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Abstract 
The paper derives a novel Bayesian decision 

feedback equaliser (DFE) for digital communications 
channel equalisation. It is shown how decision feedback 
is utilized to improve equaliser performance as well as to 
reduce computational complexity. The relationship 
between the Bayesian solution and the radial basis 
function (RBF) network is emphasized and two adaptive 
schemes are described for implementing the Bayesian 
DFE using the RBF network. The maximum likelihood 
sequence estimator (MLSE) and the conventional DFE 
are used as two bechmarks to assess the performance of 
the Bayesian DFE. 

1. Introduction 
Adaptive equalisation is an important technique for 

combating distortion and interference in communications 
links. There are basically two categories of equalisers, 
namely the sequenceestimation and symbol-decision 
equalisers. The optimal sequence-estimation equaliser is 
the MLSE [l], which is optimal for detecting the entire 
transmitted sequence and provides the best attainable 
performance for any equalisers. High complexity and 
deferring decisions are however two drawbacks of the 
MLSE. Symbol-decision equalisers are more commonly 
seen and are typically based on adaptive linear filter 
design, e.g., the conventional DFE [2]. The linear filter 
approach has a very simple computational requirement 
but does not achieve the optimal solution for the 
symbol-decision structure. 

In the past few years, considerable advance has 
been achieved in adaptive nonlinear equaliser design 
based on artificial neural networks [3]-[5]. The attraction 
of neural network equalisers is their ability to adaptively 
form the optimal Bayesian solution for the symbol- 
decision structure and therefore to provide significant 
performance gain over the conventional linear filter 
approach. Sections of the communications community 
however are sceptical of this emerging nonlinear 
technique. This is largely because a nonlinear adaptive 
filter often results in a substantial increase in 
computational complexity. The main purpose of the 
present study is to demonstrate that this need not be the 
case for adaptive nonlinear equaliser design. By an 
intelligent use of decision feedback, the computational 

Fig. 1 .DiscreteTime Model of Data Transmission 
System. 

complexity of the adaptive Bayesian equaliser can be 
reduced to a level close to the conventional DFE in 
general or even less in a special case. 

The digital communications scenario is illustrated in 
the baseband discrete time model depicted in Fig. 1, 
where a digital sequence s ( t )  is transmitted through a 
dispersive channel with transfer function 

s ( t )  is assumed to be an equiprobable and independent 
binary sequence taking values from (21). The channel 
output is corrupted by an additive white Gaussian noise 
e ( r ) ,  and s ( t )  and e ( t )  are assumed to be uncorrelated. 
The structure of a generic symbol-decision equaliser with 
decision feedback is shown in Fig.2, where T is known as 
the equaliser delay, rn and k are referred to as the 
feedforward and feedback orders respectively. The 
present study derives the optimal solution for the 
equaliser structure of Fig.2 based on the Bayes decision 
theory [6]. It is shown that the Bayesian solution has an 

s^ ( t  -T) 
Filtering 

Fig.2.Schematic of Symbol-Decision Equaliser with 
Decision Feedback. 
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identical structure to the RBF network [7] .  Two 
adaptive approaches are developed for realizing the 
Bayesian equaliser using the RBF network and the 
computational complexity of this adaptive nonlinear 
equaliser is compared with that of the conventional 
DFE. The performance of the Bayesian DFE is also 
compared with those of the MLSE and the conventional 
DFE. The 2-ary PAM signaling scheme is assumed in 
the present study simply for maximum clarification of 
the basic concepts. All the results in this paper can 
easily be extended to the general PAM scheme [8]  and 
the QAM scheme with a complex-valued channel [ 9 ] .  

2. Bayesian decision feedback equaliser 
For the channel ( 1 )  and an equaliser feedforward 

order rn, there are nS=2"+"' combinations of the 
channel input sequence s (t ) = [s ( t ) . . . s  ( t  -rn + 1 - . ) I T .  
Thus the noise-free channel output vector 9 ( t ) =  E(t ) . . .  
y^(t -rn + 1)IT has n, desired states. It is sufficient to 
consider a feedback order k =rn + n  -1 7. Assume that 
the correct feedback vector s f ( t  7)= [s ( t  - r - l ) . . .  
s ( t  - r - k ) I T  is used and denote nf =2k combinations of 
~ ~ ( f - 7 )  as s ~ , ~ ,  l s i s n  The set of desired channel 
states Y,,,,? can be divided into nf subsets conditioned on r 
Sf ( t  7): 

where Ym,T,i=Y:,,,iUY;l,i, Y : ,T , i= {9 ( t ) I s ( t - r )=1U 

= ~ f , ~ } .  It is straightforward to verify that the optimal 
Bayesian equaliser conditioned on s (I -7) = s ,i is 
defined as: 

S f  ( t  Y ) = S ~  ,i } and YGT,i ={9 (t ) I S  ( t  -)= -1USf ( t  9) 

where y ( t ) =  ly ( r ) . . . y  ( t  -rn + 1)IT , the two sums are 
over Y ~ E Y ~ , , , ~  and YIEY;,,~ respectively, crz is the 
noise variance, and a is an arbitrary positive constant. 

It is interesting to note that the feedback vector is 
only used to narrow down the number of desired states 
that have to be considered at each t .  As a result, only 
2"l states are required to compute the Bayesian 
decision function at each t .  Without decision feedback, 
all the n, states would be required. Furthermore it can 
be shown that rn =T+ 1 is sufficient for the Bayesian 
DFE [9] .  That is, a Bayesian DFE of rn = T+ 1 has the 
same performance as those of r n > ~ + l .  Because the 
equaliser order is generally r n > ~ + l  without decision 
feedback, the reduction factor in computational 

complexity owing to decision feedback is larger than 2". 
In general, the minimum distance between y;' and y r  
considered at each t is increased due to decision 
feedback and this is why decision feedback improves 
performance. 

Equaliser delay T=O is a particularly interesting 
case. In this case m = l  is sufficient for the Bayesian 
DFE and only the current observation y( t )  is used as 
the feedforward input. The conditional Bayesian decision 
function takes a very simple form: 

f B  O, ( t >  Is f  ( t )=s f , i )=O,  (t)-yi-12-0, (t)-Yi+I2* ( 5 )  
Computational load for this Bayesian DFE is surely less 
than what required for a conventional DFE. When the 
channel is normalized, theoretical error probability of 
this Bayesian DFE under the assumption of correct bits 
feedback can be shown to be 

m 

Q ( I ho be 1 = .f (2n)-lnexp( -Y 2 Q ) d ~  , (6)  
I h o k .  

comparing to Q (l/crc) for the ideal channel without ISI. 
For the Bayesian DFE of T>O, (6) does not apply 

but this result does suggest a general rule in choosing 
equaliser delay for the Bayesian DFE so as to minimize 
the achievable error probability in symbol detection. If 
hi is the channel tap that has the largest magnitude, 
equaliser delay should be chosen as ~ = j  . The other two 
structure parameters can then be set to rn=7+1 and 
k = n .  

3. Adaptive implementation and complexity 
The Bayesian DFE can conveniently be 

implemented using the RBF network. The RBF network 
[7] is a two-layer processing structure depicted in Fig.3. 
The hidden layer consists of some computing nodes and 
the output layer is a linear combiner. The network 
response is given by: 

where nh is the number of hidden nodes, c i  are the 
RBF centres, pi are the widths of the nodes and wi are 
the weights. The network ( 7 )  obviously has an identical 
form to the Bayesian filter (4). nh can be set to n,. The 
hidden nodes are grouped in accordance with the 
conditional subsets Y,,,,l,i and the centres c j  realize 
corresponding channel states y € Y,,, ,l,i. The feedback 
vector determines which subset of hidden nodes should 
be active at t .  The function # is selected as 
$O,)=exp(-y) and all the widths are chosen to be 
pi=2az. The weights are set to either 1 or -1 
correspondingly and the RBF network will realize 
precisely the Bayesian DFE. 
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Adaptively adjusting the RBF centres so that they 
converge to the channel states is the key and two 
alternative schemes are available. The first method 
estimates the channel model based on the least mean 
square (LMS) algorithm and uses the channel estimate 
to calculate a subset of centres. The second method 
estimates the channel states directly based on a clustering 
algorithm [5 ] .  During the training period, the following 
supenised clustering algorithm can be used 

c j ( t )  = c o u n t e r j * c j ( t - l )  + y ( t ) ;  

c j ( t )  = c , ( t ) /counter j ;  } 

if ( S ( t )  == S j )  { 

counterj + = 1; (8) 

For nonstationary channels, the following adaptive 
version of (8) is preferred 

if ( s  ( t ) = = s  j )  c ( t ) = c ,  ( t  -l)+g, * (y (t ) -c j ( t  -1)); (9) 

where g, is a learning rate. During data transmission a 
decision-directed version of (9) can be employed [5]. 

The computational loads of the Bayesian DFE 
based on the LMS channel estimator and the clustering 
algorithm (9) are listed in the Table, where the 
complexity of the conventional DFE with the LMS 
adaptation is also given. Consider a Ctap (n =3) channel 
and first assume that hl has the largest magnitude. As 
mentioned early, ~ = 1  can be chosen for the Bayesian 
DFE. This Bayesian DFE based on the LMS estimator 
needs 4 exp(.)s, 32 multiplications and 36 additions 
while 4 exp(.)s, 14 multiplications and 19 additions are 
required if adaptation is done using the clustering 
algorithm. For the conventional DFE with a structure of 
~ = 1 ,  m = 5  and k = 6 ,  23 multiplications and 22 
additions are required. If the magnitude of ho is the 
largest and T = O  is chosen, 16 multiplications and 15 
additions are required for the Bayesian DFE using the 
LMS estimator while only 3 multiplications and 5 
additions are needed based on the clustering algorithm. 

4. Simulation results 
The channel H ( z  ) = 0.7255 + 0.58042 -' + 0.36272 -2 

+ 0 . 0 7 2 4 ~ - ~  was used to illustrate the two adaptive 
schemes. For this example, T= 0 and m = 1 were chosen. 
The SNR was set to 15dB and adaptive gain in the LMS 
channel estimator was 0.05. The estimated states 
obtained using the channel estimator and the clustering 
algorithm (8) are shown in Figs. 4 and 5 respectively, 
where the dotted lines indicate the desired states. 
Because the number of the channel taps is much smaller 
than that of the channel states, the channel-estimator 
approach requires a far shorter training sequence than 
the clustering approach. The first approach updates 
every centre at each t while only one centre is changed 

output 
Layer 

Hidden 
Layer 

Y l  ... Ym 

Fig.3.Schematic of Radial Basis Function Network. 

Bayesian DFE T>O with clustering 

Bayesian DFE T=O with LMS 

multiplications: 3 x n + 7 
additions: 3 x n  + 6  

Bayesian DFE T=O with clustering 

multiplications: 3 
additions: 5 

Conventional DFE with LMS 

multiplications: 2 x  (m + k ) +  1 
additions: 2 x ( m + k )  

Table. Comparison of Computational Complexity. 
t Estimated upper bound for computing subset states 
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at each t in the second approach. The former is 
therefore better suited for highly timevarying channels. 
The latter however has a much simpler computational 
requirement. It does not rely on the linear channel 
assumption and is immune from nonlinear channel 
distortion. 

The bit error rate of the Bayesian DFE was 
compared with those of the conventional DFE and the 
MLSE using the channel H(z)=0.3482+ 
0.8704~-~+0.34822-~. ~ = 1  was chosen for the 
conventional and Bayesian DFEs. The Bayesian DFE 
had m = 2  and k =2 while the conventional DFE was 
defined by m =4 and k =4. The coefficients of the 
conventional DFE were set to the Wiener solution. The 
MLSE was implemented as a Viterbi algorithm with the 
exact channel model and a fiied decision delay. Fig.6 
shows the performance of the conventional and Bayesian 
DFEs, where it is seen that with detected bits feedback 
and at error probability lo4 the Bayesian DFE had 
more than 2dB improvement in S N R  over the 
conventional DFE. From Fig.6, it seemed that error 
propagation was not serious for the Bayesian DFE and it 
also appeared that the Bayesian DFE was less affected 
by error propagation compared to the conventional 
DFE. The three performance curves shown in Fig.7 
were obtained by the Bayesian DFE with detected bits 
feedback and the MLSE with fixed decision delays 1 and 
10 respectively. The performance of the Bayesian DFE 
appeared to be compatible to that of the MLSE with the 
same decision delay 1. The MLSE achieved better results 
with higher decision delay and increased computational 
complexity. 

5. Conclusions 
A Bayesian solution has been derived for digital 

communications channel equalisation with decision 
feedback. A novel strategy of utilizing decision feedback 
has been proposed which not only improves equaliser 
performance but also reduces computational complexity 
dramatically. It has been shown that the Bayesian 
solution has an identical structure to the RBF network, 
and two adaptive approaches have been developed to 
realize the Bayesian DFE using the RBF network. The 
scheme based on a channel estimator requires a shorter 
training sequence while the clustering scheme offers 
lower computational load and greater immunity to 
nonlinear channel distortion. The MLSE and the 
conventional DFE have been used as two bechmarks to 
assess this Bayesian DFE. 
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Fig.4.Trajectories of Estimated Channel States Based 
on the Channel-Estimator Approach. 
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Fig.5.Trajectories of Estimated Channel States Based 
on the Clustering Approach. 
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Fig.6.Performance Comparison. Bayesian and 
conventional DFEs. 
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Fig.7.Performance Comparison. Bayesian DFE and 
Viterbi algorithm. 
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