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Abstract

The paper analyzes global solutions to the optimal digital
controller realization problem based on maximizing a finite
word length (FWL) closed-loop stability measure. For each
closed-loop eigenvalue, a single-pole FWL stability func-
tionis firstintroduced, and a single-pole FWL stability mea
sure is then defined as the maximum of the corresponding
single-pole stability function over all the controller liga-
tions. Itis shown that the minimum of the single-pole sta-
bility measures for all the closed-loop eigenvalues is an up
per bound of the optimal value for the optimal realization
problem. An analytical method to compute a single-pole
stability measure is developed, and an expression forall th
realizations which achieve a given single-pole measure is
derived. When a realization, which is a solution of the min-
imum single-pole measure, further satisfies the condition
that the values of all its single-pole stability functione a
not less than the minimum single-pole measure, the mini-
mum single-pole measure is the optimal value of the opti-
mal realization problem and this realization is the solutio
for the optimal realization problem. An algorithm is pre-
sented to compute an optimal FWL controller realization.
Unlike most of the existing methods relying on numerical
optimization search algorithms, which can be computation-
ally expensive and may easily be trapped at local optimal
solutions, the proposed analytical approach guarantees to
find a global optimal controller realization.

1 Introduction

The classical control system design often assumes that the
controller is implemented exactly. This assumption is usu-
ally justified on the ground that the plant uncertainty is the
most significant source of uncertainty in the control sys-
tem. It has been realized, however, that the controller un-
certainties caused by finite-precision implementatioo als
have significant influence on the performance of the con-
trol system. Failures to take into account the uncertaintie
in the controller implementation may result in a controller
that is fragile [1]. The fragility issues are strongly reldto

and interconnected with the FWL controllerimplementation
issues [2],[3]. This paper considers the case that the con-
troller is implemented using a fixed-point processor. I-rea
time applications where computational efficiency is catjic

a digital controller implemented with fixed-point arithrizet
has advantages over floating-point implementation. How-
ever, the detrimental FWL effects are markedly increased in
fixed-point implementation due to a reduced precision.

It has been noted that a controller design can be imple-
mented with different realizations and the FWL effect on the
closed-loop stability depends on the controller realorati
This property can be utilized to select controller realaat

in order to improve the robustness of FWL closed-loop sta-
bility, and many studies have investigated digital cotérol
realizations with FWL considerations [4]-[9]. A basic idea
in these studies has been to define some FWL closed-loop
stability measure which depends on the controller realiza-
tion and to search for an “optimal” realization by optimiz-
ing the measure. In the work [5], an FWL stability measure
based on closed-loop eigenvalue sensitivity was derivdd an
the optimal controller realization problem was defined as
the maximization of this measure over all the possible con-
troller realizations. An analytical solution to this optim
realization problem was attempted in [5], but the cond&ion
presented in [5] were not sufficient to provide an optimal
realization that maximizes the FWL stability measure [10].

Due to the lack of analytical solutions to optimal FWL con-
troller realization problems, numerical optimization et
ods have been adopted to search for optimal realizations
[6]-[9]. A numerical optimization approach can be effec-
tive if the dimension of the problem is small. In general,
however, an optimal FWL realization problem is a highly
complicated nonlinear and non-convex optimization prob-
lem, especially when the order of the controller is large.
Methods based on numerical optimization algorithms are
then computationally expensive, and chances of search be-
ing trapped at some bad local solutions increase for large-
scale problems. The main contribution of this paper is to de-
rive an analytical solution for the optimal FWL realization
problem defined in [5], which guarantees to achieve global
optimal solutions.



2 Problem definition

Consider the discrete-time closed-loop control systems; co
sisting of a linear time-invariant plarf®(z) and a digital
controllerC(z). P(z) is strictly proper with a state-space
description(Ap,Bp,Cp), whereAp € R™*™ Bp €
R™*! and Cp € RI*™, Let (Ac,BC,CC,Dc) be a
state-space description 6f(z), with A € R"*", B¢ €
R4 Ce € R andD¢ € R'¥?. A linear system with
a given transfer function matrix has an infinite number of
state-space descriptions. In fact(£%,B%,C%,D?)is a
state-space description 6f(z), all the state-space descrip-
tions of C'(z) form a realization set

Sc é {(Ao,Bo, Co, D0)|Ao = TilA%T,
Bc =T 'BY,Cc =CLT,Dc =D} (1)
whereT € R™*" is an arbitrary non-singular matrix. De-
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The stability of the closed-loop control system depends on
the eigenvalues of the closed-loop transition matrix
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where the zero matriQ has an appropriate dimension. All
the different realizationX in S¢ have exactly the same set
of closed-loop poles if they are implemented with infinite

precision. Since the closed-loop system has been designed

to be stable, all the eigenvalurg A (X)), 1 <i < m +n,
are within the unit disk.

When a controlleX is implemented with a fixed-point pro-
cessor, it is perturbed tX + AX due to the FWL effect.
Each element oA X is bounded byte, that is,

4)
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wheree is the maximum round-off error of the fixed-point
processor. With the perturbatiaxX, \;(A (X)) is moved

to \;(A(X + AX)). If an eigenvalue ofA (X + AX) is
outside the open unit disk, the closed-loop system, dedigne
to be stable, becomes unstable with the finite-precision im-
plementedX. How easily the FWL erroAX can cause a

stable control system to become unstable is determined by
how close\; (A (X)) are to the unit circle and how sensitive
they are to the controller perturbations. The following FWL
closed-loop stability measure [5] is considered in thisligtu
1=

VN |15%

where|| - || denotes the Frobenius norm, that is, for any
complex-valued matriI,

>

f(X) (5)

min
ie{l,--,m+n}

F

IM||F 2 y/tr(MF M) (6)

with 7 denoting the conjugate transpose operator.

The measuref(X) describes the “robustness” of closed-
loop stability to FWL controller perturbations. As differe
controller realization¥X result in different values of (X),

it is natural to search for “optimal” controller realizati®
that maximize the measure defined in (5). This leads to the
following optimal FWL realization problem [5]:

(X). (@)

A
v = max f
XeSc

3 Single-pole FWL stability measure

Define the single-pole FWL stability function for the
closed-loop eigenvaluk; as

1=\

A
9(X,1) = = (8)
VN[5l
The optimal FWL realization problem (7) can be written as
v = max min  g(X,1). 9)

XeSc ie{l,---,;m+n}

Lemmal max min
XeSc ie{l,---,m+n}
min max ¢g(X,i) .
ie{l,---,m+n} XESc

9(X,i) <

Lemma 1 is obvious. For the eigenvalug define the
single-pole FWL stability measure as

1=\

2
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From Lemma 1, it can be seen that the minimum ofpzdl
is an upper bound of the optimal valuwein (7). We now
discuss how to attain the measugdor the pole);, in other
words, how to solve for the minimization problem of single-

(10)

F

e . . O\ .
pole senS|t|V|terr€1g10 | %% | -+ since
_ (= /VN
Pi = —"——ran 1 (11)
min || 3% F

XeSe



Denotep; a right eigenvector oA (X) corresponding to the
eigenvalue\; andy; the related reciprocal left eigenvector.
The following lemma is due to [5].

Lemma?2 Let A(X) = M, + M; XM, given in (3) be
diagonalisable. Then
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where* denotes the conjugate operation dnithe transpose
operator.

Combining Lemma 2 with the definition ¢f|| . in (6) leads

O\

%] = T, a2
Letp; € C™T™ andy; € C™*™ be partitioned into
pi(1) |:Yi(1):|
= , Vi = 14
P [Pi@) Y yi(2) (14)

wherep;(1),y:(1) € C™ andp;(2),y:(2) € C". For the
initial controller realization

let - {gg:g;} R Bgzgﬂ (16)

be a right eigenvector and the related reciprocal left eigen
vector of A(Xy) corresponding to the eigenvalug, re-
spectively. The definition af¢ in (1) means that

xéx(T)z[g T‘L}Xo[lg fl’,] (17)
It can then be shown that
xo =T oL xea [ 2] as)
which implies that
pi(1)| _[L, O Poi(1)
[Pi@)] B { 0 Tl] [Pm(?)} ’ (19)
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Whereozi = ||Cpp0i(].)||p andﬂi = ||B£y0l(].)||p In
order to attairp;, we need to minimize the function

(21)

A _
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+n*|IT " al|F + 6°n° (22)

whereT € R"*™ is nhonsingulard,n € R are positive, and
q,z € C™ are nonzero vectors. Lef denote theth co-
ordinate vector. For different cases@fandz, the follow-
ing theorems give the results on minimizi§@r, 6, 7, q, z),
proofs of which are omitted due to the space limitation.

Theorem 1 Given positived,n € R, q,z € R"™, and
z"q # 0, we have

min (T, 4,m,q,2) = (|27 q| + dn)?,
T R

(23)

and¢(T, 4,7, q, z) attains the minimum if and only if

Tzq[%@ g}v (24)

where the orthogonal matriQ can be obtained from the
QR factorization of, i.e.

z2=Q[y0---0" (25)
with a nonzeroy € R,
N,
h = W|Z qal, (26)
F=sign(z"a)5- | | Q' (27)
Y o

Q e R(»=1x(n=1) s an arbitrary nonsingular matrix, and
V € R™"*™ is an arbitrary orthogonal matrix.

For anyy € C", defineY(y) 2 [Re(y) Im(y)], where
Re(y) and Im(y) denotes the real and the imaginary parts
of y, respectively.

Theorem 2 Given positived,n € R, q,z € C™ and
det((Y(z))TY(q)) > 0, we have

min £(T,6,1,q,2) = (|z7q| + 6n)?,
T Fero

(28)

and¢(T, 4,7, q, z) achieves the minimum if and only if

(29)
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where the orthogonal matri@Q can be obtained from the
QR factorization of('(z), i.e.

Y1 Y12
0 o2
Yz=Q| 0 O (30)
0 0
with nonzeroy;1,v22 € R,
N[y vy - cosf  siné
_ Nl 12 T
H = 5 { 0 ’ygz] (Y(z))" T(a) [—sinﬂ COSO]
-1
x[%lzz}, (31)
Eg 0 - —~1
_n . T cos sin Y1 Y12
F= 5 T Q" T(a) [—sinﬂ COSO] [ 0 722} ’
en
(32)
f is the solution of
tan§ = d21=012
ai1+azz
{ a1 cosf —ajpsinf >0 (33)
with
a11 a1z | _ T
= (Y(2))" Y(a), (34)
a21  A22

Q e R("=2)x(n=2) js an arbitrary nonsingular matrix, and
V € R"*™ is an arbitrary orthogonal matrix.

Theorem 3 Given positived,n € R, q,z € C" and
det((Y(z))TY(q)) < 0, we have

foin &(T,6,1,q,2) = (2" al + 0n)?,
det T#0

(35)

and¢(T, 4,7, q,z) achieves the minimum if and only if

H!/2 0

T=Q F(H1/2)7T Q

} \Y% (36)

where the orthogonal matri@Q can be obtained from the
QR factorization of(’(z*), i.e.

Y Y12
0 oo
TE)=Q| 0 0 (37)
0 0
with nonzeroy;1,v22 € R,
gH=" [’711 ’712}T (CE)TL(Q { 00?0 sinﬁ}
10 7 —sinf cosf
-1
x [751 ﬁﬂ ! (38)

—1
_ny . T cosf sinf | [v1 M2
F= 5| - Q Y(a) {—sinO cosﬂ} { 0 oo ’
e
(39)
f is the solution of
tan § = 221=02
a11+a22
{ a1 cosf —ajssinf >0 (40)
with
e @) @, @
21 a22

Q € R(»=2x(n=2) s an arbitrary nonsingular matrix, and
V € R"*™ is an arbitrary orthogonal matrix.

4 Computing optimal controller realizations

In the previous section, the problem of the single-pole FWL
stability measure; is solved and hence the minimum of all
the single-pole measures can be found. Define

A .
i1 = arg min Pi.

42
i€{l,--,m+n} ( )

It is straightforward to verify the following lemma.

Lemma 3 A controller realizationX., is a solution of the
optimal realization problem (7) and

Piy =V (43)
if and only if X.. meets the conditions
9(Xsyi1) = piy (44)
and
9(Xsyi) > piy, Vie{l,---,m+np\{ia}. (45)

Without the loss of generality, we will assume that
Ai, is a complex-valued eigenvalug,, .; = Aj and
det((Y(y0i, (2)))T Y (poiy (2))) > 0. From Theorem 2, all
the transformation matrices achievipg form the set

A

1/2
ﬂ:{Th=Q1 . 0

Fi(H/")T @

[vi} wo

whereQ;, H; andF; are determined in Theorem,; €
R(n=2)x(n=2) is an arbitrary nonsingular matrix aid, €
R™*™ is an arbitrary orthogonal matrix. Lemma 3 shows
that if there existdl', € 7; satisfying

9(X(Ty),i) > piy, Vie{l,---,m+n}\{ir,i1 +1},
(47)

thenp;, = v andX(T,) is an optimal controller realization

for the optimization problem (7). Thus, searchingfinfor



T. which satisfy (47) is a method of solving for the opti-  Step 3-1: Initially let S, be an empty set and;, =
mal realization problem (7). We present an algorithm for dg(X(Tgh)),u)/ H dg(X ﬂnl))’l*)
computingX (T.) in this way. ash dsn

=
) ) Sep 3-2: Find every elements of the set

By settingV; = I,, in (46), we have

Sy ={ili € Sr(h),

H,/” 0
T(Q1) =@ 12 : (48)
Fi(H T Q . T
T 0 (v (XE@DN 5 <,
Notice that,Vi € {1,---,m + n}, the single-pole FWL Q2

(52)

stability functiong(X(T(€2;)), ) is differentiable with re- ) i )
If S; is empty J = J; and terminate the inner loop.

spect to€2;. With the derivative, we know how to change
Q, so thatg(X(T(Q:)),i) increases. Hence, for those Sep 3-3: Find the index inS; with which the deriva-

9(X(T(€)),7) < piy, 1 can appropriately be changed tive direction has the largest “angle” with respect to

step by step untiy(X(T(€21)),4) > p;,. With the deriva- dg(X(T(R1))ix) @

tive, we also know the direction of change which will de- dth T

creasey(X(T(€4)),7). Hence, by avoiding to chang@, iy = argmin

in some directions, thosg(X(T(€1)),7) > p;, can be i€Se

made to hold their values. The basic idea of the algorithm is AT )

to search for an optimal transformation matiiX through (Vec (%W)) Vec (%‘W)

increasing thosg(X, ) which are smaller thap;, while dg(X(T(Q1))0) dg(X(T(Q1)),ir)

not decreasing thosg X, 7) which are larger than or equal H [N F H s ‘F

to p;, . The detailed algorithm is as follows. (53)

and letS, = S,, U {is}.

Initialization: Arbitrarily select a nonsingul&®, to obtain Sep 3-4: Suppose thaf,, containsr elements which are

an initial realizationX (T'(€2,)), seto to a proper pos- numbered by, - - -, k.. Compute the matrix

itive number and- a small positive number. .
(Vec (—dg(X(ng:l)),kl)))
E = : € Rrx(n=2)*

(Vee (dg<X<T;i§]nl>>7kr)))T

Sep 1: Find out every elements of the set

81(91) = {Z|p“ S g(X(T(Ql))’Z) < Pir + g,

i #iy,i £+ 1} 49 .
# 1,0 # i1+ 1} (49) (54)
Step 2: Find out -
) ) ) Sep 3-5: ChooseVec(J;) as the orthogonal projection of
e = argie{lfr.l.f%+n}g(x(T(ﬂl))’Z)' (50) Vec (L(X("(ii}({lh)),i*)) onto the null spaceV'(E) of
: N _ E. Suppose that/(E), of dimensiort, has the bases
If X (T(£2 =i, T. = T(Q
ie{17r.n..1,21+n}g( (T(Eh)),i) = p (£) {by,---,b:}. We can comput&ec(J;) as follows:
and terminate the algorithm.
—wT dg(X(T(21)),ix)
Step 3: Choosel € R("~2)x(n=2) gych that aj = bj Vec ( e ) €R,
i) Vi € Sp(21), g(X(T (21 +7J)),i) is not less than Vt] €{L,,th . (55)
9(X(T(1)),1). V=3 ab; € R,
i) g(X(T(€21)),4.) increases as fast as possible. Vec(J;) = % e R(n—2)%
il) 1 3)|p = 1.

Sep4: Q; =Q; +7J, and go tatep 1. Step 3-6: GotoSep 3-2.

In this algorithm, the denvatwe%qinl)) are needed.

The key of this algorithm is how to obtaih DenoteVec(+) Based on (3), (8), (19), (20), (48) and Lemma 2, these
the column stacking operator. With a smallcondition i) derivatives can be computed easily.
means that

dg(X(T(21)),i)\\ "
(Vec (%ﬁ”)) Vee(d) > 0, Vi € Sr(). 5 A design example

(51)

Condition ii) requires to improvey(X(T(£2;)),i.) as The example considered in [5] was used to illustrate the ef-
fast as possible and, therefore, the best direction is fectiveness of the proposed analytical design approadk. Th
%. Combining all the three conditions Biep example had 5 pairs of complex-valued conjugate closed-

3 Vec(JS can be chosen as in the following inner loop: loop eigenvalues 2, Az 4, As.6, A7,g andAg 10 along with



onereal-valued eigenvalue; . Using the method described

in Section 3, we attained the minimum of all the single-pole
measurep;, = 6.7344e — 6 with ¢; = 5 together with the
correspondind), H; andF;. The algorithm of Section 4
was then applied withr = 0.1 and the initialQ; = 1,

to find a global optimal realization. Fig. 1 illustrates the
changes of all the single-pole FWL stability functions in
each iteration stage. It can be seen that at the 37th stage, th
global optimal controller realizatioK,; was found, since

at this stage the conditions of Lemma 3 were met and the
algorithm terminated. Table 1 summarizes the values of the
FWL closed-loop stability measure &, andX,.. It can

be seen that the optimal controller realizations improee th
FWL closed-loop stability measure by a factordok 10°

over the initially designed controller realization.

6 Conclusions

We have developed an analytic approach to solve for the
optimal controller realization problem based on an FWL
closed-loop stability measure, which avoids the drawbacks
usually associated with using numerical optimization meth
ods to tackle this problem. For each closed-loop eigenyalue

a single-pole stability measure has been defined, and an an-

alytical method has been derived to compute all the realiza-
tions which achieve the single-pole measure. It has been
shown that the minimum of all the single-pole measures is
an upper bound of the optimal value of the optimal FWL re-
alization problem. The necessary and sufficient conditions
have been given for a realization which attains the minimum
single-pole measure to be a global solution of the optimal
realization problem. An algorithm have been presented to
compute global optimal realizations.
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Figure 1: Single-pole FWL stability functions in each iteration
stage of the algorithm.



