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Abstract

The paper analyzes global solutions to the optimal digital
controller realization problem based on maximizing a finite
word length (FWL) closed-loop stability measure. For each
closed-loop eigenvalue, a single-pole FWL stability func-
tion is first introduced, and a single-pole FWL stability mea-
sure is then defined as the maximum of the corresponding
single-pole stability function over all the controller realiza-
tions. It is shown that the minimum of the single-pole sta-
bility measures for all the closed-loop eigenvalues is an up-
per bound of the optimal value for the optimal realization
problem. An analytical method to compute a single-pole
stability measure is developed, and an expression for all the
realizations which achieve a given single-pole measure is
derived. When a realization, which is a solution of the min-
imum single-pole measure, further satisfies the condition
that the values of all its single-pole stability functions are
not less than the minimum single-pole measure, the mini-
mum single-pole measure is the optimal value of the opti-
mal realization problem and this realization is the solution
for the optimal realization problem. An algorithm is pre-
sented to compute an optimal FWL controller realization.
Unlike most of the existing methods relying on numerical
optimization search algorithms, which can be computation-
ally expensive and may easily be trapped at local optimal
solutions, the proposed analytical approach guarantees to
find a global optimal controller realization.

1 Introduction

The classical control system design often assumes that the
controller is implemented exactly. This assumption is usu-
ally justified on the ground that the plant uncertainty is the
most significant source of uncertainty in the control sys-
tem. It has been realized, however, that the controller un-
certainties caused by finite-precision implementation also
have significant influence on the performance of the con-
trol system. Failures to take into account the uncertainties
in the controller implementation may result in a controller
that is fragile [1]. The fragility issues are strongly related to

and interconnected with the FWL controller implementation
issues [2],[3]. This paper considers the case that the con-
troller is implemented using a fixed-point processor. In real-
time applications where computational efficiency is critical,
a digital controller implemented with fixed-point arithmetic
has advantages over floating-point implementation. How-
ever, the detrimental FWL effects are markedly increased in
fixed-point implementation due to a reduced precision.

It has been noted that a controller design can be imple-
mented with different realizations and the FWL effect on the
closed-loop stability depends on the controller realization.
This property can be utilized to select controller realization
in order to improve the robustness of FWL closed-loop sta-
bility, and many studies have investigated digital controller
realizations with FWL considerations [4]–[9]. A basic idea
in these studies has been to define some FWL closed-loop
stability measure which depends on the controller realiza-
tion and to search for an “optimal” realization by optimiz-
ing the measure. In the work [5], an FWL stability measure
based on closed-loop eigenvalue sensitivity was derived and
the optimal controller realization problem was defined as
the maximization of this measure over all the possible con-
troller realizations. An analytical solution to this optimal
realization problem was attempted in [5], but the conditions
presented in [5] were not sufficient to provide an optimal
realization that maximizes the FWL stability measure [10].

Due to the lack of analytical solutions to optimal FWL con-
troller realization problems, numerical optimization meth-
ods have been adopted to search for optimal realizations
[6]–[9]. A numerical optimization approach can be effec-
tive if the dimension of the problem is small. In general,
however, an optimal FWL realization problem is a highly
complicated nonlinear and non-convex optimization prob-
lem, especially when the order of the controller is large.
Methods based on numerical optimization algorithms are
then computationally expensive, and chances of search be-
ing trapped at some bad local solutions increase for large-
scale problems. The main contribution of this paper is to de-
rive an analytical solution for the optimal FWL realization
problem defined in [5], which guarantees to achieve global
optimal solutions.



2 Problem definition

Consider the discrete-time closed-loop control system, con-
sisting of a linear time-invariant plantP (z) and a digital
controllerC(z). P (z) is strictly proper with a state-space
description(AP ;BP ;CP ), whereAP 2 Rm�m, BP 2Rm�l andCP 2 Rq�m. Let (AC ;BC ;CC ;DC) be a
state-space description ofC(z), with AC 2 Rn�n, BC 2Rn�q ,CC 2 Rl�n andDC 2 Rl�q . A linear system with
a given transfer function matrix has an infinite number of
state-space descriptions. In fact, if(A0C ;B0C ;C0C ;D0C) is a
state-space description ofC(z), all the state-space descrip-
tions ofC(z) form a realization setSC 4= �(AC ;BC ;CC ;DC)jAC = T�1A0CT;BC = T�1B0C ;CC = C0CT;DC = D0C	 (1)

whereT 2 Rn�n is an arbitrary non-singular matrix. De-

noteN 4= (l + n)(q + n) andX 4= � DC CCBC AC �
= 26664 x1 xl+n+1 � � � xN�l�n+1x2 xl+n+2 � � � xN�l�n+2

...
... � � � ...xl+n x2l+2n � � � xN 37775 : (2)

The stability of the closed-loop control system depends on
the eigenvalues of the closed-loop transition matrixA(X) = � AP +BPDCCP BPCCBCCP AC �= � AP 00 0 �+ � BP 00 In �X � CP 00 In �4=M0 +M1XM2 (3)

where the zero matrix0 has an appropriate dimension. All
the different realizationsX in SC have exactly the same set
of closed-loop poles if they are implemented with infinite
precision. Since the closed-loop system has been designed
to be stable, all the eigenvalues�i(A(X)), 1 � i � m+ n,
are within the unit disk.

When a controllerX is implemented with a fixed-point pro-
cessor, it is perturbed toX + �X due to the FWL effect.
Each element of�X is bounded by�", that is,maxj2f1;���;Ng j�xj j � " (4)

where" is the maximum round-off error of the fixed-point
processor. With the perturbation�X, �i(A(X)) is moved
to �i(A(X + �X)). If an eigenvalue ofA(X + �X) is
outside the open unit disk, the closed-loop system, designed
to be stable, becomes unstable with the finite-precision im-
plementedX. How easily the FWL error�X can cause a

stable control system to become unstable is determined by
how close�i(A(X)) are to the unit circle and how sensitive
they are to the controller perturbations. The following FWL
closed-loop stability measure [5] is considered in this study:f(X) 4= mini2f1;���;m+ng 1� j�ijpN ��i�X F (5)

wherek � kF denotes the Frobenius norm, that is, for any
complex-valued matrixM,kMkF 4=qtr(MHM) (6)

with H denoting the conjugate transpose operator.

The measuref(X) describes the “robustness” of closed-
loop stability to FWL controller perturbations. As different
controller realizationsX result in different values off(X),
it is natural to search for “optimal” controller realizations
that maximize the measure defined in (5). This leads to the
following optimal FWL realization problem [5]:� 4= maxX2SC f(X): (7)

3 Single-pole FWL stability measure

Define the single-pole FWL stability function for the
closed-loop eigenvalue�i asg(X; i) 4= 1� j�ijpN ��i�X F : (8)

The optimal FWL realization problem (7) can be written as� = maxX2SC mini2f1;���;m+ng g(X; i): (9)

Lemma 1 maxX2SC mini2f1;���;m+ng g(X; i) �mini2f1;���;m+ng maxX2SC g(X; i) .

Lemma 1 is obvious. For the eigenvalue�i, define the
single-pole FWL stability measure as�i 4= maxX2SC g(X; i) = maxX2SC 1� j�ijpN ��i�X F : (10)

From Lemma 1, it can be seen that the minimum of all�is
is an upper bound of the optimal value� in (7). We now
discuss how to attain the measure�i for the pole�i, in other
words, how to solve for the minimization problem of single-
pole sensitivityminX2SC ��i�X F , since�i = (1� j�ij)=pNminX2SC ��i�X F : (11)



Denotepi a right eigenvector ofA(X) corresponding to the
eigenvalue�i andyi the related reciprocal left eigenvector.
The following lemma is due to [5].

Lemma 2 Let A(X) = M0 +M1XM2 given in (3) be
diagonalisable. Then��i�X 4= 2664 ��i�x1 � � � ��i�xN�l�n+1

... � � � ...��i�xl+n � � � ��i�xN 3775 =MT1 y�i pTi MT2
(12)

where� denotes the conjugate operation andT the transpose
operator.

Combining Lemma 2 with the definition ofk�kF in (6) leads
to ��i�XF = kMT1 yikF kM2pikF : (13)

Letpi 2 Cm+n andyi 2 Cm+n be partitioned intopi = �pi(1)pi(2) � ; yi = �yi(1)yi(2) � (14)

wherepi(1);yi(1) 2 Cm andpi(2);yi(2) 2 Cn. For the
initial controller realizationX0 4= �D0C C0CB0C A0C � ; (15)

let p0i = �p0i(1)p0i(2) � ; y0i = �y0i(1)y0i(2) � (16)

be a right eigenvector and the related reciprocal left eigen-
vector ofA(X0) corresponding to the eigenvalue�i, re-
spectively. The definition ofSC in (1) means thatX 4= X(T) = � Il 00 T�1 �X0 � Iq 00 T � : (17)

It can then be shown thatA(X) = � Im 00 T�1 �A(X0) � Im 00 T � (18)

which implies that�pi(1)pi(2) � = � Im 00 T�1 � �p0i(1)p0i(2) � ; (19)�yi(1)yi(2) � = � Im 00 TT ��y0i(1)y0i(2) � : (20)

Hence��i�X2F = BTPy0i(1)TTy0i(2) 2F  CPp0i(1)T�1p0i(2) 2F =kT�1p0i(2)k2F kTTy0i(2)k2F + �2i kTTy0i(2)k2F

+�2i kT�1p0i(2)k2F + �2i �2i (21)

where�i = kCPp0i(1)kF and�i = kBTPy0i(1)kF . In
order to attain�i, we need to minimize the function�(T; Æ; �;q; z) 4= kT�1qk2F kTT zk2F + Æ2kTT zk2F+�2kT�1qk2F + Æ2�2 (22)

whereT 2 Rn�n is nonsingular,Æ; � 2 R are positive, andq; z 2 Cn are nonzero vectors. Letei denote theith co-
ordinate vector. For different cases ofq andz, the follow-
ing theorems give the results on minimizing�(T; Æ; �;q; z),
proofs of which are omitted due to the space limitation.

Theorem 1 Given positiveÆ; � 2 R, q; z 2 Rn, andzTq 6= 0, we haveminT2Rn�ndetT 6=0 �(T; Æ; �;q; z) = (jzTqj+ Æ�)2; (23)

and�(T; Æ; �;q; z) attains the minimum if and only ifT = Q � ph 01phF 
 �V (24)

where the orthogonal matrixQ can be obtained from the
QR factorization ofz, i.e.z = Q [ 0 � � � 0℄T (25)

with a nonzero 2 R,h = �Æ2 jzTqj; (26)F = sign(zTq) �Æ 264 eT2...eTn 375QTq; (27)
 2 R(n�1)�(n�1) is an arbitrary nonsingular matrix, andV 2 Rn�n is an arbitrary orthogonal matrix.

For anyy 2 Cn, define�(y) 4= [Re(y) Im(y)℄, where
Re(y) and Im(y) denotes the real and the imaginary parts
of y, respectively.

Theorem 2 Given positiveÆ; � 2 R, q; z 2 Cn anddet((�(z))T�(q)) > 0, we haveminT2Rn�ndetT 6=0 �(T; Æ; �;q; z) = (jzHqj+ Æ�)2; (28)

and�(T; Æ; �;q; z) achieves the minimum if and only ifT = Q � H1=2 0F(H1=2)�T 
 �V (29)



where the orthogonal matrixQ can be obtained from the
QR factorization of�(z), i.e.�(z) = Q266664 11 120 220 0

...
...0 0 377775 (30)

with nonzero11; 22 2 R,H = �Æ � 11 120 22 ��T (�(z))T�(q) � os � sin �� sin � os � �� � 11 120 22 ��1 ; (31)F = �Æ 264 eT3...eTn 375QT�(q) � os � sin �� sin � os � � � 11 120 22 ��1 ;
(32)� is the solution of� tan � = a21�a12a11+a22a11 os � � a12 sin � > 0 (33)

with �a11 a12a21 a22 � = (�(z))T�(q); (34)
 2 R(n�2)�(n�2) is an arbitrary nonsingular matrix, andV 2 Rn�n is an arbitrary orthogonal matrix.

Theorem 3 Given positiveÆ; � 2 R, q; z 2 Cn anddet((�(z))T�(q)) < 0, we haveminT2Rn�ndetT 6=0 �(T; Æ; �;q; z) = (jzTqj+ Æ�)2; (35)

and�(T; Æ; �;q; z) achieves the minimum if and only ifT = Q � H1=2 0F(H1=2)�T 
�V (36)

where the orthogonal matrixQ can be obtained from the
QR factorization of�(z�), i.e.�(z�) = Q266664 11 120 220 0

...
...0 0 377775 (37)

with nonzero11; 22 2 R,H = �Æ � 11 120 22 ��T (�(z�))T�(q) � os � sin �� sin � os � �� � 11 120 22 ��1 ; (38)

F = �Æ 264 eT3...eTn 375QT�(q) � os � sin �� sin � os � � � 11 120 22 ��1 ;
(39)� is the solution of� tan � = a21�a12a11+a22a11 os � � a12 sin � > 0 (40)

with � a11 a12a21 a22 � = (�(z�))T�(q); (41)
 2 R(n�2)�(n�2) is an arbitrary nonsingular matrix, andV 2 Rn�n is an arbitrary orthogonal matrix.

4 Computing optimal controller realizations

In the previous section, the problem of the single-pole FWL
stability measure�i is solved and hence the minimum of all
the single-pole measures can be found. Definei1 4= arg mini2f1;���;m+ng �i: (42)

It is straightforward to verify the following lemma.

Lemma 3 A controller realizationX� is a solution of the
optimal realization problem (7) and�i1 = � (43)

if and only ifX� meets the conditionsg(X�; i1) = �i1 (44)

andg(X�; i) � �i1 ; 8i 2 f1; � � � ;m+ ng n fi1g: (45)

Without the loss of generality, we will assume that�i1 is a complex-valued eigenvalue,�i1+1 = ��i1 anddet((�(y0i1 (2)))T�(p0i1(2))) > 0. From Theorem 2, all
the transformation matrices achieving�i1 form the setT1 4= �T ����T = Q1 � H1=21 0F1(H1=21 )�T 
1 �V1� (46)

whereQ1,H1 andF1 are determined in Theorem 2,
1 2R(n�2)�(n�2) is an arbitrary nonsingular matrix andV1 2Rn�n is an arbitrary orthogonal matrix. Lemma 3 shows
that if there existsT� 2 T1 satisfyingg(X(T�); i) � �i1 ; 8i 2 f1; � � � ;m+ ng n fi1; i1 + 1g;

(47)
then�i1 = � andX(T�) is an optimal controller realization
for the optimization problem (7). Thus, searching inT1 for



T� which satisfy (47) is a method of solving for the opti-
mal realization problem (7). We present an algorithm for
computingX(T�) in this way.

By settingV1 = In in (46), we haveT(
1) = Q1 � H1=21 0F1(H1=21 )�T 
1 � : (48)

Notice that,8i 2 f1; � � � ;m + ng, the single-pole FWL
stability functiong(X(T(
1)); i) is differentiable with re-
spect to
1. With the derivative, we know how to change
1 so thatg(X(T(
1)); i) increases. Hence, for thoseg(X(T(
1)); i) < �i1 , 
1 can appropriately be changed
step by step untilg(X(T(
1)); i) � �i1 . With the deriva-
tive, we also know the direction of change which will de-
creaseg(X(T(
1)); i). Hence, by avoiding to change
1
in some directions, thoseg(X(T(
1)); i) � �i1 can be
made to hold their values. The basic idea of the algorithm is
to search for an optimal transformation matrixT� through
increasing thoseg(X; i) which are smaller than�i1 while
not decreasing thoseg(X; i) which are larger than or equal
to �i1 . The detailed algorithm is as follows.

Initialization: Arbitrarily select a nonsingular
1 to obtain
an initial realizationX(T(
1)), set� to a proper pos-
itive number and� a small positive number.

Step 1: Find out every elements of the setSI (
1) = fij�i1 � g(X(T(
1)); i) < �i1 + �;i 6= i1; i 6= i1 + 1g: (49)

Step 2: Find outi� = arg mini2f1;���;m+ng g(X(T(
1)); i): (50)

If mini2f1;���;m+ng g(X(T(
1)); i) = �i1 ,T� = T(
1)
and terminate the algorithm.

Step 3: ChooseJ 2 R(n�2)�(n�2) such that

i) 8i 2 SI(
1), g(X(T(
1+�J)); i) is not less thang(X(T(
1)); i).
ii) g(X(T(
1)); i�) increases as fast as possible.

iii) kJkF = 1.

Step 4: 
1 = 
1 + �J, and go toStep 1.

The key of this algorithm is how to obtainJ. DenoteVe(�)
the column stacking operator. With a small� , condition i)
means that�Ve�dg(X(T(
1)); i)d
1 ��T Ve(J) � 0; 8i 2 SI(
1):

(51)
Condition ii) requires to improveg(X(T(
1)); i�) as
fast as possible and, therefore, the best direction isdg(X(T(
1));i�)d
1 . Combining all the three conditions inStep
3, Ve(J) can be chosen as in the following inner loop:

Step 3-1: Initially let Sn be an empty set andJt =dg(X(T(
1));i�)d
1 = dg(X(T(
1));i�)d
1 F .

Step 3-2: Find every elements of the setSt = fi ji 2 SI(
1);�Ve�dg(X(T(
1)); i)d
1 ��T Ve(Jt) < 0g:
(52)

If St is empty,J = Jt and terminate the inner loop.

Step 3-3: Find the index inSt with which the deriva-
tive direction has the largest “angle” with respect todg(X(T(
1));i�)d
1 , i.e.if = argmini2St�Ve�dg(X(T(
1));i)d
1 ��T Ve�dg(X(T(
1));i�)d
1 �dg(X(T(
1));i)d
1 F dg(X(T(
1));i�)d
1 F

(53)
and letSn = Sn [ fifg.

Step 3-4: Suppose thatSn containsr elements which are
numbered byk1; � � � ; kr. Compute the matrixE = 26664�Ve�dg(X(T(
1));k1)d
1 ��T

...�Ve�dg(X(T(
1));kr)d
1 ��T 37775 2 Rr�(n�2)2 :
(54)

Step 3-5: ChooseVe(Jt) as the orthogonal projection ofVe�dg(X(T(
1));i�)d
1 �
onto the null spaceN (E) ofE. Suppose thatN (E), of dimensiont, has the basesfb1; � � � ;btg. We can computeVe(Jt) as follows:aj = bTj Ve�dg(X(T(
1));i�)d
1 � 2 R;8j 2 f1; � � � ; tg;v =Ptj=1 ajbj 2 R(n�2)2 ;Ve(Jt) = vpvTv 2 R(n�2)2 : 9>>>>>=>>>>>; (55)

Step 3-6: Go toStep 3-2.

In this algorithm, the derivativesdg(X(T(
1));i)d
1 are needed.
Based on (3), (8), (19), (20), (48) and Lemma 2, these
derivatives can be computed easily.

5 A design example

The example considered in [5] was used to illustrate the ef-
fectiveness of the proposed analytical design approach. This
example had 5 pairs of complex-valued conjugate closed-
loop eigenvalues�1;2, �3;4, �5;6, �7;8 and�9;10 along with



one real-valued eigenvalue�11. Using the method described
in Section 3, we attained the minimum of all the single-pole
measures�i1 = 6:7344e� 6 with i1 = 5 together with the
correspondingQ1,H1 andF1. The algorithm of Section 4
was then applied with� = 0:1 and the initial
1 = I4
to find a global optimal realization. Fig. 1 illustrates the
changes of all the single-pole FWL stability functions in
each iteration stage. It can be seen that at the 37th stage, the
global optimal controller realizationXopt was found, since
at this stage the conditions of Lemma 3 were met and the
algorithm terminated. Table 1 summarizes the values of the
FWL closed-loop stability measure forX0 andXopt. It can
be seen that the optimal controller realizations improve the
FWL closed-loop stability measure by a factor of2 � 105
over the initially designed controller realization.

6 Conclusions

We have developed an analytic approach to solve for the
optimal controller realization problem based on an FWL
closed-loop stability measure, which avoids the drawbacks
usually associated with using numerical optimization meth-
ods to tackle this problem. For each closed-loop eigenvalue,
a single-pole stability measure has been defined, and an an-
alytical method has been derived to compute all the realiza-
tions which achieve the single-pole measure. It has been
shown that the minimum of all the single-pole measures is
an upper bound of the optimal value of the optimal FWL re-
alization problem. The necessary and sufficient conditions
have been given for a realization which attains the minimum
single-pole measure to be a global solution of the optimal
realization problem. An algorithm have been presented to
compute global optimal realizations.
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Figure 1: Single-pole FWL stability functions in each iteration
stage of the algorithm.


