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Abstract

The paper summarizes some results of nonlinear system modelling and identification. Con-
nections with the dynamical systems theory and neural networks are emphasized. Two general
modelling approaches are highlighted. Issues of identifiability and model validation are also
discussed.
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1 Nonlinear system representation

Modelling and identification is one of the major areas of control engineering. Theory and
practice of linear system identification are well established 1,2• During the past decade, efforts
have been focused on developing coherent and concise methods of nonlinear system modelling
and identification.

For the class of discrete-time nonlinear dynamic systems shown in Fig.1, the general input-
output relationship can be written as

y(k) = f5(y(k — 1),... , y(k — na), u(k — 1),... , u(k — na), e(k — 1),... , c(k — ne)) + e(k) (1)
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where f8(') is some nonlinear function. This nonlinear system representation is known as the
nonlinear autoregressive moving average with exogenous inputs (NARMAX) model If the
system noise is additive, the NARMAX model may reduce to

y(k) = f3(y(k — 1), . . . , y(k — np), u(k — 1), • . . , u(k — na)) + e(k) (2)

For autonomous systems or time series, the model (2) is further reduced to

y(k) = f8(y(k — 1), . . . , y(k — np)) + e(k) (3)

A main assumption for the NARMAX model is that the "system state space" has a finite
dimension. This agrees with a basic result of the dynamical systems theory, which states that if
the attractor of a dynamical system is contained within a finite-dimensional manifold, then an
embedding of the manifold can be constructed from time series of observations of the dynamics
on the manifold. The dynamical system induced by the embedding is differentiably equivalent
to the one being observed. In fact, the lag ri,, in (3) corresponds to the embedding vector
dimension.

The functional form f(.) for a real-world system is generally very complex and unknown.
Any practical modelling must be based on a chosen model set of known functions. Obviously,
this model set should be capable of approximating the underlying process to within an ac-
ceptable accuracy. Secondly, an efficient identification procedure must be developed for the
selection of a parsimonious model structure because the dimension of a nonlinear model can
easily become extremely large. Without efficient subset selection, the resulting model often has
little practical value.

The relationship between model outputs and inputs must be nonlinear in a nonlinear model
by definition. The relationship between model outputs and adjustable model parameters, how-
ever, can be either nonlinear or linear. From this viewpoint, various identification schemes
can be classified into two categories, namely the nonlinear-in-the-parameters approach and the
linear-in-the-parameters approach.

2 The nonlinear-in-the-parameters approach

Let 0 be the parameter vector of a nonlinear model. In general, the model output is
nonlinear with respect to this adjustable parameter vector, and can be written as

(k) = fm(x(k); 0) (4)

where fm(S) is the nonlinear map realized by the model. The modelling error is defined by

f(k) = E(k;0) = y(k) -(k) (5)
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The model input vector x(k) is given by

x(k) = [y(k — 1) • • • y(k — n) u(k — 1) • • • u(k — n) €(k — 1) • • • €(k — fle)]T (6)

or
x(k) = [y(k — 1) • • • y(k — n) u(k — 1) • • • u(k — n)IT (7)

or
x(k) = {y(k — 1) • • • y(k — )]T (8)

depending on the system representation used. Examples of this class of nonlinear models are
the nonlinear rational and the multilayer perceptron neural network model 6•

A class of parameter estimation algorithms widely used for nonlinear models is the prediction
error algorithm This is a class of gradient based algorithms that minimize the performance
function

J() = : E2(k;) (9)
k=1

The Hessian of J(e), H(e), also plays an important role in subset model selection 8• A practical
method for selecting parsimonious models is based on backward elimination, which eliminates
some parameters of a large model according to information provided by H(e). This method is
similar to the stepwise backward elimination scheme in statistical literature9.

The importance of the parsimonious principle is widely recognized in the neural network
community. Weight elimination has been suggested to reduce size of large network models, and
the process is known as the pruning. Approaches adopted in pruning often have their root in
more traditional methods for subset model selection. For example, the so-called optimal brain
damage uses the diagonal elements of the Hessian H(s) in weight elimination.

3 The linear-in-the-parameters approach

An alternative approach to nonlinear modelling is to perform some fixed nonlinear functional
transform or expansion of the inputs and to combine the resulting terms linearly. Specifically,
a given functional expansion maps the input space onto a new space of increased dimension n,

x(k) [1(x(k)).. . (x(k))]T (10)

The model output is obtained as a linear combination of the new bases çb(x(k)), 1 �

(k) = O(x(k)) (11)

Generally, the value of a given basis function depends only on the input x(k), and q(x(k))
contains no other adjustable parameters. An advantage of the model (11) is that the standard
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least squares method can readily be applied to estimate the parameters O. Examples of this
class of nonlinear models include the Volterra series model , the fuzzy basis function network 12,
and the general functional-link network 13, When its hidden layer is fixed, a radial basis function
( RBF)

14 also has this linear-in-the-parameters structure.

In practice, the model dimension n can become excessively large. Consider, for example,
the simplest and most well-known way of obtaining a linear-in-the-parameters model, namely
Volterra expansion, which derives the set of model bases as the set of monomials of x(k) . If the
dimension of x(k) is 8, a degree-5 Volterra expansion will produce a model basis set of dimension
n = 1286. If other numerous choices of model 15 are also considered, the problem of
excessive model dimension can become even serious. Subset selection is therefore essential,
and a very efficient subset selection procedure has been derived based on the orthogonal least
squares (OLS) method1116 Given the full set of ri candidate bases, the algorithm selects
significant model bases one by one in a forward regression manner until an adequate subset
model is constructed. The selection procedure is made simple and efficient by exploiting an
orthogonal property.

A technique for overcoming the overfitting problem in constructing large full-size neural
network models is regularisation1718 The regularisation method improves generalisation by
adding a penalty function to the criterion J(ê)

JR(e, ) = J() + )(penalty function) (12)

where ; is a regularisation parameter. The simplest penalty function, known as the zero-order
regularisation, is eTe. The least squares criterion J() in certain circumstances is prone to
overfitting. When the data are highly noisy and the model size is large, the problem can be
serious. Instead ofjust relying on the regularisation mechanism, a better approach is to combine
regularisation techniques with the parsimonious principle.

A subset selection procedure has been derived by incorporating the OLS algorithm with
the zero-order regularisation technique 19• This regularised OLS (ROLS) algorithm is capa-
ble of constructing parsimonious models which generalise well. Furthermore, it has the same
computational requirement to that of the OLS algorithm and is, therefore, computationally
very efficient. A simple example is used to demonstrate the advantage of the ROLS algorithm,
where a RBF network with Gaussian basis function is used to approximate the scalar function
1(x) = sin(2irx), 0 x 1, buried under severe noise. Two network models, each having
15 centres, are constructed by the OLS and ROLS algorithms respectively. The network maps
obtained by the two algorithms are plotted in Figs. 2 and 3 respectively.

4 Identifiability
Experiment design for linear system identification is well established . Basically, the input

signal chosen for an identification experiment should be persistently exciting, which means
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that the input should excite all the frequencies of interests in the system. For nonlinear system
identification, however, persistent excitation requires an additional condition that the input
should also excite the system over the whole amplitude range of operation. The design of
inputs for nonlinear system identification is a very complex problem and some useful results
have been given in20.

A simple example is given to illustrate the relationship between persistent excitation and
identifiability. A nonlinear digital communication channel can be represented by

y(k) = f8(u(k), . . . , u(k — n,)) + e(k) (13)

where the input u(k) is a white sequence taking values from the set {±1}. Since u(k) is white,
it contains all frequency components, and is an ideal input signal for identifying a linear model.
For nonlinear identification, the input should cover a sufficient range of amplitudes. The binary
nature of u(k) therefore represents a worst scenario and, as a consequence, parameters in some
nonlinear model may not be identifiable. For example, consider the following channel model

(k) = 1) (14)
i=0 i=0 j=i i=0 j=i l=j

The rank of the 19 x 19 autocorrelation matrix of the estimator input vector is only 8. It is
therefore impossible to identify all the 19 parameters in (14).

The requirement of covering a sufficient range of amplitudes is difficult to meet in practice.
Normal operation of an industrial plant is often concerned with controlling the plant close to
some operating points. Perturbing signals that the experimenter injects into the plant can only
have a small amplitude in order not to cause large disturbances to the operation of the plant. If
normal operation of the plant includes several operating levels, several sets of small perturbing
data records can be obtained without violating the amplitude constraints for normal operation.
These data records together may cover a sufficient range of amplitudes. A global-model fitting
procedure15 can then be applied to obtain a nonlinear model. Experiment design for nonlinear
system identification is an area that more research efforts are required.

5 Model validation

For linear system identification, if the model structure and parameter values are correct,
€(k) will be uncorrelated with past inputs and outputs. Therefore, an identified linear model is
regarded as adequate if the autocorrelation function of E(k) and the cross-correlation function
of E(k) and u(k) satisfy

(r) = 0, T 0
(15)1(r) = 0, for all r J
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For validating a nonlinear model, (15) is clearly insufficient. Three additional tests were
215

7((fU)(T) = 0, r 0
= 0, for all 7 (16)

l2'2(r) = 0, for all T J

where €u(k) = f(k + 1)u(k + 1), u21(k) = u2(k) — u2(k) and the bar indicates the time average.

The tests (16) are higher-order statistics. If a nonlinear model is correct, €(k) will be
uncorrelated with all the linear and nonlinear combinations of past inputs and outputs. Further
research is required to develop coherent and easy-to-use nonlinear model validation methods.
Recent advance in higher-order statistics methods may provide some useful results.

6 Conclusions

Theory and practice of nonlinear system identification has advanced considerably during
the past decade. Future research will involve multi-discipline approaches, including traditional
control engineering, nonlinear dynamical systems theory, neural networks and higher-order
statistics.
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Figure 1: Block diagram of nonlinear system.
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Figure 2: Network mapping constructed by the regularised
orthogonal least squares algorithm.

SPIE Vol. 2296 / 277

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Apr 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 3: Network mapping constructed by the orthogonal
least squares algorithm.
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