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Abstract 

The paper derives a Bayesian decision feedback equaliser 
@FE) which incorporates co-channel interfere= (CCI) 
compensation. By exploiting the structure of CCI signals, the 
proposed Bayesian DFE can distinguish an interfering signal 
from white noise and uses this information to improve 
performance. Adaptive implementation d this Bayesian DFE 
includes first using the standard least mean square (LMS) 
algorithm to identify the channel model and then estimating 
the co-channel states by means of a simple unsupervised 
clustering algorithm. Simulation involving a binary signal 
constellation is used to compare both the theoretical and 
adaptive performance of this Bayesian DFE with those of the 
maximum likelihood sequence estimator (MLSE). The results 
obtained indicate that, by compensating CCI, the Bayesian 
DFE can outperfom the MLSE for the CCI. 

1. Introduction 

Many communication systems, such as cellular radio and dual- 
polarised microwave radio channels, are impaired not only by 
channel intersymbol interfen=nce (ISI) but also by CCI. It is 
well-known that an adaptive equaliser can usually do better 
against CCI than it can against the same level of noise [11. 
However, in doing so, most of the equalisers can only heat 
CCI as an additional noise source and do not fully exploit the 
differences between the interfering signals and the noise. For 
example, a linear equaliser only exploits the spectral 
characteristics of the interfenxce through its autocorrelations 
[11,[21. The MLSE 131, although very pow& in combating 
IS1 with white noise, is less effective in dealing with CCI. This 
is because it is very d i f h l t  to write dawn the likelihood 
function which can explicitly distinguish the interfering 
signals from the noise. Therefore, the best that a standard 
MLSE can do is to treat these interfering signals as an 
additional coloured noise. 

The probability density function (p.d.f.) of an interfering 
signal is quite different from that of the noise. An ideal 
equaliser should therefore be capable of distinguishing the 
interfering signal from the noise. In a previous study [2], a 
Bayesian transversal equaliser was derived which can 
effectively exploit the differences between the CCI and the 
noise and uses this information to improve performance. The 
present study extends this result to the decision feedback 
equaliser structure and develops a Bayesian DFE which 
incorporating CCI compensation. It is shown that, in the 
presence of severe CCI, this Bayesian DFE has superior 
performance over the MLSE. Adaptive implementation of this 

Bayesian DFE is also considered. In order to effectively 
compensate for the CCI, the set of CO-channel states are 
requid.  These co-cbanuel states can be estimated using a 
simple unsupervised clustering algorithm. 
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Fig.1 Discrete-time model of c0"Unication system. 

The system model considered in this study is depicted in 
Fig.1. This model is widely used (e.g. [41). The channel A&) 
and the p interferiag co-chaunels A,(z), 1 < i < p .  are 
modelled by finite impulse response filters 

n.-1 

J=O 

The transmitted data s&) and the interfering data s,(k). 
1 5 i 5 p ,  are independently identically distributed (i.i.d.) and 
they are mutually independent. The three components of the 
channel observation r ( k )  = i ( k )  + u(k) + e(k)  will be called 
the desired signal, the interfering signal and the noise 
respectively. e(k)  is assumed to be Gaussian white noise with 
variance E€e2(k)l = a:. Let E[i2(k)l = a: and E[u2(k)l = a:. 
We define the signal to noise ratio (SNR) as S N R  = a:/az, the 
signal to interference ratio (SIR) as SIR=a:/a:, and the 
signal to interference and noise ratio (SINR) as 
SINR = a:/(a: + a:) respectively. For notational simplicity 
and to highlight the basic concepts, s;(k), O < i  < p .  are 
assumed to be binary and to take values from the symbol set 
(s") =+l, d2' = -1). The weights a,, of A,(z) are therefore 
real-valued. Application to the complex-valued A, (z) and the 
4-QAM symbol constellation is straightforward. The 
technique is equally applicable to higher-order symbol 
coilstellations but the computational complex will increase 
dramatically. 
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2. Bayesian DFE in the presence of CCI 

The structure of a generic DFE is depicted in Fig.2. The 
equalisation process defined in Fig2 uses the information 
present in the observed channel output vector 

(2) 

(3) 
to produce a delayed estimate of the transmitted symbol. The 
three important structural parameters of the equaliser are the 
decision delay d, the feedforward order m and the feedback 
order n respectively. The feedforward order is usually related 
to the decision delay by m = d + 1 and the feedback order is 
given by n = no + m - d - 2 = no - 1. In practice, d = no - 1 is 
often chosen to cover the entire channel dispersion. 

r(k) = [ r (k )  . . . r (k  - m + l)lT 

&(k)  = [$o(k - d - 1) ' . . &,(k - d - n)lT 
and the past detected symbol vector 

f filtering - decisior io@- d )  
device 

Given the channel &(z),  the value of the noiseless desired 
signal vector 

(4) 
is specified by the symbol sequence s(k)  = [s;(k) s i ( k ) l T ,  
where s f ( k )  = [s?(k) . . . so(k - d)lT and S b ( k )  = [so(k - d - 1) 
. . . s ~ ( k - d - n ) l  . Under the assumption that the given 
feedback vector is correct, that is, !$b(k) = Sb(k) ,  the state of 
3 k )  is determined by s f ( k ) .  For the binary constellation, sf(k) 
has N, = 2d+1 = 2" combinations and, therefore, the desired 
signal vector i ( k )  has N, states. The states of i ( k )  can be 
grouped into 2 sets according to the value of so(k - d): 

(5) 

Each RY) contains N!'= N,/2=2d states. Without loss of 
generality, we will assume that only one CCI (p = 1) is 
present. The interfering signal u(k)  has = 2"' scalar states 
{ U j .  1 < j < 
u(k) = [u(k) . . . u(k - m + I)]* (6) 
has Nu = 2"''"I-l states. The set of these co-channel vector 
statesisdenotedasU={uj, l < j < N , } .  

The Bayesian DFE derived previously for combating IS1 
[51,[61 can now readily be extended to cover CCI. The p.d.f. of 
r(k) conditioned on so(k - d )  = di )  is 

p,(r(k)tso(k - d )  = di)) = 

i ( k )  = [ i ( k )  . . . i ( k  - m + l)lT 

RY) = {i(k) = ry)tso(k - d )  = i = 1.2. 

}. Therefore, the interfering signal vector 

N!' Nu 

j=1 I=1 
a::jp,(r(k) - ry) - ul>, 

i = 1.2, (7) 

s^o(k -d -n)  

where ry'ER'/.', ulEU,  a:! are the a-priori probabilities of 
r(j)+ul and p,(.> is the p.d.f. of the noise vector 
e(k) = [e (k)  . . . e(k - m + I)]'. since all the ry) + ul can be 
assumed to be equiprobable and the noise p.d.f. is Gaussian, 
(7) leads to the 2 Bayesian decision variables 

s^o(k-d-2:  & ( k - d - 1 )  

j=l I=1 

The minimum-error-probability decision is defined by 

NO. 
1 
2 
3 
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5 
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7 
8 

which provides the optimal solution for the equalisation 
structure of Fig.2. 

The computational complexity of this Bayesian DFE with full 
CCI compensation obviously depends on the number of 
t-7) + uI ,  which is N, x Nu. To reduce the complexity, an 
approximation of this full Bayesian DFE can be adopted 
which only approximates co-channel states. The 
approximation can easily be achieved due to the symmetric 
structure of cochannel states, and this will be illustrated using 
an example. Another reason for adopting the approximation is 
due to practical considerations. The scalar co-channel states uI 
can only be estimated based on unsupervised learning. The 
resolution of unsupervised learning is limited, and it is not 
always possible to resolve all the cochannel states. In such a 
situation, it is natural to consider an approximation. Carrying 
out the approximation to an extreme and approximating the 
CCI as an additional noise, we obtained the Bayesian DFE 
with the decision variables 

N P' 
q i ( k )  = exp(4l r(k) - ry)/I2/2o2), i = 1.2, (10) 

j= 1 

where 2a2 = o: + CT:. This has the same form as the original 
Bayesian DFE [51,[61. 

We now use an example to illustrate the above discussion and 
to compare the theoretical performance of the Bayesian D E  
with that of the MLSE. The channel is given by 

(1 1) Ao(z) = 0.34 + 0.881.-' + 0 . 3 4 ~ - ~ ,  

A,(z )  = a(O.50+0.81~-'+0.31~-~),  (12) 

and the interfering cochannel is 

where the value of the parameter a dictates the SIR 
requkment. For example, a = 0.32 gives rise to a SIR=lO 
dB. The set of the scalar co-channel states is listed in Table I. 

si(k) sl(k-1) s,(k-2) 
1 1 1 
1 1 -1 
1 -1 1 
1 -1 -1 

-1 1 1 
-1 1 -1 
-1 -1 1 
-1 -1 -1 

U1 
1.62 a 
1.00 a 
0.00 a 

-0.62 a 
0.62 a 
0.00 A 
-1.00 a 
-1.62 a 
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The symmetric structure of the cochannel states is apparent in 
Table 1. The set of the vector cochannel states, U, is obtained 
by expanding these scalar states. In this example, U Contains 
32 vector states. Re-arrange the scalar states as 

(1.622, 1.002, 0.622, 0.002, 
-0. OOA. - 0.622, - 1. 002, - 1.622). (13) 

We may approximate (1.622, 1.002) by its mean 1.312 and 
(0.62n,0.00n) by 0,312. This results in 4 approximated 
scalar cochannel states 

(1.312, 0.31~ -0.31~. - 1.312). (14) 

The number of the resulting approximated vector cochannel 
states is 16. This approximation may also be viewed from a 
different angle. The order of the mhanne l  is nl = 3. Suppose 
that we only have an approximated co-channel order iil = 2. 
This will give us 4 scalar cochannel states. and each of these 
approximated states is the mean of a pair of two true states. 
The Bayesian DFE with decision variables described by (10) 

Far a SIR=lOdB, Fig.3 plots the perfom~ance curves of the 
Bayesian DFE with no CCI compensation (iil = 0). the MLSE. 
the Bayesian DFE with an approximated CCI compensation 
(fil -2) and the Bayesian DFE with full CCI compensation 
(ii, = n l  =3) .  For the r aqp  of SNRs from OdB to 25dB. the 

IMY then be viewed BS the result of ChooSing i i l =  0. 

Corresponding SINRS from -0.42dB to 9.7668. 
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Fig3 Theoretical performance. (a) Bayesian DFE with no 
CCI compensaticn (Al = 0); (b) MLSE (c) Bayesian DFE 
with an approhated CCI compensation (iil =2); (d) 
Bayesian DFE with full CCI compensation (al = nl  = 3). 

3. Adaptive implementation 

Since the equaliser has access to the transmitted data { s,(k)} 
during the training, the channel model can be identified using, 
for example, the LMS algorithm 

1 . ’  
~ 2 , , ~ ( k )  = ~ ? , ~ ( k -  1) + g,s(k)s,(k - j ) ,  0 < j < n, - 1, 
where g, is an ada tive gab. Given the channel estimate 
4 = . . . it is straightforward to calculate the 

~ 
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channel states ry’. 

The equaliser does not have access to the interfering data 
{sl(k)}, and the above supervised learning is not applicable 
for identifying the codanoel states. We propose the following 

channel states: 
o Compute the residual 

unsupervised clustering algorithm far estimating the scalar CO- 

o Compute the distances between ~ ( k )  and the scalar CO- 
channel States ul(k - 1). 1 S 1 < N U J ,  

o Update the l*-th co~hannel state 

where g, is an adaptive gain. Because of the symmetric 
structure of the cochannel states, ~ ~ , , - [ * + ~ ( k )  is set to 
unr,-r*+dk) = - u l W  
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Fig.4 Adaptive performance. (a) Bayesian DFE with no 
CCI compensation (iil = 0); (b) MLSE (c) Bayesian DFE 
with an approximated CCI compensation (dl = 2). 

For the example given in the previous section, 80 training 
samples were used to identify the channel model. The adaptive 
gain of the LMS algorithm was chosen to be g, -0.03 and 
the adaptive gain for the unsupervised clustering algorithm 
was g, = 0.01. The performance curves of the adaptive 
Bayesian DFE with no CCI compensation (al IO), the 
adaptive MLSE and the adaptive Bayesian DFE with an 
approximated CCI compensation (al =2) are depicted in 
Fig.4. 

A possible alternative for estimating cochannel states is to 
employ higher-order cumulants techniques. A cochannel 
model may be estimated blindly from the residuals ( ~ ( k ) }  
using a higher-order cumulants algorithm [71-[91. Once a co- 
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channel made1 is obtained, it is a straightforward task to 
calculate the CO-channel states. This approach, however, 
requks futher investigation and will not be discussed in the 
present study. 

4. Conclusions 

Adaptive equalisation in the presence of ISI, additive Gaussian 
white noise and CCI has been investigated. It has been shown 
that, by exploiting the nature of interfering signals, the 
Bayesian DFE is capable of distinguishing an interfering 
signal from the noise. Simulation results have demonstrated 
that the Bayesian DFE which incorporates CCI compensation 
can outperform the MLSE in the presence of severe CCI. 
Adaptive implementation of this Bayesian DFE has been 
studied, and a simple unsupervised clustering algorithm has 
been suggested to learn the co-channel states. 
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