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Abstract 

We present a neural network visual model (NNVM), which extracts 
multi-scale edge features from the decompressed image and uses these 
visual features as input to estimate and compensate the coding distor- 
tions. Our approach is a generic postprocessing technique and can be 
applied to  all the main coding methods. Experimental results involv- 
ing post-processing four coding systems show that the NNVM signifi- 
cantly improves the quality of reconstructed images, both in terms of 
the objective peak signal to  noise ratio (PSNR) and subjective visual 
assessment. 

1 Introduction 

Image coding is always a trade-off between the coding bit rate and 
the coded image quality. Generally speaking, increasing coding bit 
rate can improve quality, but this is limited by channel bandwidth or 
storage capacity. Postprocessing offers an alternative to  improve the 
quality of reconstructed image without increasing bit rate. Existing 
postprocessing methods [1]-[6] employ filtering to smooth blocking ar- 
tifacts, and are designed for entertainment applications where obtain- 
ing pleasant viewing quality is the main purpose. Since filtering also 
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causes oversmoothing on image edges, these methods are not appropri- 
ate for applications which require genuinely good image quality with 
minimum distortions, such as tele-medical diagnosis where contours 
of objects are crucial for correct diagnosis, or satellite remote sensing 
where original image edges are essential for proper classification and 
recognition. In addition, existing methods are specifically designed 
for fixed-block transform coding (TC) and vector quantization (VQ), 
and they cannot be applied to non-block predictive coding (PC) or 
variable-block quadtree (QT) coding. 

We develop a generic postprocessing technique for all the major 
coding systems based on the direct correction of actual coding distor- 
tions. The key to  the proposed technique is a NNVM for recovering 
the distortion image based on the decoded image. The distortion im- 
age is defined as the difference image between the original image and 
the decoded image. This distortion-recovery model consists of a visual 
or gradient feature extractor to  extract edge information from the de- 
coded image, and a one-hidden-layer neural network to  estimate the 
distortion image using the visual features of the decoded image. We 
demonstrate the advantages of the proposed postprocesing technique 
on four coding systems, namely TC,  VQ, QT coding and PC. Our ex- 
perimental results show that the NNVM achieve significant improve- 
ments on the quality of reconstructed images, in both the objective 
distortion measure and subjective viewing evaluation. 

2 The NNVM for postprocessing 

The proposed approach i s  illustrated in Fig.1. It can be shown that 
main coding distortions are edge distortions, including blurred edges 
and blocking artifacts. Therefore, the main task of the model is to  
correct edge distortions, and we adopt the strategy depicted in Fig. 2. 
A decoded image of size N x N is divided into blocks of size n x n, 
and pixels of each block are fed into a visual feature extractor, which 
extracts edge features of the block. These edge features are fed into 
a one-hidden-layer neural network, which produces an estimate of the 
corrresponding distortion image block. We will refer to  n x n as the 
postprocessing block size. The basic idea is that, after learning, the 
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output of the model will be a good estimate of the distortion image, 
which can then be added to the decoded image to  compensate actual 
coding distortions. 

Edge features of an image block are extracted as multi-scale first- 
order derivatives. To calculate derivatives for an n x n  block in different 
scales, the block is recursively divided into 4 equal-size sub-blocks until 
the sub-block size is reduced to  2 x 2. For a generic sub-block X ,  of 
size n, x n,, a pair of horizontal and vertical derivatives (dh, d,) are 
calculated as: 

where X , ( i , j )  is the pixel value at position ( i , j )  in X,. The outputs 
of the visual feature extractor, the multi-scale derivatives, can be ar- 
ranged in a vector form: d 1 [dl dz . . . d ~ ] ~ .  The total number of 
derivatives, M ,  for an n x n block is determined by the formula 

The choice of the block size n x n has important influence on the com- 
plexity and performance of the model. Ideally, the block size should 
be as large as possible. However, too large a block size would make 
computation and storage impractical. For post-processing block-based 
coding systems, the postprocessing block size should be larger than the 
coding block size, so that blocking artifacts at coding block boundaries 
can be corrected. 

The inputs to  the one-hidden-layer neural network, the edge fea- 
tures, are normalized to  lie in the range of (-1, l), the hidden-layer 
outputs of the NNVM are given by 
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where H ,  is the number of hidden neurons, and the outputs of the 
NNVM are given by 

/ 

where a and ,h’ are fixed scaling and shifting constants for mapping the 
model outputs onto the range of pixel values. The activation function 
f is the usual bipolar sigmoid function. The number of the hidden- 
layer neurons, H,, is determined during training by starting with a 
small hidden layer and gradually increasing the hidden layer size until 
the performance stops improving. The total number of adjustable 
parameters, PNNVM, for the NNVM is 

To collect training data from a coding system, an N x N training image 
is compressed and then decompressed. The corresponding distortion 
image is obtained by subtracting the decoded image from the origi- 
nal image. The decoded and distortion images are divided into n x n 
blocks. A pair of blocks gives rise to a pair of input and desired out- 
put. As an image can only provide % pairs of training data, many 
images should be used to  collect sufficient training data samples. The 
network weights Q,k and W k ( i , j )  are learnt using the backpropagation 
algorithm. 

3 Experimental results 

The proposed postprocessing technique was applied to TC, VQ, QT 
coding and PC systems. The coding algorithms were the JPEG [7] 
for TC, the algorithm based on the Kohonen self-organizing feature 
map [8] for VQ, the improved QT algorithm [9] for QT coding, and 
the algorithm using a neural network predictor [lo] for PC. Sixteen 
images of size 512 x 512 with 8 bits per pixel (bpp) were involved 
in the experiment. The images, “peppers”, “airplane”, “goldhill”, 
“lake”, “announcer”, “cornfield”, “windows” and “yacht”, were used 
to  provide training data, and the other images, “lena”, “littlegirl”, 
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“Zelda” “boats”, “cablecar”, “hatgirl, “kids” and “soccer”, were used 
as test images. We also implemented two typical existing postprocess- 
ing methods, Reeve’s filtering method [l] and Paek’s algorithm [4], 
to  compare them with our approach in the identical TC and VQ en- 
vironments. It should be pointed out that, like most of the existing 
methods, these two algorithms are impractical for post-processing QT 
and PC systems. 

An adequate postprocessing block size was found by the experi- 
ments to  be 16 x 16 for JPEG, VQ and QT coding, and 8 x 8 for PC. 
The experimental results also suggested that H ,  = 40 was sufficient. 
Tables 1 and 2 compare the postprocessing gains obtained using the 
NNVM and two existing algorithms for the JPEG and VQ. Tables 3 
and 4 list the postprocessing gains obtained by the NNVM for the QT 
coding and PC. Fig.3 depicts the original and VQ coded images of 
“Lena” together with the three post-improved images. These pictures 
give magnified portions of the images for a clearer visual evaluation. 
The results demonstrate that the NNVM has superior performance 
over Reeve’s and Paek’s algorithms for post-processing TC and VQ 
systems. The performance achieved by the NNVM in this study is 
generally better than the existing postprocessing methods. For exam- 
ple, a sophisticated space-variant filtering method [2] only achieved a 
PSNR gain of 0.40 dB for a VQ coded “Lena” image at  an original 
coding PSNR of 29.90 dB. The NNVM achieved a postprocessing gain 
of 0.80 dB for a VQ coded “Lena’’ image at an original coding PSNR 
of 30.20 dB. The results also confirm that the NNVM is very effective 
for post-improving QT coding and PC systems. In contrast, most of 
the existing postprocessing algorithms cannot be applied to  these two 
coding systems. 

4 Conclusions 

A generic postprocessing technique for image coding has been devel- 
oped based on a NNVM. Unlike most existing postprocessing methods 
which basically smooth blocking artifacts to  achieve better viewing 
quality, the proposed technique corrects actual coding losses. As a 
result, our method is applicable to  all of the major coding methods 
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while existing postprocessing methods are limited to TC or VQ. Exper- 
iments of applying the proposed technique to four coding systems have 
been conducted, and the results obtained confirm that the proposed 
technique has much better postprocessing gains and wider applications 
over existing methods. 
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JPEG: 
Lena 

Lit tlegirl 
Zelda 
Boats 

Cablecar 
Hatgirl 

Kids 
Soccer 

Lena 
Lit tlegirl 

Zelda 
Boats 

Cablecar 
Hatgirl 

Kids 
Soccer 

28.85 
29.04 
29.98 
28.23 
27.84 
30.60 
28.19 
27.34 

31.67 
32.26 
33.22 
31.01 
30.96 
34.15 
31.56 
30.76 

JPEG: 

postprocessing gain (dB) 
NNVM Reeve’s Paek’s 
;uality=7 

0.81 0.69 
0.79 0.77 
0.80 0.73 
0.81 0.52 
0.79 0.69 
0.75 0.72 
0.69 0.68 
0.73 0.64 

0.36 
0.26 
0.68 
0.28 
0.16 
0.47 
0.24 
0.21 

uali t y = 1 4 
0.71 0.30 0.15 
0.69 0.59 0.08 
0.55 0.38 0.19 
0.77 0.07 0.13 
0.71 0.23 0.07 
0.58 0.21 0.24 
0.64 0.21 0.05 
0.68 0.54 0.05 

Table 1: PSNR values of JPEG coding and postprocessing gains. 
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Coding I VQ coded I postprocessing gain (dB) 

30.20 
31.50 
32.49 
29.74 
28,72 
32.51 
29.73 
28.65 

. ,  -~ 

image 1 PSNR (dB) 1 NNVM Reeve’s Paek’s 
VQ: bit rate=0.25 bpp 

0.80 0.25 0.01 
0.83 0.43 0.02 
0.81 0.35 0.01 
0.76 0.10 -0.01 
0.58 0.06 0.00 
0.76 0.17 0.00 
0.65 0.03 0.00 
0.78 0.38 0.01 

Lena 
Lit tlegirl 

Zelda 
Boats 

Cablecar 
Hatgirl 

Kids 
Soccer 

QT: bit ratez0.25 bpp 
gain (dB) 

NNVM 

26.53 
27.34 
28.79 
25.19 
24.51 
27.37 
25.34 
23.85 

QT: bit rate=0.5 bpp 
QT coded gain (dB) 

PSNR(dB) NNVM 

- _  
1.13 0.64 0.02 
1.10 0.69 0.06 
1.01 0.67 0.11 
0.97 0.45 0.07 
0.95 0.33 0.06 
1.17 0.61 0.03 
0.93 0.37 0.05 
1.19 0.56 0.08 

0.91 

Lit tlegirl 
Zelda 
Boats 

Cablecar 
Hatgirl 

Kids 

32.39 I 0.84 

Table 2: PSNR values of VQ coding and postprocessing gains. 

Coding 
image 

Lit tlegirl 
Zelda 
Boats 

C ablecar 
Hatgirl 

Kids 

QT coded 
PSNR (dB) 

29.66 
29.87 
31.38 
28.72 
27.83 
33.29 
28.38 
25.83 

0.96 
1.00 
0.85 
0.91 
1.14 
0.92 
1.11 

32.42 
33.90 
31.80 
30.59 
36.86 
31.14 
28.32 

1.01 
0.89 
0.77 
0.93 
0.80 
0.98 
1.23 

Table 3: PSNR values of QT coding and postprocessing gains. 
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Coding 
image 
Lena 

Littlegirl 
Zelda 

. Boats 
Cablecar 
Hatgirl 

Kids 
Soccer 

Table 4: PSNR values of PC (quantizing step=4) and postprocessing 
gains. 

PC: coding bit=l PC: coding bit=2 
PC coded gain (dB) PC coded gain (dB) 

PSNR(dB) NNVM PSNR(dB) NNVM 
24.17 2.87 28.42 1.43 
27.51 2.01 34.07 0.51 
29.59 1.20 34.79 0.38 
23.84 3.42 28.39 2.32 
22.38 2.88 25.95 2.39 
23.71 3.52 28.42 2.84 
23.88 2.66 27.83 1.95 
21.88 2.97 26.03 2.05 

improved 
decoded 

i _ _ _ _ _ _  _ _ _  _ _ _  _ _ _  __. _ _ _  _ _  ...............__ _ _ _  __.image 

Figure 1: A generic postprocessing approach for image coding. 

distortion-recovery io” 
model r: ,.to$ _ D  

b - 

Figure 2: Schematic of the neural network visual model. 
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(a) Original image 

(b) VQ coded (26.53 dB) (c) NNVM (gain 1.13 dB) 

(d) Reeve’s (gain 0.64 dB) (d) Paek’s (gain 0.02 dB) 

Figure 3: Magnified portions of original, VQ coded (bit rate=0.25 bpp) 
and post-improved images of “Lena.” 

566 

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on April 07,2021 at 12:38:20 UTC from IEEE Xplore.  Restrictions apply. 


