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ABSTRACT

A novel technique is presented to construct sparse
Gaussian regression models. Unlike most kernel regres-
sion modelling methods, which restrict kernel means to
the training input data and use a fixed common variance
for all the regressors, the proposed technique can tune
the mean vector and diagonal covariance matrix of in-
dividual Gaussian regressor to best fit the training data
based on the correlation between the regressor and the
training data. An efficient repeated weighted optimiza-
tion method is developed based on boosting with the
correlation criterion to append regressors one by one in
incremental regression modelling. Experimental results
obtained using this construction technique demonstrate
that it offers a viable alternative to the existing state-of-
art kernel modelling methods for constructing parsimo-
nious regression models.

Index Terms — Regression, construction algorithm,
correlation, mean square error, boosting

1 INTRODUCTION

A basic principle in practical nonlinear data mod-
elling is the parsimonious principle of ensuring the
smallest possible model that explains the training data.
Forward selection using the orthogonal least square
(OLS) algorithm [1]–[4] is popular for nonlinear data
modelling practicians, for the reason that the algorithm
is simple and efficient, and is capable of producing par-
simonious linear-in-the-weights nonlinear models. Re-
cently, the state-of-art sparse kernel modelling tech-
niques, such as the support vector machine and rele-
vant vector machine [5]–[7], have widely been adopted
in data modelling applications. In most of these sparse
regression modelling techniques, a fixed common vari-
ance is used for all the regressor kernels and the kernel
centers or means are placed at the training input data.

We present a flexible construction method for Gaus-

sian kernel models. The correlation between a Gaussian
regressor and the training data is used as the criterion in
positioning (mean adjustment) and shaping (diagonal
covariance adjustment) the regressor. To incrementally
append regressor one by one, a repeated weighted opti-
mization search algorithm is developed, which is based
on the idea from boosting [8]–[10]. Because kernel
means are not restricted to the training input data and
each regressor has an individually tuned diagonal co-
variance matrix, our method can produce very sparse
models. The proposed repeated weighted optimization
algorithm is simple, robust and easy to implement. Ex-
perimental results are used to demonstrate the effective-
ness of this incremental construction algorithm.

2 THE PROPOSED CONSTRUCTION METHOD

We consider the modelling problem of approximat-
ing the � pairs of training data �����	��
���������� with the re-
gression model �
�������� �� � �����

�! "� �#��� (1)

where � is the $ -dimensional input variable; �
�
, %'&( &*) , denote the model weights; ) is the number of

regressors; and

 +� ��,�� , %-& ( &.) , denote the regres-
sors. We allow the regressor to be chosen as the general
Gaussian function

 � �����/�*01�#�3254 � �76 � � with01�#�3254 � �76 � ���*8"9;:<�=?> 9 4A@#B#CD6FE :@ =�> 9 4A@�B (2)

where 6 � � diag ��G�H� I � ��JKJ�JL�5G�H� I M  . We will adopt an
incremental approach to build up the regression model
(1) by appending regressors one by one.

2.1 Correlation criterion for selecting regressor

Let us first introduce the following notation
 =�N B� �O
 �
 =QP B� �O
 =QP 9 � B� R
� P

 P �#� � �
S %T& ( &U� (3)



Obviously, 
 =QP B� is the modelling error at � � after the � th
regressor has been fitted. At the � th stage of incremen-
tal modelling, the regressor

 P ����� is fitted to the train-

ing data set � 
 =QP 9 � B� �5� � �� � � � . The correlation function
between the regressor and the training data set given by� P � � �� ���  P �#� � � 
 =QP 9 � B�

� � �� ���  HP �#� � ��� � �� ����� 
 =QP 9 � B� � H (4)

defines the “similarity” between the regressor

 P �#���
and the training data ��
 =QP 9 � B� ��� �  � � ��� . The larger value
of 	 � P 	 is, the more similar they are.

Regressor positioning and shaping. With the Gaus-
sian regressor

 P � ,"� � 01��, 2 4 P � 6 P � , the correlation� P is a function of the kernel mean 4 P and covariance
matrix 6 P . Thus, the correlation criterion (4) can be
used for positioning and shaping

 P � ,"� by maximizing	 � P 	 with respect to 4 P and 6 P .
Calculation of the model weight. After the determi-
nation of the � th regression

 P ����� , the corresponding
model weight � P is calculated by minimizing the mean
square error (MSE) for the � -term regression model

)�
� P � %� �� � � � � 
 =QP 9 � B
� R

� P
 P ��� � � � H (5)

This leads to the usual least square solution

� P �
� �� ��� 
 =QP 9 � B�  P ��� � �� �� ���  HP ��� � � (6)

We now prove that selecting regressors by incremen-
tally maximizing 	 � P 	 is equivalent to that by incremen-
tally minimizing the modeling MSE (5). In fact, substi-
tuting � P in (5) by the least square solution (6), it can
be shown that

)�
� P ��� %� �� � ��� � 
 =QP 9 � B
� � H���� % R � HP�� (7)

Obviously, maximizing 	 � P 	 with respect to 4 P and 6 P
is identical to minimizing )�
� P with respect to 4 P
and 6 P .
2.2 Repeated weighted search method

It is seen that at each increment regression stage,
the basic task is to maximize some function � ��� � over����� , where � ��� � ��	 � P ��� ��	 , and � contains 4
and 6 . We use the following simple search method
to perform this optimization. Given � points of � ,� � ��JKJ�JL��� � , let � !#"$�#%F�'&)(+*,-&). �/� �0� � �L�K% & ( &1�"
and �3254�6 �#% �7&8(�*9,-:<;��/� ��� � �7��%T& ( &7�" . A �=�?>*% � th
value is generated by a weighted combination of � � ,% & ( &'� . Because this weighted combination is a

convex combination, the point � �$@ � is always within
the convex hull defined by the � values. A �=�A>CB"� th
value is then generated as the mirror image of �9�D@ � ,
with respect to � !#"$�#% , along the direction defined by� !="E�#% R � �D@ � . The best of � �$@ � and � �D@ H then replaces�3254E6 �#% . The process is repeated until it converges. Ob-
viously, the weighting values used to perform this com-
bination are critical, and we adopt the idea of boosting
[8]-[10] to adapt these weightings. This leads to the
following basic weighted optimization algorithm.

WeightedOp

Initialization: Given ��� � ��
 =QP 9 � B�  � � � � and the � ini-
tially chosen values for � , � ���+� H �KJ�JKJL�+� � , set iteration
index F �HG and I = % B� � �� for %T& ( &J� .

Step 1: Boosting
1. Calculate the loss of each point, namelyK�L ��FL�NM ��� % R 	 � P ���PO ��	 � %T&QMF&R�
2. Find � !#"$�D% �S&)(+*9,-:N;�� K�L ��FL�NM �7�A%T&QMF&R�"� 254�6 �D% �H&)(+*,-&). � K�L ��FL�NM �L��%T&TM1&J�"
3. Normalize the lossU L �/� �NM � � K�L ��FL�<M �� ������ K�L ��FL� U � �/% &TM1&7�
4. Compute a weighting factor V % according toW % � ��O5��� I = % BO U L �/� �NM �XV % � W %% R W %
5. Update the weighting vector

I = %Y@ � BO �[Z I = % BO V �N4 �E� = O B% for V\%�& %"�I = % BO V � 9 �N4 �E� = O B% for V\%^] %"�
where M � %+�KJKJ�JK�_�

6. Normalize the weighting vector

I = %Y@ � BO � I = %Y@ � BO� ������ I = %Y@ � B� �A%T&QMF&R�
Step 2: Parameter updating
1. Construct the �=�`>*% � th point using the formula

� �$@ �;� �� � � � I = %Y@ � B
� � �

2. Construct the �=�`>aB"� th point using the formula� �D@ H �H� !#"$�#% > �0� !#"$�#% R � �D@ �K�
3. Choose a better point from ��D@ � and � �D@ H to re-

place � 254E6 �#% .
Repeat from Step 1 until the ���b> %�� th value changes

very little compared with the last round, or a preset
maximum number of iterations has been reached.
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Fig. 1. Incremental modelling results for Example 1: in (a)–(f), the light curves are the modelling errors of the previous stage, � �������	�
 , and
the dark curves are the fitted current regressors, � �������� 
	� , for ��������� , respectively; in (g), the light curve is the noisy training data � 

and the dark curve is the final 6-term model �� ; and (h) shows the final modelling errors.

The above WeightedOp algorithm performs a
guided random search and solution obtained may de-
pend on the initial choice of the population. To derive
a robust algorithm that ensures a stable “global” solu-
tion, we simply augment the algorithm into the follow-
ing ReWeightedOp algorithm.

ReWeightedOp

Repeat loop: For
U � %��+)��

Set � = � B� �H� = � 9 � B!#"$�D% , and randomly generate the other� R % points � = � B� for B & ( &R�
Call the WeightedOp algorithm to obtain a solu-

tion � = � B!#"$�#%
If  � = � 9 � B!#"$�D% R � = � B!="E�#%  "!$# 6 , Exit loop

End for
The solution is � = � B!#"$�#%
In the ReWeightedOp, )�� is the number of max-

imum repeating runs and #�6 the termination threshold
value.

2.3 Incremental regression modelling

The completed algorithm for incremental regression
modelling can now be summarized. Choose a preset
modelling accuracy # , and set �1�SG .

Do: �1� � >*%
1. Call ReWeightedOp to determine 4 P and 6 P , the

position and diagonal covariance matrix of the � th re-
gressor

2. Calculate the weight � P for the � th regressor ac-
cording to (6) and compute the modelling errors 
 =QP B� �
 =QP 9 � B� R

� P
 P ��� � � , % & ( &U�

While )�
� P ]$#
The termination of the model construction process

can also be decided using cross validation [11],[12]. A
simple method is to have a separate validation data set.
The model construction is based on the training data set,
while the performance of the selected model, the MSE,
is monitored over the validation data set. The con-
struction process is terminated when the MSE over the



TABLE I

INCREMENTAL MODELLING PROCEDURE FOR EXAMPLE 1.

regression mean variance weight MSE
step � � P G�HP � P )�
� P

0 – – – 0.8431
1 2.6905 4.2488 1.6088 0.3703
2 -4.0837 2.1853 -1.6019 0.0341
3 0.2982 0.6000 0.3781 0.0243
4 6.6062 0.6610 0.3116 0.0173
5 3.4162 0.6091 -0.2242 0.0138
6 -8.4780 0.4295 0.1787 0.0119

validation data set stops improving. Alternatively, the
Akaike information criterion [13], the optimal experi-
mental design criteria [4] and the leave-one-out gener-
alization criterion [14] may be adopted to automatically
terminate the model construction process without the
need for a separate validation data set.

3 EXPERIMENTAL RESULTS

Example 1. The 500 points of training data were gen-
erated from
���� �/�7G��Q%�� > � :N;��� > � :N;bG�� 	
� > 8
with � ���

R %�G � % G� , where 8 was a Gaussian white
noise with zero mean and variance 0.01. The population
size and the number of maximum repeating times used
in ReWeightedOp were � ��� and ) � � %�G . With
the modelling accuracy set to # �7G�� G % B , the incremen-
tal regression modelling produced � Gaussian regres-
sors, as summarized in Table I, and the construction
process is also illustrated graphically in Fig. 1 (a)–(f).
In Fig. 1 (g), the model output from the constructed 6-
term model is superimposed on the noisy training data,
and the final modelling errors are shown in Fig. 1 (h).

Example 2. This example constructed a model for the
gas furnace data set (Series J in [15]). The data set con-
tained 296 pairs of input-output points, where the input� �YF�� was the coded input gas feed rate and the output
��YF�� represented CO H concentration from the gas fur-
nace. The input-output data are depicted in Fig. 2 (a)
and (b), respectively. The training data set was con-
structed with 
 � � 
�� ( � and� � ��� 
 � ( R % � 
�� ( R B+� 
�� ( R�� � � � ( R % � � � ( R B+� � � ( R�� ����
for

( ��� ��	D�KJKJ�JL�+B���� . In the previous work [14], it
was found out that various existing state-of-art kernel
modeling techniques required at least 28 model terms
to achieve a modelling accuracy of # �[G�� G�	�� for this
data set.

With a population size � � %���� and the number of
maximum repeating times ) � � B8G in ReWeighte-

dOp, and a preset modelling accuracy of # �SG�� G�	�� , the
proposed incremental modelling procedure produced
18 Gaussian regressors, and the resulting model is listed
in Table II. Fig. 2 (b) depicts the model prediction

�
 �YF��
for this 18-term model, in comparison with the system
output 
��YF�� . The corresponding model prediction errorW �YF�� � 
 �0F�� R �
��YF�� is shown in Fig. 2 (c). It is seen
that the proposed approach is able to produce a sparser
regression model with an equally good modeling per-
formance over the various existing state-of-art kernel
modeling methods.

4 CONCLUSIONS

A construction algorithm has been proposed to in-
crementally fit sparse Gaussian regression models. The
algorithm has the ability to tune the mean vector and di-
agonal covariance matrix of individual Gaussian regres-
sor to best fit the training data based on the correlation
between the regressor and the training data. A repeated
weighted optimization search method has been devel-
oped based on boosting with the correlation criterion
to append regressors one by one in incremental regres-
sion modelling. Experimental results presented have
demonstrated the effectiveness of the proposed tech-
nique.
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Fig. 2. Example 2, the gas furnace data set: (a) system input � ��� � ,
(b) model output �� ��� � (dashed) superimposed on system output� ��� � (solid), and (c) model prediction error � ��� ��� � ��� ��� �� ��� � .



TABLE II

INCREMENTAL MODELLING PROCEDURE FOR EXAMPLE 2.

� mean vector 4 P weight � P )�
� P
diagonal covariance matrix 6 P

0 – – B�� � ��� � � %�G��
–

1 61.0000 61.0000 50.9525 3.3340 -3.2160 -3.2160 59.276 0.8268
6.0783 25.0000 25.0000 16.6549 2.4340 9.1178

2 60.2279 45.1000 45.1000 3.3340 3.3340 3.3340 4.0451 0.5470
0.0217 5.9837 2.8963 23.3208 19.4850 9.1388

3 46.8987 58.9860 57.1320 -1.2067 -2.4251 0.3321 -71.404 0.2941
0.0936 0.0762 6.2630 0.0322 6.7020 0.0262

4 45.1000 45.1000 45.1000 3.3340 -3.2160 3.3340 2.4931 0.1389
5.7572 0.0476 7.9013 19.0917 12.3381 10.1693

5 57.9404 51.5699 47.5973 -3.2160 3.3340 3.3340 29.190 0.1138
0.0293 22.1583 0.0476 11.1085 8.9510 18.3801

6 58.0935 45.1000 45.1000 3.3340 3.3340 1.9810 58.659 0.1065
0.0101 0.2753 3.8145 24.6911 0.0512 0.0164

7 56.3757 49.5204 60.1222 2.2450 2.5864 -1.2469 21.472 0.0972
25.0000 0.0100 25.0000 0.0100 0.0123 0.0100

8 45.1000 45.1000 51.6922 -0.0144 -3.2160 3.3340 -5.2669 0.0804
0.1052 1.5136 0.0501 0.0100 0.0550 11.9954

9 46.0303 58.7537 54.9481 -2.6996 1.5488 -0.2903 -1.4557 0.0760
25.0000 0.0385 25.0000 0.0100 25.0000 0.0100

10 58.7624 55.1555 54.8745 2.5233 2.2267 -1.6638 46.918 0.0700
0.0100 0.0100 0.1178 0.0113 25.0000 24.5476

11 53.9952 54.8025 52.8236 -1.7173 3.1207 2.1370 -1.7379 0.0675
25.0000 0.0100 0.0100 25.0000 25.0000 0.0100

12 45.1000 47.1594 61.0000 3.3340 3.3340 3.3340 2.1679 0.0631
25.0000 0.0620 25.0000 0.0100 0.0100 25.0000

13 54.7481 48.7561 50.0140 -0.9630 0.8991 1.1693 48.259 0.0589
0.0100 0.0100 0.0100 15.7145 0.0100 25.0000

14 46.2857 46.4039 54.9041 -2.7555 -2.7218 2.6338 1.5930 0.0578
25.0000 0.0992 0.0100 25.0000 25.0000 25.0000

15 53.5265 49.5718 48.3381 1.9158 0.1292 1.7822 7.4529 0.0570
0.0100 0.0100 25.0000 0.0100 0.0100 0.0100

16 55.4362 54.9274 57.2423 0.1605 0.1057 1.8326 -0.9918 0.0550
0.0100 0.0100 25.0000 0.0100 0.0100 0.0100

17 53.7756 51.3648 51.6104 0.7165 -0.1010 0.6642 -0.0845 0.0542
25.0000 0.0100 0.0100 25.0000 25.0000 25.0000

18 45.1000 45.1000 45.1000 -3.2160 -3.2160 -3.2160 0.2511 0.0538
1.0087 17.3402 25.0000 10.6542 25.0000 0.0100


