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Abstract: A computationally tractable finite word  bility measure that can accommodate both the dynamic
length (FWL) closed-loop stability measure is derived range and precision requirements and is applicable to all
which is applicable to fixed-point, floating-point and the three schemes.

block-floating-point representation schemes. Both the
dynamic range and precision of an arithmetic scheme are
considered in this new unified measure. For each arith-
metic scheme, the optimal controller realization prob-
lem is defined and a numerical optimization approach is
adopteq to solve it. Two examples are used to_iIIustrate Whenz € R is represented in the fixed-point scheme of
the deS|gq prpced_ure_and to compare th_e optimal con-p;¢ lengthB = 1 + 3, + A, the bits are assigned as fol-
troller realizations in different representation schemes  |5\vs: one bit for the sign3, bits for the integer part and
By bits for the fraction part. Assuming that no overflow
occurs, which means thit| < 2%+, z is perturbed to

2 Number Representation Schemes

Keywords— digital controller, finite word length, arith-
metic scheme, closed-loop stability, optimization.

Qi(z) =2+ 81, |0| <27 B, (1)

) Any z € R can be expressed uniquelyas= (—1)% x
1 Introduction w x 2¢, wheres € {0, 1} is the sign ofz, w € [0.5, 1)
is the mantissa of, e = |log, |z|]] + 1 € Z is the
- ... exponentofs, Z denotes the set of integers and tloar
In recent years, there has been a growing interest in dlg'function |z is the closest integer less than or equat to

ital controller implementation which reduces the FWL e, s stored in the floating-point format of bit length
effects on closed-loop stability. It is well known that a — 14 By + B., the bits consists of three parts: one
. . . . - w € :
cpntrol Igwhcanhbe accomphshe? with d|ffﬁrent rcT.ahz.a- bit for s, 3,, bits forw and, bits fore. Lete ande be
tions and that the parameters of a controlier realization e |6yer angd upper limits of the exponent, respectively.
are represented by a digital processor of finite bit length Clearly,e — e = 2% — 1. Denote the set of integers
in a particular format, namely fixed-point, floating-point < e < zasZ, 2. Assuming that no underflow or

gr b_loc dk-float-p'g{/rsltljorlmat. dPIrewous \é)v_(l)_rks [1]-{4] havfe overflow occurs, which means that the exponent o§
erived some closed-loop stability measures for | .. 2, =,z is perturbed to

these three formats, respectively, and defined the corre-

sponding optimal controller realization problems based Os(2) = + 262, |62] < 9~ (But1) )

on these measures. However, all these previous measures

are only linked to the precision bit lengths of the respec- In the block-floating-point format, a set of real numbers

tive representation schemes used and do not consider the is first divided into some blocks. For an illustrative

dynamic range bit lengths. Arguably, a better approach purpose, consider the case of dividisginto the two

is to consider some measure which has a direct link to non-empty and non-overlapped subsgtsandS,. Let

the total bit length required. The main contribution of 7, € S; be the elementi®; that has the largest absolute

this paper is to derive a unified FWL closed-loop sta- value, andp, € S, be the element if; that has the
W e S Chemsh to thank th ¢ of the UK Roval S largest absolute value. Then, ang S can be expressed

ciety .unclije?r; KC ngg\,\:‘l:llovgsh?)n(RL?ASRU#C)ZOI{I/;FI/KECW/llcg;Q ° uniquely aS_E = (-1)* xux 2", whereu € [0, 1? Is the
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When all the elements i are presented in the block- The stability of the closed-loop system depends on the

floating-point format of bit length8 = 1 + 8, + B, eigenvalues of the matrix
the bits are assigned as follows:bit for the sign,s,
bits for « which is represented in fixed-point with the A(w) = [GAC+ BPII\ﬁ/?C F B‘;{J]
two’s complement system, artt, bits for ». Let h and + +
h be the lower and upper limits of the block exponent, I 0 ]— I 0
respectively. Obviously; — h = 2°» — 1. Denote = [0 T—l] A(wo) [0 T} . (10)
A f 2m, for z €8, All the different realizationsw have the same set of
r(z) = M, for z € Ss. (4 closed-loop poles if they are implemented with infinite

precision. Since the closed-loop system is designed to
Assuming no underflow or overflow, i.e. the block expo- pe stable, the eigenvalues

nent ofx is within Z[h T is perturbed to _ _
- |Xi(A(w))| = [Ai(A(wo))| <1, Vie{l,---,m+n}.

Qs(x) =z +r(2)ds, |d5] <27V (5) _ (11)
Define
For the notational conciseness, we introduce the “gen- A
eralized” dynamic range bit lengthy. and precision bit ”w”man = maXjeq,... Ny (W, (12)
length 3, for the three representation schemes. It is un- (W) = minjeq,.. Ny{|wj| : w; # 0},

derstood tha, = 3,, 5. or 5, andB, = B¢, By OF Bu,
depending on which format is actually used.

and the indexx of representation formats adopted
2, floating-point format (13)

1, fixed-point format
o=
3, block-floating-point format

3 Problem Statement
The controller realizatiorw is implemented in format
a of 3, dynamic range bitsj, precision bits and one

The discrete-time linear time-invariant plafit is de- sign bit. In the remainder of this paper, it is assumed

scribed by that if w is stored in the block-floating-point format, it is
divided into “natural” blocks owr, wg, ws, wjr and
1)=A B
{ x(k + y)(k) :)igi)(lj) e(k) (6) wg. Letnr € wr be the element iF which has the

largest absolute value. The elements ns, ny andng
with A € R"*» B € R andC € R?*": and the  are similarly defined. Denote

generic digital controlle€ is described by (w) A [ r (14)
ZwW)=|Nr Ng NJg MM NH| -
{ v(k +1) =Fv(k) + Gy(k) + He(k) )
u(k) = Jv(k) + My (k)
with F € Rmxm’ G € Rqu, J € Rpxm’ M € 4 Optlmlzatlon Of a.n FWL CIO%d'
RP*" andH € R™*. Lete(k) = q(k) + u(k) L oop Stability Measure

with the command inputy(k). Then P and C form

a closed-loop control system. Assume that a realiza-

tion (Fo, Go,Jo, Mo, Hp) of C has been designed. It Firstly, the dynamic range bit length &f bits must be
is well-known that the realizations ¢f are not unique.  large enough to accommodate We define a dynamic

All the realizations of” form the realization set range measure for realizationin formata as
Sc 2 {(F,G,J,M,H) : F = T-'F,T,G = T~' G, [Wllmes @ =1,
A log. HWlmax -9
) y(w,a) = 082 7wy » @ ) (15)
J= J[)T,M = Mo, H=T" Ho} (8) 10g2 4“25“2)'?;;%’ a =

where T € R™*™ is any nonsingular matrix. Let
wr = Vec(F), whereVec(-) denotes the column stack-
ing operator, andvFO, WG, WGory W, Wiy, War, Wiy,
wg andwg, be similarly defined. Denote

Proposition 1 The realizationrw can be represented in
the fixed-point format of3, integer bits without over-
flow, if 2% > ||w||max; W can be represented in the
[ ]T A [ o7 T T T]T floating-point format of3. exponent bits without under-
W =|w;---wW = |Wr W~ W; W W .
A N pue TS TMOTHE S (9)  flow or overflow, if 28¢ > log, (M) +2; w can
wo=[wh wi wh wi wp | . m(w) ).
0 Fo WGo TJo WMo T Ho be represented in the block-floating-point formatsgf

whereN = (m + p)(m + q) + mp and” is the trans- block exponent bits without underflow or overflow, if

pose operator. We also refervoas a realization of’. 261 > log, (%) + 2.



Let 3™ be the smallest dynamic-range bit length that, Then
when used to implemeny with format «, does not

cause overflow or underflow. 3™ (w,a) can eas- Ai(A(w + r(w,a) 0 A))| = [\i(A(w))]

ily be computed by: [log, ||W||max] Whena = 1, ||

[log, ([10gy ||Wl|max| — [logy 7(w)] + 1)] whena = 2 <N Allmax || HA (21)
A=01l1

and [log, ([logs [|2(W)l|max] — [log, 7(z(w))] + 1)]
whena = 3, where theceiling function [z] denotes  This leads to the following precision measure for real-

the closest integer greater than or equat te R. Note izationw in formata
that the measurg(w, o) defined in (15) provides an es- —
timate of 37" as u(w,a) 2 1= i(Aw)] (22)
o ze{l7 ,m+n} H OIAil H
Brin(w,a) £ [logyy(w,)].  (16) a=olls
It can easily be seen théﬁ”i” > Amin and, when the  Obviously, if [|Aljmax < w(w,a), then|\;(A(w +
fixed-point format is adopted™i» = gmin r(w,a) o A))| < 1 which means that the closed-loop

remains stable under the FWL errdr. In other words,
For a vector, letd(x) be the vector of the same dimen- for a givenw implemented in formaty with a suffi-
sion whose elements are & and denote cient dynamic range, the closed-loop can tolerate those
FWL perturbationsA whose normg|A||ma.x are less

A | 0, xisazerovector, .
T(x) = { . a7 thanu(w, @). Itis easy to see that
1, xis a nonzero vector.
or two vectorsx = [z;] andy = [y,] of the same =r(w,a)o , (23)
dimension, define the Hadamard productoéndy as IA Ja—o Ow

Xoy 2 [z;y;]. When the dynamic range of represen- and from the results of [2], it can be shown that the value
tation formata is sufficient, according to the results of of u(w, «) can be computed explicitly.

Section 2w is perturbed tow + r(w, @) o A due to the

effect of finite 3, where Under the cond@tion that the dynamic range is sufficient,
that is, 3, > 37", the perturbatioff A ||max and there-

(

T(wr)d(wr) fore the precision bit lengtf#, determines whether the
T(wa)d(we) closed-loop remains stable. L@f*" be the smallest
T(wpd(ws) |, a=1, precision bit length that, when used to implemenwith
T(wWar)d(War) formata, guarantees the closed-loop stability. From the
A T(wr)d(wir) precision measurg(w, o), an estimate of}"" is given
r(w,a) = w, a=2, (18) as
2npd(wr) Brin(w,a) = —[log, p(w,a)] — 1. (24)
2277G3(WG) _ Define the minimum total bit length required in the im-
nd(wy) |, a=3 plementation ofv with formata as
2nmd(war)
Each element; of A is bounded by+2~(%+1) | that . _ _ ,
is, |Allmax < 27D, With the perturbationA, Clearly,w implemented with a bit length > 5™ can
Xi(A(w)) is moved toX;(A(w + r(w,a) o A)). If guarantee a sufficient dynamic range and closed-loop

an eigenvalue ofA(w + r(w,a) o A) is outside the  Stability. Combining the measurgsw, o) andu(w, )
open unit disk, the closed- Ioop system, designed to peresults in the following true FWL closed-loop stability
stable, becomes unstable with the finite-precision imple- measure for the given realizatisnwith formato
mentedw in formata. It is therefore critical to know A

when the FWL error will cause closed-loop instability. p(w,a) = p(w,a)/v(w,a). (26)
From a first-order approximatiod; € {1,---,m + n}

o 7 An estimate of3™" is given byp(w, a) as
[Ai(A(w + r(w a) o A))| = |Xi(A(w))|

Bmin(w,a) = ~|log, p(w,a)| +1.  (27)

~ Z 5j . (19)
The measure(w, «) provides the FWL characteristics
For the derivative%‘% = [B‘A '] define of a realizatiorw in a given formatx. The optimal con-
troller realization problem in formadk is formally de-
fined as
H ‘ (20) v(a) 2 max p(w,a). (28)

weSe



Define the following optimization criterion in format to divide w into blocks. With a proper division, block-
floating-point scheme should beat fixed-point scheme in

€T,0)2  min 1—|X(A(wo)) terms of robustness to FWL errors. Table 3 compares
’ i€ {1, mtn} |r(w,a) o agi;-\ (W, ) the true min.imum requirgd bit Iengtiﬁ'fi”, B and
1 g™ of wy implemented in the three different schemes

with those of fixed-pointimplementad, (1), floating-
pointimplementedv,, (2) and block-floating-pointim-
The optimal realization problem (28) can then be posed plementedw,(3) of Example 1, respectively. Table 4

— p(w,0). (29)

as the following optimization problem: does the same thing for Example 2.
v(a) = max &(T,aq). (30)
TeRrmMXm
det(T)#0

6 Conclusions
Given T, (), the optimal realizationw,p () can
readily be computed. By setting= 1, 2 and3, respec-
tively, in the optimization problem (30), we can attain
the optimal fixed-point realizatiow,p (1), the optimal
floating-point realizationw,p (2) and the optimal block-
floating-point realizatiow ,p (3).

We have proposed a design procedure for optimal con-
troller realizations in different representation schemes

The procedure provides designer with useful gquantita-
tive information regarding robustness to FWL errors and
estimated minimum bit length for guaranteeing closed-
loop stability. This allows designer to choose an opti-

mal controller realization in an appropriate representa-
5 Two Design Examplesand Result tion scheme to achieve best computational efficiency and

Compar ison closed-loop performance.

In Example 1, the closed-loop system contained a plant R ef er ences
with n = 5 and a reduced-order observer-based con-
troller with m = 2. Based on the proposed unified FWL
closed-loop stability measure, the optimization problem
(30) was formed. Using the MATLAB routinémin-
search.mthis optimization problem was solved far=

1, 2 and3, respectively, to obtain the optimal realiza- [2] J. Wu, S. Chen, G. Li, R.S.H. Istepanian and J.

[1] G. Li, “On the structure of digital controllers with
finite word length considerationlEEE Trans. Au-
tomatic Contro] Vol.43, No.5, pp.689—-693, 1998.

tionswop (1), Wopi (2) @andwop(3). In Example 2, the Chu, “An improved closed-loop stability related
closed-loop system contained a plant with= 4 and measure for finite-precision digital controller real-
a output-feedback controller with, = 4. Using the izations,” [EEE Trans. Automatic ContrpMol.46,

same procedure for Example 1, the optimal realizations No.7, pp.1162-1166, 2001.
Wopt (1), Wopt(2) andw,t(3) were obtained. Table 1 _ _ o
lists the values of the measurgsy and~ in the three [3] J.F. Whidborne and D. Gu, “Optimal finite-

different representation schemes together with the cor- precision controller and filter realizations us-
responding estimated minimum bit lengths feg and ing floating-point arithmetic,” Research Report
wopt () of Example 1. Table 2 does the same thing for EM2001/07 Department of Mechanical Engineer-
Example 2. As far as the robustness of FWL closed- ing, King's College London, UK., September
loop stability is concerned, given an arbitrary realiza- 2001.

tion, floating-point representation is not necessarily bet
ter than fixed-point or block-floating-point one. For ex-
ample, floating-point is the best format to implement the
initial realizationw, of Example 1 while fixed-point is
the best format to implement, of Example 2. How-
ever, as expected, the optimal floating-point realization
Wopt(2) implemented in floating-point format is always
the best in terms of robustness to FWL errors. Also the
results in Table 1 show that fixed-point format is better
than block-floating-point format to implement, . («)

of Example 1 forl < a < 3, while the results of Ta-
ble 2 indicate that the opposite is true for Example 2.
This simply confirms the fact that the performance of
block-floating-point scheme critically depends on how

[4] R.S.H. Istepanian, J.F. Whidborne and P. Bauer,
“Stability analysis of block floating point digital
controllers,” in Proc. UKACC Int. Conf. Control
(Cambridge, U.K.), Sept. 4-7, 2000, CD-ROM, 6
pages.



Wo Wopt (1) Wopt (2) Wopt (3)
p(w, 1) 25150e — 9 | 1.1386e — 7 | 2.7728¢ —8 | 1.086le—7
Bmin (w 1) 30 25 27 25
p(w, 1) 2.5569¢ —6 | 5.0795e — 7 | 2.5937¢ —5 | 1.7450e — 7
Bmin (w, 1) 18 20 15 22
v(w, 1) 1.0167e +3 | 4.4612e +0 | 9.3543e+2 | 1.6066e+ 0
Bmin (w, 1) 10 3 10 1
p(w,2) 1.3134e — 7 | 1.9204e—5 | 1.9593e — 5 | 3.3365¢ — 7
Bmin(w, 2) 24 17 17 23
w(w,2) 3.1118e — 6 | 4.3127e —4 | 4.3127e — 4 | 5.4490e — 6
Bmin (w, 2) 18 11 11 17
v(w,2) 2.3692e +1 | 2.2458¢+1 | 2.2012e+1 | 1.6332e+ 1
Bmin (w, 2) 5 5 5 5
p(w,3) | 9.2976e — 10 | 5.3779¢—9 | 2.8185e—9 | 1.3362¢ — 8
Bmin (w, 3) 32 29 30 28
w(w,3) 2.1343¢ — 8 | 5.7385¢ —8 | 5.7266e — 8 | 5.4549¢ — 8
Bmin (w, 3) 25 24 24 24
v(w,3) 2.2955e+1 | 1.067le+1 | 2.0318e+1 | 4.0823e+0
Bmin (w, 3) 5 4 5 3
Table 1. Measures and estimated minimum bit lengths
of example 1.
Wo Wopt (1) Wopt (2) Wopt (3)
p(w,1) [ 1.2312¢ —10 | 1.2003e — 6 | 1.0580e — 7 | 1.1321e—6
Bmin(w, 1) 34 21 25 21
pw(w, 1) 3.3474e — 8 | 2.3082e¢ —4 | 9.6673e—5 | 2.2287e—4
Bmin (w, 1) 24 12 13 12
v(w, 1) 2.7188¢ +2 | 1.9231e+2 | 9.1370e+2 | 1.9687¢ + 2
Bmin (w, 1) 9 8 10 8
p(w,2) | 2.9062e — 11 | 7.6826e—6 | 9.5931e — 6 | 8.5778¢ — 6
Bmin (w, 2) 37 18 18 18
w(w,2) | 2.2389e — 10 | 9.5628¢ —5 | 1.5229e —4 | 1.1822¢ —4
Bmin (w, 2) 32 13 12 13
v(w,2) 7.7038¢+0 | 1.2447e+1 | 1.5875e+1 | 1.3782¢+ 1
Bmin (w, 2) 3 4 4 4
p(w,3) | 1.4347e—11 | 3.2975¢ — 6 | 3.6938¢—7 | 3.5012¢ — 6
Bmin(w, 3) 38 20 23 20
w(w,3) | 6.5127e —11 | 2.7666e—5 | 2.9985¢—6 | 3.0083e — 5
Bmin (w, 3) 33 15 18 15
v(w,3) 4.5395¢ +0 | 8.3902¢+0 | 8.1176e+0 | 8.5923e+ 0
Bmin (v, 3) 3 4 4 4
Table 2: Measures and estimated minimum bit lengths
of example 2.
Realization] Format[ g™ | pmin | gmin Realization| Format| g™ | g | g
wo fixed 23 12 10 wo fixed 31 21 9
Wopt (1) fixed 22 18 3 Wopt (1) fixed 19 10 8
wo floating | 16 10 5 wo floating | 33 29 3
wopt(2) | floating | 12 6 5 Wopt(2) | floating | 13 8 4
Wo block | 28 | 22 5 wo block | 33 | 30 2
Wopt (3) block 23 20 2 Wopt (3) block 16 12 3

Table 3: True minimum bit length results of example 1. Table 4: True minimum bit length results of example 2.



