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ABSTRACT

System identification using infinite-impulse-response (IIR)
model is considered. Because the error surface of IIR filters
is generally multi-modal, global optimisation techniquesare
preferred in order to avoid local minima. An efficient global
optimisation method, called the adaptive simulated anneal-
ing (ASA), is adopted, and a new batch-recursive ASA al-
gorithm is developed for on-line identification. Simulation
study shows that the proposed approach is accurate and has
a fast convergence rate, and the results obtained demonstrate
that the ASA offers a viable tool to IIR model identification.

Keywords – System identification, IIR filter, global optimi-
sation, adaptive simulated annealing, genetic algorithms.

1. INTRODUCTION

Adaptive IIR filtering has been an active area of research
for many years [1, 2]. A major concern in IIR filtering ap-
plications is that the cost function is generally multi-modal
with respect to the filter coefficients, and the gradient-based
algorithm can easily be stuck at local minima. In order
to achieve a global minimum solution, global optimisation
techniques are needed. Global optimisation methods re-
quire extensive computations and are batch-type algorithms,
as the cost function is usually evaluated on a block of data.
In contrast, gradient learning can be implemented recur-
sively to update the filter coefficients as each new data sam-
ple is acquired. Despite of these drawbacks, applying global
optimisation methods to IIR filter design is attractive, since
in many applications a global optimal solution can be much
better than local optimal ones.

When considering global optimisation methods for IIR fil-
ter design, the genetic algorithm (GA) [3, 4, 5] seems to
have attracted the main attention [6, 7, 8]. Simulated an-
nealing (SA) [9, 10, 11] by contrast has not received similar
interests. The ASA [12, 13, 14, 15], an improved version

of SA, is known to provide significant improvement in con-
vergence speed over standard versions of SA. This study
investigates the use of the ASA to IIR system identification.
A new batch-recursive ASA is proposed for adaptive appli-
cations. Simulation results confirm that the efficiency of the
ASA appears to be in the same orders as GAs. This sug-
gests that the ASA offers a viable alternative to IIR model
identification.

2. IIR SYSTEM MODEL IDENTIFICATION

System model identification using an IIR filter is depicted in
Fig. 1. The IIR filter is governed by the difference equation:y(k) + MXi=1 biy(k � i) = LXi=0 aix(k � i); (1)

wherex(k) andy(k) are the filter’s input and output, re-
spectively, andM (� L) is the filter order. The transfer
function of this IIR filter is:HM (z) = A(z)B(z) = PLi=0 aiz�i1 +PMi=1 biz�i : (2)

The unknown plant has a transfer functionHS(z) to be
identified usingHM (z). The task is formulated as an op-
timisation problem with the mean square error (MSE) as
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Figure 1: Adaptive IIR filter for system identification.



the cost function:J(wH) 4= E[e2(k)℄ � 1N NXk=1 e2(k): (3)

whered(k) is the desired response,e(k) = d(k) � y(k) is
the error signal,wH = [aT bT ℄T = [a0 a1 � � � aL b1 � � � bM ℄T (4)

denotes the filter coefficient vector, andN is the number
of samples used to approximate ensemble operation. When
the filter orderM is smaller than the system order, local
minima problems can be encountered [2], giving rise to a
multi-modal cost functionJ .

An important consideration during the adaptive process is
to maintain the stability. An efficient way is to convert the
direct form of IIR filter (1) to the lattice form [16] and to
make sure that all the reflection coefficients�i, 0 � i �M � 1, have magnitudes less than 1. Thus the actual filter
coefficient vector used in optimisation is:w = [a0 a1 � � � aL �0 � � ��M�1℄T = [w1 � � �wD ℄T ; (5)

whereD = M + L + 1 is the dimension of the filter coef-
ficient vector. Converting the reflection coefficients back tobi, 1 � i �M , is straightforward [16].

3. THE ASA ALGORITHM

Theoretic fundamentals and convergenceanalysis of the ASA
algorithm can be found in [12, 13, 14]. The appendix sum-
marizes the search mechanisms of the ASA method. An
implementation of the ASA, shown in Fig. 2, is detailed:

(i) Initialisation An initial w is randomly generated, the
initial temperature of the acceptance probability func-
tion,T(0), is set to the initial value of the cost func-
tion J(w), and the initial temperatures of the param-
eter generating probability functions,Ti(0), 1 � i �D, are set to 1.0. A control parameter in anneal-
ing process is given, and the annealing times,ki for1 � i � D andk, are all set to 0.

(ii) Generating The algorithm generates a new point in the
parameter space with:wnewi = woldi + gi (Ui � Vi) andwnewi 2 [Ui; Vi℄; 1 � i � D: (6)

HereUi andVi are the lower and upper bounds forwi, gi is calculated asgi = sgn�ui � 12�Ti(ki) �1 + 1Ti(ki)�j2ui�1j � 1! ;
(7)
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Figure 2: Flow chart of the adaptive simulated annealing.

andui a uniformly distributed random variable in[0; 1℄.
The value of the cost functionJ(wnew) is then evalu-
ated and the acceptance probability function ofwnew
is given byPaept = 11 + exp ((J(wnew)� J(wold)) =T(k)) :

(8)
A uniform random variablePunif is generated in[0; 1℄.
If Punif � Paept, wnew is accepted; otherwise it is
rejected.

(iii) Reannealing After everyNaept acceptance points,
calculating the sensitivities:si = ����J(wbest + 1i Æ)� J(wbest)Æ ���� ; 1 � i � D;

(9)
wherewbest is the best point found so far,Æ is a small
step size, theD-dimensional vector1i has unitith
element and the rest of elements of1i are all zeros.
Let smax = maxfsi; 1 � i � Dg. EachTi is scaled
by a factorsmax=si and the annealing timeki is reset:Ti(ki) = smaxsi Ti(ki); ki = ��1 log�Ti(ki)Ti(0) ��D :

(10)
Similarly, T(0) is reset to the value of the last ac-
cepted cost function,T(k) is reset toJ(wbest) and
the annealing timek is rescaled accordingly:k = ��1 log�T(k)T(0) ��D : (11)
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Figure 3: Batch-recursive moving window. The data block
containsN samples and, after every�N cost-function eval-
uations, the data block is shifted by�N samples.

(iv) Annealing After everyNgenera generated points, an-
nealing takes place withki = ki + 1Ti(ki) = Ti(0) exp��k 1Di � ) 1 � i � D

(12)
and k = k + 1T(k) = T(0) exp��k 1D � ) : (13)

Otherwise, goto step (ii).

(v) Termination The algorithm is terminated if the param-
eters has remained unchanged for a few successive re-
annealings or a preset maximum number of cost func-
tion evaluations has been reached; Otherwise, goto
step (ii).

The inner loop in the ASA ensures that the parameter space
is searched sufficiently at a given temperature, which is nec-
essary for the algorithm to find a global optimum. The user
only needs to assign a control parameter and set two valuesNaept andNgenera. The above ASA is a batch algorithm.
For adaptive applications, it is desired to have some track-
ing capability. This can be achieved by employing a moving
window scheme, as illustrated in Fig. 3. The cost-function is
evaluated using a block ofN samples and the data block is
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Figure 4: Normalized cost function versus number of cost
function evaluations averaged over 100 runs of the batch
ASA for Example 1. The dashed line indicates the global
minimum.
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Figure 5: Trajectories of the filter parameter vector averaged
over 100 different runs of the batch ASA, started from the
fixed initial positions: (a)[0:9 � 0:9℄T , (b) [�0:8 0:0℄T , (c)[0:9 0:9℄T and (d)[0:114 0:519℄T , for Example 1.

shifted by�N samples after every�N cost-function eval-
uations. This version of the algorithm will be referred to as
the batch-recursive algorithm.

4. SIMULATION EXAMPLES

Example 1. This example is taken from [2]. The system
and filter transfer functions are respectivelyHS(z) = 0:05� 0:4z�11� 1:1314z�1 + 0:25z�2 ; (14)HM (z) = a01 + b1z�1 : (15)

The analytical cost functionJ is known when the input
is a white sequence and the system noise variance�2n =0. The cost function has a global minimum atwglobal =[�0:311 �0:906℄T with the normalized cost function value
0.2772 and a local minimum atwloal = [0:114 0:519℄T .
Fig. 4 depicts the evolution of the normalized cost function
averaged over 100 different random runs of the batch ASA.
Each run had a randomly chosen initialw and a random al-
gorithm setting. Fig. 5 shows the trajectories of the filter pa-
rameter vector averaged over 100 different runs of the batch
ASA, started from four fixed initial positions. It can be seen
that the batch ASA consistently found the global optimal so-
lution and the algorithm converged after 300 function calls.



0.01

0.1

1

0 50 100 150 200

C
os

t F
un

ct
io

n

Number of Iterations

(a)
(b)

Figure 6: Convergence behaviours of the batch gradi-
ent algorithm, started from the two initial conditions: (a)[0:0 0:0 0:3 0:1℄T and (b)[0:0 0:0 0:3 0:0℄T , for Example 2.

Example 2 This is a 3rd order system with the transfer
function given byHS(z) = �0:3 + 0:4z�1 � 0:5z�21� 1:2z�1 + 0:5z�2 � 0:1z�3 : (16)

In the simulation, the system inputx(k) was a uniformly
distributed white sequence, taking values from(�0:5; 0:5),
and the signal to noise ratio was SNR=30 dB. When an IIR
filter model withM = 2 andL = 1 was used, the MSE
was multi-modal and this was demonstrated by the batch
gradient algorithm which converged to the two final states,
depending on the initial conditions, as illustrated in Fig.6.
The batch ASA consistently reached the global optimal so-
lution, as shown in Fig. 7. The batch-recursive ASA algo-
rithm was also tested for this example. A moving window
of N = 100 and�N = 1 was used. Fig. 8 plots the evolu-
tion of the cost function averaged over 100 different random
runs of the batch-recursive ASA. Again each run had a ran-
domly chosen initialw and a random algorithm setting. It
can be seen that the batch-recursive ASA algorithm consis-
tently converges to the global minimum.
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Figure 7: Cost function versus number of cost function eval-
uations averaged over 100 random runs of the batch ASA
for Example 2. Each run had a randomly chosen initial
point.
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Figure 8: Cost function versus number of cost-function
evaluations averaged over 100 random runs of the batch-
recursive ASA for Example 2. A moving window ofN =100 and�N = 1 was used. Each run had a randomly cho-
sen initial point.

5. CONCLUSIONS

Although the IIR system model identification is a well re-
searched area, major difficulties still exist in practice. An
efficient global optimisation method known as the ASA has
been applied to overcome the problems associated with lo-
cal minima. A batch-recursive ASA algorithm is proposed
for on-line applications. Simulation study has demonstrated
that the ASA is robust and has a fast convergence speed.
Compared with the results of using GAs for adaptive IIR
filtering available in the literature, the efficiency of the ASA
appears at least to be in the same order as GAs. This study
has confirmed that the ASA offers an alternative design ap-
proach for IIR filtering.

Appendix: Search guiding mechanisms

The ASA is a global optimization scheme for solving for
the following general optimization problem:minw2W J(w) : (17)

It evolves a single pointw in the parameter or state spaceW . The seemingly random search is guided by certain un-
derlying probability distributions.

1. Generating probability density functionG(woldi ; wnewi ; Ti; 1 � i � D) : (18)

This determines how a new statewnew is created, and from
what neighbourhood and probability distributions it is gen-
erated, given the current statewold. The generating “tem-
peratures”Ti describe the widths or scales of the generating
distribution along each dimensionwi of the state space.



Often a cost function has different sensitivities along dif-
ferent dimensions of the state space. Ideally, the generat-
ing distribution used to search a steeper and more sensitive
dimension should have a narrower width than that of the
distribution used in searching a dimension less sensitive to
change. The ASA adopts a so-called reannealing scheme
to periodically re-scaleTi, so that they optimally adapt to
the current status of the cost function. This is an important
mechanism, which not only speeds up the search process
but also makes the optimization process robust to different
problems.

2. Acceptance functionPaept(J(wold); J(wnew); T) : (19)

This gives the probability ofwnew being accepted. The
acceptance temperatureT determines the frequency of ac-
cepting new states of poorer quality.

Probability of acceptance is very high at very high temper-
atureT, and it becomes smaller asT is reduced. At ev-
ery acceptance temperature, there is a finite probability of
accepting the new state. This produces occasionally uphill
move, enables the algorithm to escape from local minima,
and allows a more effective search of the state space to find
a global minimum. The ASA also periodically adaptsT to
best suit the status of the cost function. This helps to im-
prove convergence speed and robustness.

3. Reduce temperatures or annealing scheduleT(k) �! T(k + 1)Ti(ki) �! Ti(ki + 1); 1 � i � D ) ; (20)

wherek andki are some annealing time indexes. The re-
duction of temperatures should be sufficiently gradual in or-
der to ensure that the algorithm finds a global minimum.

This mechanism is based on the observations of the physical
annealing process. When the metal is cooled from a high
temperature, if the cooling is sufficiently slow, the atoms
line themselves up and form a crystal, which is the state of
minimum energy in the system. The slow convergence of
many SA algorithms is rooted at this slow annealing pro-
cess. The ASA, however, can employ a very fast annealing
schedule, as it has self adaptation ability to re-scale temper-
atures.
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