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The paper analyzes the properties of the controller coeffigierturbation resulting from using finite
word length (FWL) block-floating-point (BFP) arithmeticc&imvestigates the closed-loop stability
issue of finite-precision realizations for digital conteos implemented in BFP format. A true FWL
closed-loop stability measure is derived which considets the dynamic range and precision of
number representation in BFP format. To facilitate the glesif optimal finite-precision controller
realizations, a computationally tractable FWL BFP cloksap stability measure is introduced and
the method of computing the value of this measure for a giwenroller realization is developed.
The optimal controller realization is defined as the solutivat maximizes the proposed measure,
and a numerical optimization approach is adopted to solvthéoresulting optimal realization prob-
lem. A numerical example is used to illustrate the proposssiigsh procedure.
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1. INTRODUCTION

The classical digital controller design methodology of-
ten assumes that the controller is implemented exactly,
even though in reality a control law can only be realized
in finite precision. It may seem that the uncertainty re-
sulting from finite-precision computing of the digital con-
troller is so small, compared to the uncertainty within the
plant, such that this controller “uncertainty” can simply
be ignored. Increasingly, however, researchers have real-
ized that this is not necessarily the case. Due to the FWL
effect, a casual controller implementation may degrade
the designed closed-loop performance or even destabilize
the designed stable closed-loop system, if the controller
implementation structure is not carefully chosen. The ef-
fects of finite-precision computation have become more
critical with the growing popularity of robust controller
design methods which focus solely on dealing with large
plant uncertainty [1].

In practice, the controller parameters are represented
by a digital processor of finite bit length in one of the
three number representation formats, namely, fixed-point,
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floating-point or block-floating-point (BFP) format. In a
given representation format, different controller realiz
tions have different degrees of “robustness” to FWL er-
rors. This property can be utilized to select “optimal” re-
alizations in a given format. The optimal controller real-
ization problems in fixed-point and floating-point formats
have been studied [2]-[10]. The BFP scheme has poten-
tial advantages of combining the simplicity of fixed-point
format and the accuracy of floating-point format. The
previous work [11] has compared the closed-loop stabil-
ity performance of various BFP and fixed-point imple-
mented realizations for a PID benchmark system. How-
ever the optimal controller realization problem in BFP
format was not discussed, and to date the true BFP FWL
closed-loop stability measure has not been seen which
can then be optimized to obtain optimal BFP realizations.
This paper focuses on deriving the optimal controller re-
alization problem in BFP format.

2. BLOCK-FLOATING-POINT
REPRESENTATION

The fixed-point and floating-point formats are the two
basic representation schemes for real numbers stored in



memory and registers. For a group of real numbers stored Thus, when: € S is implemented in the BFP format of

simultaneously in a digital processor, the so-called BFP

B, block mantissa bits, assuming no underflow or over-

format is also available. Suppose that the group of real flow, it is perturbed to

numbers form a sef. In the BFP formatsS is divided
into some blocks. For an illustrative purpose, consider
dividing S into two non-empty subset$ andS,, which
satisfyS; USs = S andS; N S, is the empty set. Lej;

be the element i5; that has the largest absolute value,
andn, be the element i, that has the largest absolute
value. Then, any: € S can be expressed uniquely as

1)

wheres € {0,1} is the sign ofz, u € [0, 1) is the block
mantissa of:, and the block exponent afis

hé{

with the floor function |z| denoting the closest integer
less than or equal to. When all the elements i§ are
stored in a BFP digital processor of the bit length

B =1+ fu+ b, ®)

the bits are assigned as followisbit for the sign,3,, bits
for v which is represented in fixed-point with the two’s
complement system, art), bits for . Thus the set of all

z=(=1)°" xux?2"

for z€ 8

L10g2 |771|J + ]-7 (2)
L10g2 |772|J + ]-7

for €8

the BFP numbers that can be represented by the bit length

B is given by

Bu
}'é{(ijQ_j —s) x 2" s€{0,1},
j=1

bjE{O,].},hEZ,ﬁShSE} (4)
where Z denotes the set of integers,and h represent
the lower and upper limits of the block exponent, respec-
tively, andh — h = 2°%» — 1.
heZz h<
h < h}. When no underflow or overflow occurs, that is,

Define the integer sef;, 7, 2 {h :

h e Z[h ol the BFP quantization operat@y: S — F is
defined as
Q(x) £ (—1)720h=8) |2(8=W) || 4 0.5].  (5)
The quantization error of BFP representation is defined
as N
e = |z —Qx)]. (6)
Denote
A 2llogs \771|J+1, for z € Sy,
r@) =9 . @)
ollogs ImlI+1 - for € S,.

It can be shown easily that the quantization error is
bounded by

e < r(z)2” Bt (8)

Qz) =z +r(x)d, |6] <27 Bt (9)
Note that the perturbation resulting from FWL BFP rep-
resentation is neither multiplicative nor additive. It can
also be seen that the dynamic range of BFP representation
is determined bys, bits while the precision is determined
by 3, bits.

3. PROBLEM STATEMENT

Consider the discrete-time closed-loop control system,
consisting of a linear time-invariant plaftand a digital
controllerC'. The plant modeP is assumed to be strictly
proper with a state-space description

{ x(k + 1) = Ax(k) + Be(k) (10)
y(k) = Cx(k)

which is completely state controllable and observable

with A € R™", B € R™P andC € R"*". The
digital controllerC' is described by
v(k +1) = Fv(k) + Gy(k) (11)
e(k) = Jv(k) + My(k)

with F € R™*™ G € R™*?, J € RP*™ andM €

RP*4, It is well-known that the realizations ¢f are not
unique. Assume that a realizati¢R, Go, Jo, M) of

C has been designed. Then all the realizations éérm

the realization set

Sc 2 {(F,G,J,M):F =T 'F,T,G = T~ Gy,

J=J,T,M = M,} (12)

whereT € R™*"™ is any real-valued nonsingular matrix,
called a similarity transformation. Denote

X = [2j4] = (13)

G F

M J]‘

The stability of the closed-loop system depends on the
eigenvalues of the matrix
- _ |A+BMC BJ
AX) = [ GC F }

3 33 g[S

2 My + M; XM (14)

where0 andI denote the zero and identity matrices of ap-
propriate dimensions, respectively. All the differentlrea
izationsX have the same set of closed-loop poles if they



are implemented with infinite precision. Since the closed-
loop system is designed to be stable, the eigenvalues
INAAX)| <1, Vie{l,---,m+n}. (15)

However, the controller realizatioK is implemented

in BFP format of$3;, block exponent bits3,, block man-

tissa bits and one sign bit. For a matW = [w; ],

define

(16)

AN
(IWl|max = I?%X|wj7k|v

A .
(W) = min{jw; k| : wjx # 0} (17)
and letU(W) be the matrix of the same dimension as
W, whose elements are db. For the two matrice®v =
[wj,r] andZ = [z; ;] of the same dimension, define the
Hadamard product oW andZ
A

WoZ = [wjrzjk]- (18)
Assumed thaX is divided into “natural” blocks oF*, G,
JandM. Let¢; be the element il which has the largest
absolute value. Similarly;, &3 and¢, are defined inG,
J andM, respectively. Denote
A
=

aX) 26 & & &l

with 7 being the transpose operator.

(19)

Firstly, the dynamic range of;, bits must be large
enough forX. We define a dynamic range measure for
realizationX in BFP format as

Ala(X) llmax
m(a(X))

The rationale of this dynamic range measure becomes
clear in the following obvious proposition.

7(X) £ log, (20)

Proposition 1: The realizationX can be represented
in the BFP format of3;, block exponent bits without un-

derflow or overflow, if2%» > log, (%) + 2.

Let 8" be the smallest block exponent bit length
that, when used to implemeRt, does not cause overflow
or underflow. The minimum required block exponent bit
length can easily be computed by

B (X) =

[logs ([10gs [|a(X) llmax| = [log, m(a(X))] +1)] (21)

where theceiling function [z] denotes the closest integer
greater than or equal to. The measure(X) defined in
(20) provides an estimate 6f" as

N

3 (X) = [logy y(X)1-

It can easily be seen thaf*" > gmin.,

(22)

Even when the dynamic range is sufficient, that is,
Br > Bn, X is perturbed taX + E(X) o A due to
the effect of finite3,, where

A [9llogs |§4H+1U(M)

2Mlogs [€s11+1 ()
= | 2llee: lelH1U(G)

llogs & IH1(F) |

(23)
Each elemend; ; of A is bounded byt2~(%«+1) | that
is,

E(X

| Al max < 27 B+, (24)

With the perturbationA, X;(A(X)) is moved to

X (A(X+E(X)oA)). Ifan eigenvalue oA (X+E(X)o

A) is outside the open unit disk, the closed-loop system,
designed to be stable, becomes unstable with the finite-
precision implementeX. It is critical to know when the
FWL error will cause closed-loop instability. This means
that we would like to know the largest open “cube” in the
perturbation space within which the closed-loop system
remains stable. Based on this consideration, a precision
measure for realizatioX in BFP format can be defined
as

110(X) 2 inf{||Allmax : A(X+E(X)oA) is unstablg .

(25)
From the above definition, the following proposition is
obvious.

Proposition 2: A(X + E(X) o A) is stable if
1A [[max < po(X).

Thus under the condition of a sufficient block exponent
bit length, that is3, > 8", the perturbatiof| A [|max
and therefore the block mantissa bit lengthdetermines
whether the closed-loop remains stable. BEt™ be the
block mantissa bit length such theg, > 7", the
closed-loop system is stable wik implemented bys,,
block mantissa bits and the closed-loop system is unsta-
ble with X implemented by3™" — 1 block mantissa bits.
Except in simulation, this minimum block mantissa bit
length 3" is generally unknown. However, the preci-
sion measurg(X) provides an estimate ¢i™" as

Bmin(X) £ —[logy (X)) — 1. (26)

It can easily be seen thafin > gmin,

Define the minimum total bit length required in the im-
plementation oKX as
min 2 pmin min
B =B+ B + 1 (27)
Clearly,X implemented with a bit length > ™" can
guarantee a sufficient dynamic range and closed-loop sta-
bility. Combining the measuregX) andpuo(X) results
in the following true FWL closed-loop stability measure
for the given realizatioX in BFP format

po(X) £ 1o(X) /7(X) . (28)



An estimate of3™" is given byp(X) as

By (x) = -
It is clear that3g»" > gmin_ The following proposition

summarizes the usefulnessm@{X) as a measure for the
FWL characteristics oK in BFP format.

[logz po(X)] +1. (29)

Proposition 3: The controller realizationX imple-
mented in BFP with a bit length can guarantee a suf-
ficient dynamic range and closed-loop stability, if

1
281 > :
~ po(X)
Since py(X) depends on the controller realizatidh
only, an optimal realization can in theory be found by
maximizingpo (X) overSc, leading to the following op-
timal controller realization problem

(30)

(31)

N

Utrue = max po(X) .
However, how to compute the value @§(X) is an un-
solved open problem. Thus, the true FWL closed-loop
stability measure, (X) and the optimal realization prob-
lem (31) have limited practical significance. In the next
section, an alternative measure is derived which not only
can quantify FWL characteristics & in BFP format but
also is computationally tractable.

4. ATRACTABLE FWL CLOSED-LOOP
STABILITY MEASURE

When the FWL errorA is small, from a first-order ap-
proximationVi € {1,---,m + n}

INi(A(X +E(X) 0 A))| — [X:(AX))| ~

I\l

Gjk - (32)
j’zk a(sﬂ’k A=0 !
. W | \; .
For the derlvatlve% = [&Qk‘] define
ANl & 5O
H 0A a Z ‘aajk ' (33)
sum ],k >
Then
Xi(A(X +E(X) 0 A))| - [Ni(A(X))] <
A\l
||A||max oA A=0llsum (34)

This leads to the following precision measure for realiza-
tion X in BFP format

1 - N(AX))]

>

i (X) (35)

min
i€{l,---,m+n}

A=0llsum

Obviously, if[|A]|max < #1(X), then|A; (A(X+E(X)o

A))| < 1 which means that the closed-loop remains sta-
ble under the FWL erroA. In other words, for a given

X implemented in BFP format with a sufficient dynamic
range, the closed-loop can tolerate those FWL perturba-

tions A whose norm$ A || ,ax are less tham; (X). The
larger i1 (X) is, the larger FWL errors the closed-loop

system can tolerate. Similar to (26), from the precision
measuregu; (X), an estimate 08" is given as
min(X) £ —[logy u (X)) — 1.

The assumption of smad\ is usually valid in practical
implementation of digital controllers. Generally speak-
ing, there is no rigorous relationship betweg{X) and
w1 (X), but ui(X) is connected with a lower bound of
1o(X) in some manners: there are “stable perturbation
cubes” larger thaA : [|Allmax < p1(X)} while
there is no “stable perturbation cube” larger thiah :
| Allmax < 1o(X)} [7]. Hence, in most cases, it is rea-
sonable to take that, (X) < jo(X) andgmin > gmin
Unlike the measure(X), the value ofu; (X) can be
computed explicitly. It is easy to see that

|\l o Il
N X

= E(X) (37)

Let p; be a right eigenvector oA (X) corresponding to
the eigenvalue ;. Define

A
M, = [Pl P2 Pm+n] ) (38)

AN
My:[Y1

wheref’ denotes the conjugate transpose operatoyand
is called the reciprocal left eigenvector relateghto The
following lemma is due to [5].

Lemma 1:Let A (X) = M, + M, XM, given in (14)
be diagonalizable. Then

O\
0X

where* denotes the conjugate operation.

y2 Ymtn]| = M;H ) (39)

=My;p/M] (40)

The following proposition shows that, givend, the
value ofu (X) can easily be calculated.

Proposition 4: Let A (X) be diagonalizable. Then

i (X) =
- A= A
ie{t, - m+n} | (M{Re[A;y;plIMY) o E(X) ||

(3

sum

(41)
Proof: Noting |A;| = /A \; leads to

ol 1 Ny L 0N
X 2/Af\ \0X T TP oX




1 8/\2» * *aAi
=N ((a—x) AitA Re[kia—x}'
(4

Combining (35), (37), (42) and Lemma 1 results in this
proposition.

N 1
LOX ) TN

Replacinguo (X) with p;(X) in (28) leads to a com-
putationally tractable FWL closed-loop stability measure

p1(X) 2 1 (X)/7(X) . (43)

From the measure (X), an estimate of™" is given as

3in(X) 2 —[logy pr (X)) +1. (44)

5. OPTIMIZATION PROCEDURE

As different realizationX have different values of the
FWL closed-loop stability measupe (X), it is of practi-
cal importance to find an “optimal” realizatiaX, that
maximizesp; (X). The controller implemented with this
optimal realizatiorX,; needs a minimum bit length and
has a maximum tolerance to the FWL error. This optimal
controller realization problem is formally defined as

v 2 max p1(X). (45)

XeSc

Assume that a controller has been designed using some
standard controller design method. This controller, de-

noted as
Jo

2l (@6)

A | M
on{G;’

is used as the initial controller realization in the above

optimal controller realization problem. Lpb; be a right
eigenvector ofA (X,) corresponding to the eigenvalue
i, andyy; be the reciprocal left eigenvector related to
Poi. The definition ofS¢ in (12) means that

A I 0O I 0
wheredet(T) # 0. It can then be shown that

— I 0 | I 0

A=y o0 A0y 2] @9

which implies that

I 0 I 0
pi:|:0 T_1}P0i, yz’Z[O TT:|Y0i- (49)

Hence

I 0
0o T7

I 0 AT O I 0
% [0 TT] = {0 TT] @i [0 TT} (50)
with &; = MTRe[\!y:;pe;]M7 . Define the cost func-
tion f(T) as given in the bottom of this page. Then the

optimal controller realization problem (45) can be posed
as the following optimization problem:

f(T).

MTRelAy!p! MY = [ } M7 e[y, pLIME

max (51)
TERM XM

det T#0

v =

Efficient numerical optimization methods exist for solv-
ing for this optimization problem to provide an optimal
transformation matrif, . With T, the optimal real-
ization X, can readily be computed.

6. A DESIGN EXAMPLE

An example is used to illustrate the design procedure
based on the proposed FWL block-floating-point closed-
loop stability measure. The discrete-time plant, taken
from [2], was given by

3.7156e +0 —5.4143e+0
1 0
A= 0 1
0 0
3.6525e+0 —9.6420e — 1
0 0
0 0 ’
1 0

B=[1 0 0 0],
C = [1.1160e—6 4.3000e—8 1.0880e—6 1.4000e—8].

The initial digital controller realization was given by

2.6963e +2 —4.2709e + 1
Fy = 2.556le +2 —4.0497e+1
5.6096e +1 —8.5715e +0
—2.3907e + 2 3.7998e + 1
2.2873e+1 2.6184e + 2
2.1052e +1 2.4806e + 2

5.2162e +0  5.4920e+1 |’
—2.0338¢ +1 —2.3203e+ 2

I 0 1 0
. (s 2= [s o

D o E(X(T))

4|a(X(T))[[max

2
Al (1 = 1) ’

sum 10

m(q(X(T)))



Gy = [ —4.6765e+1 —4.5625e+ 1

~9.5195¢+0 4.1609¢+1 ],

Jo =] —2.5548¢+2 —2.7185¢ + 2

Based on the proposed FWL closed-loop stability mea-
sure, the optimization problem (51) was formed. Us-
ing the MATLAB routinefminsearch.mthis optimization
problem was solved for to obtain the optimal similarity

transformation

Topt -

It is obvious that the true minimum block exponent bit
length ;" (X) for a realizationX can directly be ob-
tained by examining the elements ®f The true min-
imum block mantissa bit length**(X) however can
only be obtained through simulation. That is, starting
from a very larges,, reduces, by one bit and check
the closed-loop stability. The process is repeated until
there appears closed-loop instability®t = (... Then
Bmin = B, + 1. Table | summarizes the various mea-
sures, the corresponding estimated minimum bit lengths
and the true minimum bit lengths for the controller real-
izationsX, andX,p. It can be seen th&,,, improves
the FWL closed-loop stability measupe by a factor of

3 x 10°. To guarantee closed-loop stability, the BFP im-
plementedX, needs at least 33 bits while the implemen-
tation of X, needs at least 16 bits. The latter gives a

—2.7188e + 2 2.7188e + 2 ] ,

M, = [0].

—1.0345e — 1
—1.1078e — 1
—2.3775e — 2

9.2138e — 2

3.8329¢ — 3
2.9461e — 3
4.9498e — 4
—3.4007e — 3

saving of 17 bits.

The closed-loop stability issue of finite-precision real-
izations has been investigated for digital controller ieapl
mented in block-floating-point arithmetic. A new com-
putationally tractable FWL closed-loop stability measure
has been derived for block-floating-point controller real-
izations. The proposed measure takes into account both
the block exponent and block mantissa parts of block-
floating-point format. Based on this FWL closed-loop
stability measure, the optimal controller realizationlpro
lem has been formulated, which can easily be solved
for using standard numerical optimization algorithms. A

1.2904e — 1
1.1742e — 1
2.3815e — 2
—1.1474e -1

1.0911e — 2
8.1639%¢ — 3
1.8293e — 3
—9.6780e — 3

7. CONCLUSIONS

ACKNOWLEDGEMENTS

J. Wu and S. Chen wish to thank the support of
the U.K. Royal Society under a KC Wong fellow-
ship (RL/ART/CN/XFI/KCW/11949). J. Wu and J.
Chu wish to thank the supports of Zhejiang Provincial
Natural Science Foundation of China (Grant 699085)
and Doctor Degree Programs Foundation of China
(Grant 1999033571).

REFERENCES

[1] L.H.Keel and S.P. Bhattacharryya, “Robust, fragilepptimal?”
IEEE Trans. Automatic Contrpl\Vol.42, No.8, pp.1098-1105,
1997.

[2] M. Gevers and G. LiParameterizations in Control, Estimation
and Filtering Problems: Accuracy Aspectisondon: Springer
Verlag, 1993.

[3] R.S.H. Istepanian and J.F. Whidborne, ed3igital Controller
Implementation and Fragility: A Modern Perspectiieondon:
Springer Verlag, 2001.

[4] 1.J. Fialho and T.T. Georgiou, “On stability and perfante of
sampled-data systems subject to wordlength constralBEE
Trans. Automatic ControMol.39, No.12, pp.2476-2481, 1994.

[5] G. Li, “On the structure of digital controllers with firtword
length consideration,1TEEE Trans. Automatic Contrpl\Vol.43,
No.5, pp.689-693, 1998.

[6] J.F. Whidborne, J. Wu and R.S.H. Istepanian, “Finite dvength
stability issues in afy framework,”Int. J. Contro| Vol.73, No.2,
pp.166-176, 2000.

[7] J. Wu, S. Chen, G. Li, R.S.H. Istepanian and J. Chu, “An im-
proved closed-loop stability related measure for finiteefsion
digital controller realizations,1EEE Trans. Automatic Contrpl
Vol.46, No.7, pp.1162-1166, 2001.

[8] J.F. Whidborne, R.S.H. Istepanian and J. Wu, “Reductiboon-
troller fragility by pole sensitivity minimization JEEE Trans. Au-
tomatic Contro) Vol.46, No.2, pp.320-325, 2001.

[9] J.F. Whidborne and D. Gu, “Optimal finite-precision aatier
and filter realizations using floating-point arithmeti&esearch
Report EM/2001/07 Department of Mechanical Engineering,
King’s College London, London, U.K., 2001.

[10] J. Wu, S. Chen, J.F. Whidborne and J. Chu, “Optimal za#ibns
of floating-point implemented digital controllers with fi@iword
length considerations,” submitted Automatica 2001.

[11] R.S.H. Istepanian, J.F. Whidborne and P. Bauer, “8talzinal-
ysis of block floating point digital controllers,” iRroc. UKACC
Int. Conf. Control(Cambridge, U.K.), Sept. 4-7, 2000, CD-ROM,

6 pages.
XO Xopt
p(X) | 1.5154e — 11 | 4.7787¢ — 6
Bmin(X) 37 19
11 (X) | 6.8793¢ — 11 | 3.6388¢ — 5
jmin (X) 33 14
v(X) | 4.5395e+0 | 7.6146e+ 0
3in(X) 3 3
Bmin(X) 33 16
min(X) 30 12
min (X)) 2 3
TABLE |

numerical example has demonstrated that the proposed \arious MEASURES ESTIMATED MINIMUM BIT LENGTHS AND

design procedure yields computationally efficient con-
troller realizations suitable for FWL block-float-pointim

plementation in real-time applications.

TRUE MINIMUM BIT LENGTHS FOR X AND Xopt-



