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ABSTRACT

The main purpose of this paper is to examine a number of possible architectures for non-
linear adaptive filtering, specifically related to adaptive equalisation. The approach taken
proceeds by first reformulating the filtering process as a form of classification task in N
dimensions. In the case of filtering the dimensionality is determined by the number of data
samples in the filter data input vector. The task of classification then proceeds using a
number of possible strategies, i.e. the multilayer perceptron, Volterra series modeling and
cluster analysis. The techniques are evaluated in comparison with normal linear equalisa-
tion procedures.

1. INTRODUCTION

In many cases the task of data equalisation in communications systems is viewed as an
inverse filtering problem [1] in which the task of the equaliser is to form an approximation
to the inverse of the distorting channel (which is linear). Thus the classical equaliser may
be viewed as an inherently linear process and it might be assumed that no benefit could
acrue from the introduction of non-linear processes.

However, if we restate the problem in a different way then this distinction is less clear, and
indeed proves to be invalid. The assertion made here is that the task of the equaliser is to
reconstruct the data sequence which was input to the communications channel, as accu-
rately as possible. It must be remembered here that for a digital communications scenario
that this sequence will consist of information chosen from a finite alphabet. In the situation
where no additive noise exists this strategy will lead to an optimal equaliser which is indeed
the linear inverse filter specified above. However, if there is any additive noise in the
channel or the channel response is non-minimum phase then equalisation becomes a non-
linear problem [2].

This may be best illustrated by examining a simple example in which we have a random
binary input sequence {-1, 1} which is input to a channel with a minimum phase transfer
function given by:

H(z) = 1 + O.5z1 (1)
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The equaliser to be used will form its estimate of the current data sample by operating on

only the last 2 observations of the channel output:

y (n ) h (n ) s (n —i ) (2)

I(n)fy(n),y(n—l) (3)

where y (n ) is the channel output at time n , s (n ) is the data input at n and s(n ) is the
estimate of s (n ) formed by the equaliser. The function f is as yet undefined. For the
example quoted we may tabulate all possible channel output pairs y (n ), y (n —1)} as
shown in table I. These may then be plotted on a 2-dimensional graph with axes y (n ) and
y(n —1) as shown in figure 1.

s(n) s(n-1) s(n-2) y(n) y(n-1)

-1 -1 -1 -1.5 -1.5
-1 -1 1 -1.5 -0.5
-1 1 -1 -0.5 0.5

-1 1 1 -0.5 1.5
1 -1 -1 0.5 -1.5
1 -1 1 0.5 -0.5
1 1 -1 1.5 0.5
1 1 1 1.5 1.5

Table I: Set all possible channel output pairs
for the channel 1 + 0.5 f1

Figure 1 shows each of the points plotted as either a X or a •. The X means that this data
pair represents an input, s (n ), of —1 and the • represents an input at time n of + 1. It can
now be easily seen how the equalisation problem is viewed as one of the classification, i.e.
the task is to assign regions within this observation space to represent inputs of either +1 or
—1.

2. THE CLASSIFICATION PROBLEM

In looking at the classification problem we will continue to use the example quoted in the
last section. Clearly, in the absence of noise this is very simple since we only need to draw
a straight line (the line (a) in figure 1) and classify all points to the right of this line as
representing an input of +1 and to the left, —1. This corresponds to the linear combiner,
f .} is linear convolution followed by the signum function.
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Figure 1 : 2-dimensional representation of the symbol alphabet formed by 2 successive
received samples from channel with impulse response 1 + 0.511.

However, if we now add some noise to the observed channel outputs we will have some
probability distribution function instead of the discrete points indicated in figure 1 . If we
then concentrate on the data points at ( — 0.5, 0.5) and (1.5, 0.5) we find that the —1 data
point is closer to our linear decision boundary (indicated by the solid line (a) in Figure 1)
than the + 1 data point. Therefore, in the situation of additive noise there is a higher pro-
bability of the point at ( — 0.5, 1.5) being incorrectly detected as + 1 than of the point at
(1.5, 0.5) being incorrectly detected as — 1. This is clearly a non-optimum situation.

If we apply a minimum a-posteriori error criterion to this problem then the optimum boun-
dary becomes that shown by the broken line, (b) in figure 1 . This non-linear boundary
may not be formed by a simple linear combiner and fundamentally requires that f .} in
equation (1) is a non-linear operator [3].

3. THE MULTILAYER PERCEPTRON

In order to validate the non-linear classification process we first apply a very general non-
linear operator to replace the linear combiner in the original equaliser. The structure
chosen to do this is the so-called multilayer perceptron (MLP) [4]. Each perceptron con-
sists of a linear combiner followed by a non-linear sigmoid function (figure 2). The overall
equaliser is built up by a layered set of these giving 7 nodes in the 1st layer, 3 in the 2nd
and one output node, figure 3. The use of 3 layers is adopted as this provides the best flex-
ibility in terms of definition of the decision boundary [5]. The actual choice of number of
nodes is rather difficult to justify and was in fact arrived at experimentally in this case.
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Figure 2: Schematic diagram of a single perceptron.

Figure 3: Schematic diagram of the complete equaliser

using the multilayer perceptron structure.
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For the example quoted before such an MLP was used in a simulation programme to equal-
ise the channel defined in equation (1). The decision boundary achieved after convergence
of the learning phase is shown in figure 4. This proves to be close to the expected boun-
dary defined in figure 1.

y(n.1)

y(n)

3O

Figure 4: Converged decision boundaries for the MLP structure of fig. 3 using the channel
defined in fig. 1.

The system was then evaluated to determine the bit error rate (BER) achieved by the clas-
sifier over a range of signal to noise ratios. The same test was applied to the linear
equaliser system. These reults are reprduced in figure 5 for sampled channel impulse
response 0.3842 + 0.87041 + 0.38421 from which it can be seen that at very low noise
levels there is little difference in performance but as the additive noise increases the MLP
performs significantly better. This is consistent with the argument presented in section 2.

Comparisons have also been carried out when a decision feedback [1] structure is applied as
an equaliser. Here, it was shown [6] that the performance enhancement persists and,
further, that the MLP structure has a lesser sensitivity to error extension than the normal
decision feedback equaliser.

Although this serves to illustrate the validity of the non-linear classification process in
equalisation it does not lead to a practical structure from the implementation viewpoint.
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The MLP structure is not only costly (in computational terms) but also cannot be
guaranteed to converge using the back propagation algorithm [7] employed in these tests.

4. THE VOLTERRA MODEL

The fundamental problem affecting convergence of the MLP structure is the highly nested
nature of the non-linear elements within the structure. This means that the adaptive coeffi-
cients may not be linearly related to the filter output resulting in highly irregular error sur-
faces containing multiple minima. One way of tackling this problem is to shift the (fixed)
system non-linear operation to the input of the filter thus maintaining a linear relationship
between the adaptive weights and the output error. Such a strategy will not be wholly
effective due to the distortion of input statistics produced by the non-linear operators.
There will also be problems introduced by large increases in dynamic range within this
filter.
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Figure 5: Bit error rate
MLP equaliser.
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Perhaps the best known technique for implementing a structure of this type is the Volterra
series [8] which provides an expansion of the following form:

(n) a + tL [y(n)] + 112 [y(n)] + • .

T12 k
where j(y(n)) = .. a (T1,T2 .. k) y(n —'r1)y(n —T2) •. y(n —Tft) (4)

In such a system all the adaptive coefficients, a , are linear with respect to the output and
thus should be more controllable. A structure of this type was applied to the same equali-
sation problem as before and the resulting classification boundary is shown in figure 6.
Although the boundary here is perhaps not quite as well defined as the MLP example it
should be noted that convergence was always achieved by this structure (convergence is also
an order of magnitude faster than the equivalent MLP). However, it required a Volterra
series of order 5 to achieve this result which does not really improve on the computational
complexity of the MLP.
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Figure 6: Converged decision boundaries for the 5th order Volterra Series equaliser using
the channel in fig. 1.

The results in figure 7 for the same channel as figure 5 show the BER comparison between
the MLP and Volterra equalisers. Clearly the MLP marginally out-performs the Volterra
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Figure 7: Bit error rate plotted against signal to noise ratio for the MLPequaliser and the
Volterra Series equaliser.
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system. This is due to the tighter approximation involved in the latter case while the MLP
is overdefined in terms of the non-linearity. It is this same effect which causes the funda-
mental differences in convergence characterisation.
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5. CLUSTERING

The two preceeding examples show first how effective non-linear classification can be and
second, how difficult it is to implement such a structure in practice. In this section we set
out to determine how the problem may be further refined to yield a more appropriate prac-tical equaliser.
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One way of refining the classification structure is to reformulate the rationale by abandon-
ing the idea of forming a decision boundary. In this case we would determine the correct
outcome by calculating a statistical distance from each of the known outcomes. For the
example taken we are using 2 output observations which, if there was no noise and no dis-
tortion, would result in 4 distinct observation outcomes, figure 8. Two of these outcomes
correspond to a —1 and the other two to a +1. If these points are taken as our initial esti-
mates of cluster centres we may proceed to build up a cluster model using the so-called
Mahanalobis distance [9] classifier as follows:

d. = (y(n)— <y1(n)>)' i._1(n) (y(n)—<y1(n)>)

= X <yj(n)> + y(n)

1(n+1) = 1 1 1 i.1(n) y (n) y'(n) ij1(n)
(n) - -- (n)1(n )(n)

y(n)

(5)

Figure 8: 2-dimensional representation of the received signal alphabet formed by 2 succes-

sive received samples for a non-distorting channel.

This strategy will allow the cluster shape to evolve to match the split and spread of the
observation points evidenced in figure 1 but avoids the explicit use of a decision boundary.
Further, the use of the recursions in (5) ensures optimal convergence rates (this should be
compared with the recursions used in recursive least squares adaptive algorithms [10]). The
exponential window implied by the use of X here provides an ability to copewith nonsta-

tionary situations.
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An interesting further point regarding this strategy is that since we are explicitly identifying
input signal pairs which must occur in overlapped sequence we will have explicit informa-
tion on the possible transitions between points from one sample to the next. These possible
transitions are illustrated in figure 9 . This information could be used to further refine our
output estimate by using a maximum liklihood decoding structure.

y(n-1) -
1 • x .

(0,1) (11)

(0,0) (1,0):•

y(n)

allowable transftlons

Figure 9: Possible sample by sample transitions between symbols for the situation in fig. 8.

6. CONCLUSIONS

It has been shown that non-linear processing has certain fundamental advantages in the
equalisation of digital communications channels in comparison to their linear counterparts.
Two such non-linear discriminators have been introduced, the multilayer perceptron and
the Volterra series. The MLP was shown to have superior discrimination power but at the
expense of poorer convergence properties. Neither structure is attractive from the view-
point of computational complexity.

The final section introduced an architecture which could, potentially, provide a solution to
these problems in a robust and efficient manner. The authors have not yet done a practical
evaluation on this structure but would expect the system to at least equal the performance
of the Volterra system. The added enhancement of the maximum likelihood decoder
should enhance achievable bit error rate considerably.
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