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Abstract 

A multi-stage blind clustering algorithm is proposed for 
equalisation of M-QAM channels. A navel hierarchical 
decomposition divides the overall task of equalising a high- 
order QAM channel into much simpler sub-tasks. Each sub- 
task can be accomplished fast and reliably using a blind 
clustering algorithm derived originally for 4-QAM signals. 
The well-known constant modulus algorithm (CMA) is used 
as a benchmark to assess this novel multi-stage blind equaliser 
and it is demonstrated that the new blind adaptive algorithm 
achieves much faster convergence. This multi-stage clustering 
equaliser only quires slightly more computations than the 
very simple CMA and, like the latter, its computational 
complexity does not increase as the levels of digital symbols 
increase. 

1. Introduction 

Blind equalisation techniques for nonmini” phase channels 
can loosely be classified into three categories. The first class of 
blind equalisation algorithms constructs a transversal equaliser 
directly to unravel the effects of channel impulse response. 
This class includes many well-known blind equalisers [11-[71, 
which are often referred to as Bussgang algorithms. Most of 
practical emphasis has been focused on the schemes known as 
Godard’s algorithms. In particular, the CMA has a very simple 
computational requirement and is widely applied to high-order 
QAM signals [71,[8]. The second class of blind equalisation 
algorithms identifies a channel model using techniques based 
on higher order cumulants [91-[111. Once a channel impulse 
response is obtained, it can then be employed to design an 
equaliser. This second class of blind equalisers, although very 
general and powerful, requires extensive computation. 
Recently, blind equalisation algorithms based on the 
maximum likelihood sequence estimation or the Bayesian 
sequence estimation have been proposed [121-[141. This third 
class of blind equalisers typically employs some joint channel 
and data estimation technique, which is wmputatianally very 
expensive. An advantage of this third approach is that 
relatively few signal samples are required to achieve 
equalisation objective. 

In the ICC’92. Karaoguz and Ardalan 1151 presented a blind 
equaliser based on maximizing the a-posteriori (MAP) 
probability density function (p.d.f.) of the transversal equaliser 
output subject to the equaliser weights. They applied this new 
blind algorithm to 4-QAM signals and demonstrated its 
superior performance over some well-known blind equalisers. 
It should be emphasized that the meaning of MAP here is 

quite Merent from that of the MAP detector for known 
channels [16] and its blind approximation 1131. Karaoguz and 
Ardalan’s algorithm, referred to as the soft decision-directed 
blind algorithm in [151, is a Bussgang-type algorithm well 
fitted to the finite nature of digital symbol constellation. To 
avoid any confusion, this algorithm will be referred to as the 
blind clustering algorithm. 

The present study extends Karaoguz and Ardalan’s blind 
clustering algorithm to M-QAM ( M > 4 )  signals. A 
straightforward application of this blind algorithm to M-QAM 
signals may not be a good idea and this is explained in simple 
geometric terms. Such a direct extension can further encounter 
the difficulty of increased complexity. By decomposing the 
task d reconstructing the data constellation into appropriate 
sub-tasks, a multi-stage blind clustering procedure is derived. 
Because each subtask is very easy to achieve. this blind 
adaptive algorithm can accomplish fast convergence. 
Furthermore, its complexity does not increase as the levels of 
the data increase, and is always equal to that of the 4-QAM 
case. The performance of the multi-stage blind clustering 
equaliser is compared with that of the popular CMA using 
simulated channels. The results obtained confirm the 
significantly improved performance of this new blind equaliser 
over the CMA. 

2. Blind equalisation 

Consider the baseband model of a digital communication 
channel characterized by a finite impulse response (FIR) filter 
and an additive white noise source. The received signal is 
given by 

r ( k )  = ais(k - i) + e@). (1) 

where n is the length of the channel impulse response, 
ai = a,R +ja,  are the complex channel tap weights. the 
complex symbol sequence s (k)  = sR(k)  + js,(k) is assumed to 
be independently identically distributed (i.i.d.), e(&) = 
e,(&) + j er (k)  is an i.i.d. complex Gaussian white noise with 
E€ei(k)l= E[e:(k)l= a:. and E[.] denotes the expectation 
operator. The symbol constellation is M-QAM defined by 

si/ = (2i - Q- 1)+ j(21- Q - 1). 1 < i .1  < Q, (2) 

where Q = m= 2L. and L is aninteger. 

To remove the channel distortion, an equaliser is employed. 
No training sequence is available to the equaliser and, 
furthermore. the channel is ”minimum phase. The equaliser 

n- 1 
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has a FIR st ructu~ defined as 
m-1 

id 
y ( k )  = w,r(k- i). (3) 

where m is the order of the equaliser and is assumed to be 
large enough, and wi = w'R + jwil are the complex equaliser 
weights. The equaliser has a delay d a mn. 
A family of blind adaptive algorithms called Ward ' s  
algorithms 121 adjusts the equaliser weights by minimizing the 
nonconvex cost function 

using a stochastic gradient algorithm, where w = [ W O  

. . ~ w m J  is the equaliser weight vector, q is a positive 
integer, and Aq is a positive real constant defined by 
Aq = E[ls(k)12ql/E[ls(k)lql. The case of q = 2 is known as the 
CMA [3], which is by far the most popular blind equaliser for 
high-order QAM signal constellations. It has a very simple 
computational complexity, comparable to that of the least 
mean square algorithm. 

3. The blind clustering algorithm 

Assume for the time behg that the equaliser weights have 
been correctly chosen. Then the equaliser output can be 
expressed in two terms 

(5 )  
where x(k) = s(k - d ) ,  and v(k) is approximately a Gaussian 
white noise. Thus when the equalisation is accomplished, the 
equaliser output can be modelled approximately by M 
Gaussian clusters with means 

y,/ = s ,~ .  1 5 i . 1  5 Q. (6) 

y ( k )  = x(k) + v(k), 

and an approximate covariance 

(7) 

Denote the a priori probability of yq! as pqr .  Under the 
conditions given previously. the a-postenori p.df. of y ( k )  is 

When the equaliser weights have not yet been set correctly, 
y(k) does not satisfy the model (8) of M Gaussian clusters. 
However, from (8). a bootstrap optimization process can be 
formed to adapt the equaliser. The equaliser weights are 
adjusted by maximizing the criterion 

ii(w> = E[;rl(w. y(W1. (9) 
The resulting equaliser can be referred to as the blind 
clustering equaliser. Because all the p q l .  1 5 q. I5 Q. can be 
assumed to be equal, the criterion (9) is equivalent to 

IJw) = E[J,(w, y(k))l (10) 
with 

In practice, the equaliser weights are adapted according to the 
following stochastic gradient algorithm 

(12) 

where 0 < i < m - 1. Karaoguz and Ardalan [151 applied this 
blind equaliser to 4-QAM channels. 

A ditect application of this algorithm to high-order QAM 
signals has some serious drawbacks. This is not just because 
the complexity of the algorithm increases as M increases. 
Consider the simplest case depicted in Fig. 1. the case of a real 
channel and 2-ary PAM symbols. The gradient of J, in this 
case becomes 

Referring to Fig. 1, when the equaliser output y is closer to s2, 
the algorithm adjusts the weights in favour of sa as reflected in 
the second term of (13). But it is possible that the correct 
decision may actually be sl, and the algorithm also adjusts the 
weights towards this decision as indicated by the first term in 
(13). It is clear that the algorithm is trying to find a 
compromise for the two conflkting factors. 

L -I 
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Fig.1. Probability density function of a distorted 2-ary 
PAM signal before equalisation is achieved. 

In this simplest case and in the 4-QAM case, it is relatively 
easy for the algorithm to achieve a correct equalisation. For 
higher order QAh4 signals, there are more conflicting factors 
to consider and convergence speed will generally be slow. 
Other Bussgang algorithms have similar problems, and this is 
why the CMA was applied to high-order QAM signals in the 
first place to alleviate some of the difficulties associated with 
high signal levels. This problem can also be viewed through 
the objective function (10). For a large M ,  JJw) can be highly 
nonconvex and. therefore, a gradient algorithm may have 
difficulties in tinding a desired solution. 

Equaliser o u t p u t  

4. The multi-stage blind clustering algorithm 

We propose a multi-stage b l i d  clustering procedure for high- 
order QAM signals, which overcomes the difficulties 
associated with multiple signal levels. This blind equalisation 
procedure is best illustrated by considering the 16-QAM case, 
where the overall equalisation objective is decomposed into 
the following two stages. 
In the first stage, a 4-cluster model is adopted with the 4 
cluster centres being = -2 - j2. f12 = -2 + j2, fZl = 2 - j2 
and f22  = 2 + j2. The equaliser weights are adjusted using this 
equivalent "4-QAM" model through the gradient algorithm 
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(12). This is analogous to the idea of the CMA which 
considers the signal constellation as though it has an 
equivalent constant modulus. However the objective here is to 
achieve a roughly correct classification of equaliser outputs 
into the 4 quadrants I,, 1 < i S 4. in the complex plane while 
the CMA attempts to reach the eye-open solution at one go, 
the former being an easy task to accomplish while the latter 
b e i i  much harder to achieve. After th is  stage, if the equaliser 
output appears in the quadrant I,. the correct symbol point is 
in I, with high probability. 

At the second stage, the 16cluster model is adopted with the 
16 cluster means being the correct symbol points sql, 
1 S q. 1 4. This cluster model is divided into 4 submodels, 
one for each quadrant I,. The equaliser adaptation is carried 
out as follows. If the equaliser output y(k) is in the quadrant 
I,, the corresponding 4-cluster sub-model is used to adapt the 
equaliser weights via the gradient algorithm (12). The aim of 
t h i s  stage is to reach the eye-open solution. The rational 
thinking behind this strategy is self-evident. The equaliser 
adaptation is done correctly with high probability owing to the 
primary clustering of the previous stage. Therefore the c o m t  
equalisation solution can be achieved faster and more reliably. 

This blind clustering procedure is upwardly extendable. In 
general, the task of M-QAM equalisation, where M = 22L, can 
be achieved using an L-stage blind clustering equaliser. 
Because the sub-task of each stage can be accomplished easily 
and reliably, the overall convergence of the equaliser is 
achieved faster and more reliably. A further advantage of this 
multi-stage blind clustering equaliser is that the complexity of 
the algorithm does not increase as the number of the symbol 
points M increases, and is always comparable to the minimum 
complexity of the 4-QAM case. Since the equaliser weights 
are adapted using a &luster sub-model at each recursion via 
the gradient algorithm (12). this multi-stage blind clustering 
algorithm is only slightly more complex in terms of 
computation compared with the very simple CMA. 

The choice of p for each adaptation stage should ensure a 
proper separation of the clusters. A good rule for selecting the 
value of p is that p should be less than half of the distance 
between two adjacent cluster centres. If the value of p is too 
large, a desired separation among clusters may not be 
achieved. On the other hand, when a too small p is used, the 
algorithm attemps to impose a very tight control in the size of 
clusters and may fail to do so. Apart from these two extreme 
cases, the performance of the algorithm does not critically 
depend on the value of p .  and there exists a wide range of 
values for p at each stage of the adaptation. 

5. Performance comparison 

The performance of the multi-stage blind clustering algorithm 
is compared with that of the CMA using simulation. 
Convergence rate and robustness of these two blind adaptive 
algorithms are examined. In all the simulation examples, the 
middle tap of the equaliser was initialized to the nonzero value 
1 + j0 ,  and the rest of the equaliser weights were initialized to 
O +  j0.  

The first example is a telephone channel taken from [ 171. The 
channel impulse response is listed in Table 1. digital symbols 

are 16-QAM. and the noise power is a: =-2odB. Received 
signals before equalisation are shown in Fig.2. The equaliser 
had 23 taps. The two-stage blind clustering algorithm used 
1500 samples for the first stage with p = 1.8. 2000 samples 
for the second stage with p = 0.7 and an adaptive gain 
p = 0.003 for the both stages. The equaliser outputs after this 
blind adaptation of 3500 samples are depicted in Fig.3. As a 
comparison, the CMA was also employed to adapt the 
equaliser with an adaptive gain p = O.oooO1. After the 
adaptation of loo00 samples, the eye diagram was still closed. 
The equaliser outputs after the adaptation of 2oooO samples 
are shown in Fig.4. 

. I  -6 

- 8  
- 8  -6 - 4  -2 0 2 4 6 8 

Re 
Fig.2. Observations of 16-QAM telephone channel. 

- 4  -2 0 2 4 
Re 

Fig.3. Outputs of two-stage blind clustering 
algorithm for 16-QAM telephone channel. 

I I I 

-4 -2 0 2 4 
Re 

Fig.4. Outputs of CMA for 16-QAM telephone channel. 

The second example is a 64-QAM microwave LOS fading 
channel operated at 24 Mbits/s. The transmission pulse has a 
raisedcosine characteristics with a rolloff factca 0.5 and is 
split equally between the transmitter and receiver filters. A 
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o.ozp4- 
-0.0181 
0.0091 
-0.0038 
0.0019 
-0.0018 
O.OOO6 
0.0005 
-0.0008 
O.oo00 
0.0001 

4 -  

2 -  

5 0 -  

-2 

- 4  

Table 1. A telephone channel impulse response. 
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FigS. Observations of 64-QAM microwave channel. 
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Fig.6. Outputs of three-stage blind clustering 
algorithm for 64-QAM microwave channel. 

5 -  

5 0 -  

- 1  n I I I _ -  
-10 -5  0 5 lo 

Re 
Fig.7. Outputs of CMA for 64-QAM microwave channel. 

three-path Rayleigh fading channel is simulated with a fading 
rate 5Hz. The fading channel is implemented using the 
following tapdelay-line model 

v( t )  = crJ(t)u(t) + C l ( t h ( t  - 71) + C ? ( t ) U ( t  - 72) .  (14) 

where u(t) is the transmitter output and v( t )  is the fading 

duration; and the root mean powers of the both ~ a l  and 

The noise power is a,2 = -2odB. Receiver outputs are 
sampled at symbol rate and passed to an equaliser of 9 taps. 
Received signals befare equalisation are depicted in Fig.5. 
The three-stage blind clustering algorithm used uxx) samples 
for the stage one with p = 3.6.2000 samples for the stage two 
with p = 1.8. 1000 samples for the stage three with p = 0.7, 
and an adaptive gain p = 0.0003 for all the three stages. After 
the above adaptation, the equaliser outputs are plotted in Fig6 
where, the stage-three adaptatim was kept on. Far the CMA. 
the adaptive gain had to be chosen as p = 0.1 x 1@ to avoid 
divergence. After an adaptation of loo00 samples, the 
equaliser outputs obtained with COBltinUOUs adaptation are 
shown in Fig.7. 

ch-1 output; 71 N TJ10, 72  Ts/3 and T,  is the symbol 

imaginary v t ~  of ~ j ( t ) ,  0 < i 5 2, ~ t e  [O. 7 0.6 0.51. 

- 4  -2 0 2 4 
Re 

Fig.8. Outputs of CMA far 16-QAM telephone channel 
with non-white symbol sequence. 

The third example investigates the performance of the two 
blind adaptive algorithms in the presence of non-white input 
s(k). The telephone channel listed in Table 1 is used again and 
the 16-QAM symbol sequence is generated as follows. A 
pseudorandom binary sequence of a repetive period 256 is 
generated. and every four bits are converted into a 16-QAM 
symbol. This is designed to simulate the practical case 
reported in [71. The noise power was a: = -2OdB. and the 
equaliser had 23 taps. For the CMA, the adaptive procedure 
was identical to that used in the first example. The equaliser 
outputs after the adaptatim of 2oooO samples are shown in 
Fig.8. where it is seen that the CMA converged to the false 
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solution of the constaut modulus. For the two-stage blind 
clustering algorithm, an adaptive gain of p = 0.002 were 
employed for the both stages, 1500 samples were used in the 
stage one with a p = 1.6, and 2000 samples were used in the 
stage two with a p = 0.6. After the adaptation of 3500 
samples, the equaliser outputs are plotted in Fig.9. For a 
sequence of the period 25614 = 64, it is very difficult to 
generate an equiprobable 16-QAM sequence. Tbe different 
sizes of the clusters in Fig9 was due to nonequiprobable 
16-QAM symbol points. As expected, the distributions of the 
clusters were not circular. However the correct signal 
constellation was restored. 

6. Conclusions 

A novel multi-stage blind clustering algorithm has been 
presented for equalisation of high-order QAM digital 
Communication channels. This blind adaptive algorithm adopts 
the criterion based cm the maximum a posteriori probability 
density function of the equaliser output and employes a 
rational hierarchical decomposition of the equalisation 
objective. It has been shown that the multi-stage blind 
clustering algorithm offers si@cant improvement in 
performance over the well-known constant modulus algorithm 
at the cost of slightly increased computational complexity. 
This new blind adaptive algorithm has been shown to be very 
robust in the presence of non-white input symbol sequence. 
The current study has demonstrated that the proposed new 
adaptive algorithm provides a promising scheme for real-time 
blind equalisation of high-level signal constellations. Further 
investigation is warranted to establish rigorously theoretical 
convergence properties of the algorithm. 
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