs to model y will be picked to form the new Xs. The 
above selection technique is repeated until the num- 
ber of columns in Xs equals to R. The details of the 
algorithm can be found in Chen et a1 [l, 21. 

3. REDUCED OLS 

The amount of computation used by the OLS algorithm 
to find a R subset model from the initial model tha,t 
has iV t.est dat8a and I< parameters can be calculated 
wit.11 t,he following equation: 

No. of multiplications (OLS) = 
€2 R- 1 

The above equation ignores the addition/subtrac 
operations required by the OLS method. 

ion 

If N >> Ii, it may be possible to save computation 
by introducing an invariant transformation on the X 
matrix. This can be accomplished by pre-multiplying 
equation (1) with an orthonormal matrix QT where 
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the columns of Q spans the column space of X. This 
operation is called the unitary t,ransformation [7, $1. 
We can think of an unitary transformation as a ro- 
tation and/or reflection operation. As such operation 
preserves t,he length of each (column) vect.or and the 
angle between two vectors in the transformed matrix, 
we have not lost or created any new information. 

The following sub-sections show how to  create the 
orthogonal matrix Q by using the Gram-Schmidt 
(GS) [7, 83 method and the single value decomposition 
(SVD) [7, 81 method. 

3.1. Gram- Schmidt Approach 
The Gram-Schmidt decomposition on the N x I( matrix 
X results in the product of an N x Ii orthonormal 
inatrix Q and a K x A' upper triangle matrix B, where 
QTQ = I, I is an identity matrix of appropriate size 
and B a 117 x K upper triangle matrix. That is 

X = Q B  (3)  

The transposed Q, i.e. QT, will be used to pre-multiply 
equation (1) t,o get 

QTy = Bh + QTe (4) 

If we introduce y = QTy, X = B and 6 = QTe, we can 
rewrite equation (4) as 

y = X h + G  (5) 

where 9 and 6 are I( x 1 vectors and X is a K x IC 
matrix. We can apply the OLS algorithm to perform 
subset selection based on $ and X. The columns-se- 
lected to form the subset model Xs using 9 and X is 
identical to that of using y and X. 

To decompose X into QB using Gram-Schmidt 
method, we require approximately N x K 2  multipli- 
cations [9]. If savings in computation by using the 
OLS algorithm on X and y offsets this additional 
pre-processing computation, this reduced OLS method 
should be applied. 

The number of multiplications to perform the pre- 
processing using the Gram-Schmidt decomposition is 
calculated using 

No. multiplications (GS decomposition) = NIi2+NK 

Figure 2 shows the number of multiplications required 
by the OLS to perform subset selection from an infor- 
mation matrix of size 500 x 84. The x-axis indicates 
t.he number of parameters required to form the subset 
model. For this example, we can see that when a sub- 
set model of size greater than 24 parameters is desired, 
we should implement, the unitary transformation on the 
problem. 

(6) 

3.2. SVD Approach 
To further reduce the computational~oad of the OLS, 
we can use an approximated matrix X to represent X. 
We define X and X as 

X = UAVT (7 )  

where the columns of U are the left eigenvectors, A 
is the diagonal matrix containing the singular values 
and the rows of VT are the right eigenvectors formed 
by using SVD on X. The singular values in A are 
trranged such that XI 2 A. 2 . . . 2 Ah'.  The matrix 
X is a rank R approximation of the matrix X created 
by the product of matrix UR, AR and Vg. The N x R 
matrix UR is formed by using the first R columns of U, 
the diagonal €l x R matrix AR is formed by using the 
first R rows and columns of A, and the R x K matrix 
Vg is formed by using the first R rows of VT. 

If X is used to approximate X, equation (1) will be 
written as 

y x X h + e  (9) 
Pre-multiply the previous equation by U:, we get 

If we introduct. the R x 1 vectors YR = Ugy and e R  = 
vie. and t8he R x Ii matrix XR = ARVZ, equation 
(10) can be written as 

Since the dimension of YR a>d XR is smaller then that 
of the vector and matrix X in equation (5), the com- 
putation requirement is furt,her reduced when the OLS 
algorithm is applied. This method is only appropriate 
when the approximation of X, i.e X, is created by a 
sufficiently large rank R, otherwise the subset model 
found may not be good. 

4. RESULTS 

The two reduced OLS algorithm was applied to find 
subset models of a 84 tap Volt,erra predictor created 
using a degree 3, embedding vector length 6 expansion. 
The Volterra predict.or was created using the following 
expansion: 
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where Ad = 6 is t.he number of past signal samples 
used in the expansion a.nd is the dimension of the em- 
bedding vect.or. L = 3 is the highest power of combi- 
nation of pa.st signal values and is called the degree of 
expansion. From figure 1, we can see that the Volterra 
kernels hi , / i l k , .  . . .  correspond to the parameters 
h l ,  h2. . . .  hK-1 of the predictor, and the monomials 
si - j ,  s i - j s i - k ,  . . . .  si-jsi-k . .  . s ~ - L  are the correspond- 
ing transformed model inputs 1i-1, zi-2,. . . .  x i - [ ~ - 1 ) .  

The predictor was used to perform single-step pre- 
diction on the chaotic time series (Figure 3) generated 
by the Duffing's equation. For the experiment, we had 
used 500 training data, i.e. N = 500. The information 
matrix, X, is thus of size 500 x 84. The least squares cri- 
teria was used t,o find the parameters of the full model, 
i.e., h = X+y, where Xt is the pseudo-inverse of X [7]. 
If the least squares approximation of y using product, 
of Xh is not perfect, we will have a modelling error. 
To measure the modelling quality of the predictor, the 
normalised mean square error ( N M S E )  is used: 

where si is t,he desired signal value at sample d ,  and 
e, = si - i i .  From equation (13),  we can see that when 
we have perfect prediction, i.e. ei = 0 for all i, the 
N M S E  will be -CO dB. When there is no prediction, 
i.e. i i  = 0, ei = si for all i, the N M S E  will be 0 dB. 

The result in figure 4 shows that we can get t,o within 
0.5dB prediction performance of the full model by us- 
ing a 20 parameter model selected using OLS GS. To 
use the OLS SVD approach to find a 20 parameter sub- 
set, model with performance comparable to that found 
using OLS GS, we need to approximate the matrix X 
by a rank equal to or greater than 40. 

The result shows that subset model performa.nce can 
be trade for computation complexity. 
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Figure 3: Duffing’s chaotic time series 
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Figure 4: Performance of subset model found using reduced 
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