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Abstract: A computationally tractable finite word
length (FWL) closed-loop stability measure is derived
which is applicable to fixed-point, floating-point and
block-floating-point representation schemes. Both the
dynamic range and precision of an arithmetic scheme are
considered in this new unified measure. For each arith-
metic scheme, the optimal controller realization prob-
lem is defined and a numerical optimization approach is
adopted to solve it. Two examples are used to illustrate
the design procedure and to compare the optimal con-
troller realizations in different representation schemes.
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1 Introduction

In recent years, there has been a growing interest in dig-
ital controller implementation which reduces the FWL
effects on closed-loop stability. It is well known that a
control law can be accomplished with different realiza-
tions and that the parameters of a controller realization
are represented by a digital processor of finite bit length
in a particular format, namely fixed-point, floating-point
or block-float-point format. Previous works [1]–[4] have
derived some FWL closed-loop stability measures for
these three formats, respectively, and defined the corre-
sponding optimal controller realization problems based
on these measures. However, all these previous measures
are only linked to the precision bit lengths of the respec-
tive representation schemes used and do not consider the
dynamic range bit lengths. Arguably, a better approach
is to consider some measure which has a direct link to
the total bit length required. The main contribution of
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bility measure that can accommodate both the dynamic
range and precision requirements and is applicable to all
the three schemes.

2 Number Representation Schemes

Whenx 2 R is represented in the fixed-point scheme of
bit length� = 1 + �g + �f , the bits are assigned as fol-
lows: one bit for the sign,�g bits for the integer part and�f bits for the fraction part. Assuming that no overflow
occurs, which means thatjxj � 2�g , x is perturbed toQ1(x) = x+ Æ1; jÆ1j < 2�(�f+1): (1)

Any x 2 R can be expressed uniquely asx = (�1)s �w � 2e, wheres 2 f0; 1g is the sign ofx, w 2 [0:5; 1)
is the mantissa ofx, e = blog2 jxj + 1 2 Z is the
exponent ofx,Z denotes the set of integers and thefloor
functionbx is the closest integer less than or equal tox.
Whenx is stored in the floating-point format of bit length� = 1 + �w + �e, the bits consists of three parts: one
bit for s, �w bits forw and�e bits for e. Let e ande be
the lower and upper limits of the exponent, respectively.
Clearly, e � e = 2�e � 1. Denote the set of integerse � e � e asZ[e; e℄. Assuming that no underflow or
overflow occurs, which means that the exponent ofx is
within Z[e; e℄, x is perturbed toQ2(x) = x+ xÆ2; jÆ2j < 2�(�w+1): (2)

In the block-floating-point format, a set of real numbersS is first divided into some blocks. For an illustrative
purpose, consider the case of dividingS into the two
non-empty and non-overlapped subsetsS1 andS2. Let�1 2 S1 be the element inS1 that has the largest absolute
value, and�2 2 S2 be the element inS2 that has the
largest absolute value. Then, anyx 2 S can be expressed
uniquely asx = (�1)s�u�2h, whereu 2 [0; 1) is the
block mantissa ofx, and the block exponent ofx ish 4= � blog2 j�1j+ 1; for x 2 S1;blog2 j�2j+ 1; for x 2 S2: (3)



When all the elements inS are presented in the block-
floating-point format of bit length� = 1 + �u + �h,
the bits are assigned as follows:1 bit for the sign,�u
bits for u which is represented in fixed-point with the
two’s complement system, and�h bits forh. Let h andh be the lower and upper limits of the block exponent,
respectively. Obviously,h� h = 2�h � 1. Denoter(x) 4= � 2�1; for x 2 S1;2�2; for x 2 S2: (4)

Assuming no underflow or overflow, i.e. the block expo-
nent ofx is withinZ[h; h℄, x is perturbed toQ3(x) = x+ r(x)Æ3; jÆ3j < 2�(�u+1): (5)

For the notational conciseness, we introduce the “gen-
eralized” dynamic range bit length�r and precision bit
length�p for the three representation schemes. It is un-
derstood that�r = �g, �e or �h and�p = �f , �w or �u,
depending on which format is actually used.

3 Problem Statement

The discrete-time linear time-invariant plantP is de-
scribed by� x(k + 1) = Ax(k) +Be(k)y(k) = Cx(k) (6)

with A 2 Rn�n, B 2 Rn�p andC 2 Rq�n; and the
generic digital controllerC is described by� v(k + 1) = Fv(k) +Gy(k) +He(k)u(k) = Jv(k) +My(k) (7)

with F 2 Rm�m, G 2 Rm�q , J 2 Rp�m, M 2Rp�q andH 2 Rm�p. Let e(k) = q(k) + u(k)
with the command inputq(k). ThenP andC form
a closed-loop control system. Assume that a realiza-
tion (F0;G0;J0;M0;H0) of C has been designed. It
is well-known that the realizations ofC are not unique.
All the realizations ofC form the realization setSC 4= f(F;G;J;M;H) : F = T�1F0T;G = T�1G0;J = J0T;M =M0;H = T�1H0g (8)

whereT 2 Rm�m is any nonsingular matrix. LetwF = Ve(F), whereVe(�) denotes the column stack-
ing operator, andwF0 , wG, wG0 , wJ , wJ0 , wM , wM0 ,wH andwH0 be similarly defined. Denotew = [w1 � � �wN ℄T 4= �wTF wTG wTJ wTM wTH�Tw0 4= �wTF0 wTG0 wTJ0 wTM0 wTH0�T (9)

whereN = (m + p)(m + q) +mp andT is the trans-
pose operator. We also refer tow as a realization ofC.

The stability of the closed-loop system depends on the
eigenvalues of the matrixA(w) = � A+BMC BJGC+HMC F+HJ �= � I 00 T�1 �A(w0) � I 00 T � : (10)

All the different realizationsw have the same set of
closed-loop poles if they are implemented with infinite
precision. Since the closed-loop system is designed to
be stable, the eigenvaluesj�i(A(w))j = j�i(A(w0))j < 1; 8i 2 f1; � � � ;m+ng:

(11)
Definekwkmax 4= maxj2f1;���;Ng jwj j;�(w) 4= minj2f1;���;Ngfjwj j : wj 6= 0g; (12)

and the index� of representation formats adopted� = 8<: 1; fixed-point format;2; floating-point format;3; block-floating-point format: (13)

The controller realizationw is implemented in format� of �r dynamic range bits,�p precision bits and one
sign bit. In the remainder of this paper, it is assumed
that ifw is stored in the block-floating-point format, it is
divided into “natural” blocks ofwF , wG, wJ , wM andwH . Let �F 2 wF be the element inF which has the
largest absolute value. The elements�G, �J , �M and�H
are similarly defined. Denotez(w) 4= [ �F �G �J �M �H ℄T : (14)

4 Optimization of an FWL Closed-
Loop Stability Measure

Firstly, the dynamic range bit length of�r bits must be
large enough to accommodatew. We define a dynamic
range measure for realizationw in format� as(w; �) 4= 8><>: kwkmax; � = 1;log2 4kwkmax�(w) ; � = 2;log2 4kz(w)kmax�(z(w)) ; � = 3: (15)

Proposition 1 The realizationw can be represented in
the fixed-point format of�g integer bits without over-
flow, if 2�g � kwkmax; w can be represented in the
floating-point format of�e exponent bits without under-

flow or overflow, if 2�e � log2 �kwkmax�(w) � + 2; w can

be represented in the block-floating-point format of�h
block exponent bits without underflow or overflow, if2�h � log2 �kz(w)kmax�(z(w)) �+ 2.



Let �minr be the smallest dynamic-range bit length that,
when used to implementw with format �, does not
cause overflow or underflow.�minr (w; �) can eas-
ily be computed by: dlog2 kwkmaxe when � = 1,dlog2(blog2 kwkmax� blog2 �(w)+1)e when� = 2
and dlog2(blog2 kz(w)kmax � blog2 �(z(w)) + 1)e
when� = 3, where theceiling function dxe denotes
the closest integer greater than or equal tox 2 R. Note
that the measure(w; �) defined in (15) provides an es-
timate of�minr as�̂minr (w; �) 4= dlog2 (w; �)e: (16)

It can easily be seen that̂�minr � �minr and, when the
fixed-point format is adopted,̂�minr = �minr .

For a vectorx, letd(x) be the vector of the same dimen-
sion whose elements are all1s and denote�(x) 4= ( 0; x is a zero vetor;1; x is a nonzero vetor: (17)

For two vectorsx = [xj ℄ andy = [yj ℄ of the same
dimension, define the Hadamard product ofx andy asx Æ y 4= [xjyj ℄. When the dynamic range of represen-
tation format� is sufficient, according to the results of
Section 2,w is perturbed tow+ r(w; �) Æ� due to the
effect of finite�p where

r(w; �) 4=
8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

266664 �(wF )d(wF )�(wG)d(wG)�(wJ )d(wJ )�(wM )d(wM )�(wH )d(wH) 377775 ; � = 1;w; � = 2;266664 2�Fd(wF )2�Gd(wG)2�Jd(wJ )2�Md(wM )2�Hd(wH) 377775 ; � = 3: (18)

Each elementÆj of � is bounded by�2�(�p+1), that
is, k�kmax < 2�(�p+1). With the perturbation�,�i(A(w)) is moved to�i(A(w + r(w; �) Æ �)). If
an eigenvalue ofA(w + r(w; �) Æ �) is outside the
open unit disk, the closed-loop system, designed to be
stable, becomes unstable with the finite-precision imple-
mentedw in format�. It is therefore critical to know
when the FWL error will cause closed-loop instability.
From a first-order approximation,8i 2 f1; � � � ;m+ ngj�i(A(w + r(w; �) Æ�))j � j�i(A(w))j� NXj=1 �j�ij�Æj �����=0 Æj : (19)

For the derivative�j�ij�� = h�j�ij�Æj i, define�j�ij�� 1 4= NXj=1 �����j�ij�Æj ���� : (20)

Then j�i(A(w + r(w; �) Æ�))j � j�i(A(w))j� k�kmax  �j�ij�� �����=01 : (21)

This leads to the following precision measure for real-
izationw in format��(w; �) 4= mini2f1;���;m+ng 1� j�i(A(w))j �j�ij�� ����=01 : (22)

Obviously, if k�kmax < �(w; �), then j�i(A(w +r(w; �) Æ�))j < 1 which means that the closed-loop
remains stable under the FWL error�. In other words,
for a givenw implemented in format� with a suffi-
cient dynamic range, the closed-loop can tolerate those
FWL perturbations� whose normsk�kmax are less
than�(w; �). It is easy to see that�j�ij�� �����=0 = r(w; �) Æ �j�ij�w ; (23)

and from the results of [2], it can be shown that the value
of �(w; �) can be computed explicitly.

Under the condition that the dynamic range is sufficient,
that is,�r � �minr , the perturbationk�kmax and there-
fore the precision bit length�p determines whether the
closed-loop remains stable. Let�minp be the smallest
precision bit length that, when used to implementw with
format�, guarantees the closed-loop stability. From the
precision measure�(w; �), an estimate of�minp is given
as �̂minp (w; �) 4= �blog2 �(w; �) � 1 : (24)

Define the minimum total bit length required in the im-
plementation ofw with format� as�min 4= �minr + �minp + 1 : (25)

Clearly,w implemented with a bit length� � �min can
guarantee a sufficient dynamic range and closed-loop
stability. Combining the measures(w; �) and�(w; �)
results in the following true FWL closed-loop stability
measure for the given realizationw with format��(w; �) 4= �(w; �)=(w; �) : (26)

An estimate of�min is given by�(w; �) as�̂min(w; �) 4= �blog2 �(w; �)+ 1 : (27)

The measure�(w; �) provides the FWL characteristics
of a realizationw in a given format�. The optimal con-
troller realization problem in format� is formally de-
fined as �(�) 4= maxw2SC �(w; �) : (28)



Define the following optimization criterion in format�:�(T; �) 4= mini2f1;���;m+ng 1� j�i(A(w0))jr(w; �) Æ �j�ij�w 1 (w; �)= �(w; �): (29)

The optimal realization problem (28) can then be posed
as the following optimization problem:�(�) = maxT2Rm�mdet(T)6=0 �(T; �): (30)

Given Topt(�), the optimal realizationwopt(�) can
readily be computed. By setting� = 1, 2 and3, respec-
tively, in the optimization problem (30), we can attain
the optimal fixed-point realizationwopt(1), the optimal
floating-point realizationwopt(2) and the optimal block-
floating-point realizationwopt(3).
5 Two Design Examples and Result

Comparison

In Example 1, the closed-loop system contained a plant
with n = 5 and a reduced-order observer-based con-
troller withm = 2. Based on the proposed unified FWL
closed-loop stability measure, the optimization problem
(30) was formed. Using the MATLAB routinefmin-
search.m, this optimization problem was solved for� =1, 2 and3, respectively, to obtain the optimal realiza-
tionswopt(1), wopt(2) andwopt(3). In Example 2, the
closed-loop system contained a plant withn = 4 and
a output-feedback controller withm = 4. Using the
same procedure for Example 1, the optimal realizationswopt(1), wopt(2) andwopt(3) were obtained. Table 1
lists the values of the measures�, � and in the three
different representation schemes together with the cor-
responding estimated minimum bit lengths forw0 andwopt(�) of Example 1. Table 2 does the same thing for
Example 2. As far as the robustness of FWL closed-
loop stability is concerned, given an arbitrary realiza-
tion, floating-point representation is not necessarily bet-
ter than fixed-point or block-floating-point one. For ex-
ample, floating-point is the best format to implement the
initial realizationw0 of Example 1 while fixed-point is
the best format to implementw0 of Example 2. How-
ever, as expected, the optimal floating-point realizationwopt(2) implemented in floating-point format is always
the best in terms of robustness to FWL errors. Also the
results in Table 1 show that fixed-point format is better
than block-floating-point format to implementwopt(�)
of Example 1 for1 � � � 3, while the results of Ta-
ble 2 indicate that the opposite is true for Example 2.
This simply confirms the fact that the performance of
block-floating-point scheme critically depends on how

to dividew into blocks. With a proper division, block-
floating-point scheme should beat fixed-point scheme in
terms of robustness to FWL errors. Table 3 compares
the true minimum required bit lengths�minr , �minp and�min of w0 implemented in the three different schemes
with those of fixed-point implementedwopt(1), floating-
point implementedwopt(2) and block-floating-point im-
plementedwopt(3) of Example 1, respectively. Table 4
does the same thing for Example 2.

6 Conclusions

We have proposed a design procedure for optimal con-
troller realizations in different representation schemes.
The procedure provides designer with useful quantita-
tive information regarding robustness to FWL errors and
estimated minimum bit length for guaranteeing closed-
loop stability. This allows designer to choose an opti-
mal controller realization in an appropriate representa-
tion scheme to achieve best computational efficiency and
closed-loop performance.
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w0 wopt(1) wopt(2) wopt(3)�(w; 1) 2:5150e� 9 1:1386e� 7 2:7728e� 8 1:0861e� 7�̂min(w; 1) 30 25 27 25�(w; 1) 2:5569e� 6 5:0795e� 7 2:5937e� 5 1:7450e� 7�̂minp (w; 1) 18 20 15 22(w; 1) 1:0167e+ 3 4:4612e+ 0 9:3543e+ 2 1:6066e+ 0�̂minr (w; 1) 10 3 10 1�(w; 2) 1:3134e� 7 1:9204e� 5 1:9593e� 5 3:3365e� 7�̂min(w; 2) 24 17 17 23�(w; 2) 3:1118e� 6 4:3127e� 4 4:3127e� 4 5:4490e� 6�̂minp (w; 2) 18 11 11 17(w; 2) 2:3692e+ 1 2:2458e+ 1 2:2012e+ 1 1:6332e+ 1�̂minr (w; 2) 5 5 5 5�(w; 3) 9:2976e� 10 5:3779e� 9 2:8185e� 9 1:3362e� 8�̂min(w; 3) 32 29 30 28�(w; 3) 2:1343e� 8 5:7385e� 8 5:7266e� 8 5:4549e� 8�̂minp (w; 3) 25 24 24 24(w; 3) 2:2955e+ 1 1:0671e+ 1 2:0318e+ 1 4:0823e+ 0�̂minr (w; 3) 5 4 5 3
Table 1: Measures and estimated minimum bit lengths
of example 1. w0 wopt(1) wopt(2) wopt(3)�(w; 1) 1:2312e� 10 1:2003e� 6 1:0580e� 7 1:1321e� 6�̂min(w; 1) 34 21 25 21�(w; 1) 3:3474e� 8 2:3082e� 4 9:6673e� 5 2:2287e� 4�̂minp (w; 1) 24 12 13 12(w; 1) 2:7188e+ 2 1:9231e+ 2 9:1370e+ 2 1:9687e+ 2�̂minr (w; 1) 9 8 10 8�(w; 2) 2:9062e� 11 7:6826e� 6 9:5931e� 6 8:5778e� 6�̂min(w; 2) 37 18 18 18�(w; 2) 2:2389e� 10 9:5628e� 5 1:5229e� 4 1:1822e� 4�̂minp (w; 2) 32 13 12 13(w; 2) 7:7038e+ 0 1:2447e+ 1 1:5875e+ 1 1:3782e+ 1�̂minr (w; 2) 3 4 4 4�(w; 3) 1:4347e� 11 3:2975e� 6 3:6938e� 7 3:5012e� 6�̂min(w; 3) 38 20 23 20�(w; 3) 6:5127e� 11 2:7666e� 5 2:9985e� 6 3:0083e� 5�̂minp (w; 3) 33 15 18 15(w; 3) 4:5395e+ 0 8:3902e+ 0 8:1176e+ 0 8:5923e+ 0�̂minr (w; 3) 3 4 4 4
Table 2: Measures and estimated minimum bit lengths
of example 2.

Realization Format �min �minp �minrw0 fixed 23 12 10wopt(1) fixed 22 18 3w0 floating 16 10 5wopt(2) floating 12 6 5w0 block 28 22 5wopt(3) block 23 20 2

Table 3: True minimum bit length results of example 1.

Realization Format �min �minp �minrw0 fixed 31 21 9wopt(1) fixed 19 10 8w0 floating 33 29 3wopt(2) floating 13 8 4w0 block 33 30 2wopt(3) block 16 12 3

Table 4: True minimum bit length results of example 2.


