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Abstract

The paper investigates the closed-loop stability issue of
finite-precision realizations for digital controllers itep
mented in floating-point arithmetic. Unlike the existing
methods which only address the effect of the mantissa bits
in floating-point format to the sensitivity of closed-lodps
bility, the sensitivity of closed-loop stability is anaba
with respect to both the mantissa and exponent bits of
floating-point format. A computationally tractable finite
word length (FWL) closed-loop stability measure is defined,
and the optimal controller realization problem is posed as
searching for a floating-point realization that maximizes t
proposed measure. A numerical optimization approach is
adopted to solve for the resulting optimization problem.
Simulation results show that the proposed design procedure
yields computationally efficient controller realizationgh
enhanced FWL closed-loop stability performance.

1 Introduction

The classical digital controller design methodology often
assumes that the controller is implemented exactly. Indeed
it may seem that the controller “uncertainty” resultingrfro
finite-precision computation is so small, compared to the
uncertainty within the plant, such that this controller enc
tainty can simply be ignored. However, it has increasingly
been realized that this is not necessarily the case. Due to
the FWL effect, a casual controllerimplementation may de-

grade the designed closed-loop performance or even desta-

bilize the designed stable closed-loop system, if the con-
trollerimplementation structure is not carefully chos€éhe
FWL effect has become more critical with the growing pop-
ularity of robust controller design methods which focugsol
on dealing with large plant uncertainty [1]. It is well known
that a control law can be implemented with different realiza
tions and different realizations possess different degoée
“robustness” to FWL errors. This property can be utilized

to design “optimal” controller realizations [2],[3].

Many previous studies have focused on finding optimal
controller realizations using fixed-point arithmetic [#19].
However, FWL closed-loop stability measures in all these
previous works only consider the fractional part of fixed-
point format. Maximizing these measures, while minimiz-
ing the bits required for the fractional part, may actually
increase the bits required for the integer part of fixed-poin
format [7],[8]. Arguably, a better approach would be to con-
sider some measure which is linked to the total bit length
required. There has been little work studying explicitly
the closed-loop stability issue of FWL floating-point digi-
tal controller implementations. An exception is the work
[11], in which a weighted closed-loop eigenvalue sengitivi
index was defined for floating-point digital controller real
izations. This FWL measure, however, only considers the
mantissa part of floating-point arithmetic, under an assump
tion that the exponent bits are unlimited. The main con-
tribution of this paper is to derive a new FWL closed-loop
stability measure that explicitly considers both the nesati
and exponent parts of floating-point arithmetic.

2 Floating-Point Representation

Any real number: € R can be represented uniquely by:
x=(—1)" xw x 2° 1)

wheres € {0, 1} is for the sign ofz, w € [0.5, 1) is the
mantissa oft, e € Z is the exponent of, and Z denotes
the set of integers. Whenis stored in a digital computer

of finite 8 bits in a floating-point format, the bits consist
of three parts: one bit fos, 3,, bits forw andg. bits for

e. Obviously,p = 1+ 8, + B.. The set of all the possi-
ble floating-point numbers that can be presented by the bit
lengthg is given by

Bw
FE{(-1* (0.5 + ) b2 ()

i=1

>x2€:s€{0,1},



(2)

wheree ande represent the lower and upper limits of the
exponent, respectively, amo— e = 26 — 1.

biE{O,l},QEZ,QS(iSé}U{O}

Denote the set of integees < e < € as Zj,, 5. When

no underflow or overflow occurs, that is, the exponent of
z is within Z, 7, the floating-point quantization operator
Q: R — F can be defined as

sgn(xz)2(e=Fu=1) [ 20Bu=etD|z| 4 0.5], = #0
z=0
3)
where the exponent= |log, ||| +1 and the floor function
|z| denotes the largest integer less than or equal tdhe

quantization error is defined as |z—Q(x)]. It can easily
be shown that the quantization error is bounded by
e < |x|27(6w+1) . (4)
Thus, whenz is implemented in floating-point format of
B mantissa bits, assuming no underflow or overflow, it is
perturbed to
Qx) =x(1+0), [o] <2 FetD) (5)
It can be seen that the perturbation resulting from FWL

floating-point arithmetic is multiplicative, unlike the did
tive perturbation resulting from FWL fixed-point arithneti

3 Problem Statement

Consider the discrete-time closed-loop control systems; co
sisting of a linear time invariant planP(z) and a dig-
ital controller C'(z). P(z) is assumed to be strictly
proper with a state-space descripti@dop, Bp, Cp), where
Ap € R™*m Bp € R™* andCp € R7*™. Let
(Ac,Be,Ce,D¢) be a state-space realization 61 z),
with Ac € R™", Bg € R"™4, Co € R*™ and
Do € R4, The realizations of the controller are not
unique. In fact, if(A2, B2, C2, DY) is a realization of
C(z), all the realizations of’(z) form a realization set

A _
Sc 2 {(Ac,Be,Co,De) - Ac = T 1ALT,
Bc =T 'Bg,Cc =CeT,Dec =D¢}  (6)

where the transformation matriR € R"*™ is an arbitrary
non-singular matrix. Denote

The stability of the closed-loop control system depends on
the eigenvalues of the closed-loop transition matrix

Dc Cc¢

JAN
X=[z4]=| B, A,

(7)

A(X) = [ Ap +BpDcCp BpCc ]

BcCp Ao

0 Br 0 Cr 0
0]+{0 In}x{o In}
é1\/Io+1VI1X1VI2 (8)

where the zero matri@ has an appropriate dimension. All
the different realizationX in S¢ have exactly the same
set of closed-loop poles if they are implemented in infinite
precision. Since the closed-loop system has been designed
to be stable, all the eigenvaludgA (X)), 1 <i < m +n,

are within the unit disk. Define

:{OP

A
[1X | max = njl,%x|xj’k|

9)

A .
9(X) = min{|w; | : 2 # 0} (10)
X is implemented with a floating-point processor®fex-
ponent bits 3,, mantissa bits and one sign bit.

Firstly, in order to avoid underflow and overflow, both the
exponents of| X||max andg(X) must be withinZ,,  sup-
ported by thed, exponent bits. We define an exponent mea-
sure for the floating-point controller realizatidhas

4||X||max)

9(X) )

¥(X) £ log, <

The following proposition is obvious.

Proposition 1 X can be represented in the floating-point
format of 3. exponent bits without underflow or overflow,

if 28 > log, (—H);(H)‘&‘)“") + 2.

Let 3™i" pe the smallest exponent bit length that, when
used to implemenX, can avoid underflow and overflow.
It can be computed as

B = —| ~log,(|logy [IX|lmax] — [log, ¢(X)] +1)] .
(12)
The measure(X) provides an estimate gf*i" as
pmin 2
Bt = —[—logy v(X)] - (13)

Itis clear that3™in > gmin,

Secondly, when there is no underflow or overfl&nis per-

turbed toX + X o A due to finite3,,, whereX o A =
[%;,£0,.%] is the Hadamard product & and A = [6;,,].
Each element oA is bounded byt2~(5=+1) that s,

A [|max < 27B=FD (14)
With the perturbatiom\, \;(A (X)) is moved to\; (A (X +

X o A)). If an eigenvalue ofA (X + X o A) is outside

the open unit disk, the closed-loop system, designed to be
stable, becomes unstable with the finite-precision floating
point implemented. It is critical to know when the FWL
error will cause closed-loop instability. This means that w



would like to know the largest open “cube” in the pertur-
bation space, within which the closed-loop system remains

4 A Tractable FWL Stability Measure

stable. Based on this consideration, a mantissa measure forwhen the FWL errolA is small, from a first-order approx-

the floating-point realizatioX is defined as

2 inf{||Allmax : A(X + X 0 A) is unstablg .
(15)

From this definition, the following proposition is obvious.

po(X) =

Proposition2 A(X + X o A) is stable if ||Al|max <
fio(X).

Let 3" be the mantissa bit length such thak, > gmin,
A(X + X o A) is stable for the floating-point implemented
X with 3, mantissa bits and\ (X + X o A) is unstable
for the floating-point implementeX with 37" — 1 man-
tissa bits. Except through simulatio#*™ is generally un-
known. The mantissa measyrg(X) provides an estimate
of g™ as

amin
w0

£ _llog, po(X)] — 1. (16)

Bmin
w

Define the minimum total bit length required in floating
point implementation as

Bmin é B;nzn + B;nln +1.

Clearly, a floating-point implementeX with a bit length

# > ™" can guarantee no underflow, no overflow and
closed-loop stability. Combining the measurdX) and

o (X) results in the following true FWL closed-loop sta-
bility measure for the floating-point realizatida

mln

It can be seen th

(17)

po(X) = 1o (X) /+(X). (18)
An estimate of3™" is given bypy(X) as
sain £ — |logy po(X)] +1. (19)

It is clear thath”i” > A™in_ The following proposition
summarizes the usefulness @f(X) as a measure for the
FWL characteristics oX.

Proposition 3 A floating-point implemente&X with a bit
length 5 can guarantee no underflow, no overflow and
closed-loop stability, i2°—" > 1/py(X).

An optimal controller realization can in theory be found by
maximizing po(X), leading to the following optimal con-
troller realization problem

A
Utrue = Hax po(X).

nax (20)

However, the difficulty is that computing the valueief{ X)

is an unsolved open problem. In the next section, we will
seek an alternative measure that not only can quantify FWL
characteristics oK but also is computationally tractable.

imation,Vi € {1,---,m +n}
. I+n q+n
I\ (A(X+XoA))|—[X:(A(X))| ~ > Z Sk
j=1 k=1 ]]” A=0
(21)
For the derivative matr>LA [gp’!] define
I\l A I\l
= (22)
aA sum ]’Ji} 65].7]9
Then . .
[Ai(A(X +X 0 A))| — [N (A(X))]
O|\i]
< ||A|lmax || =——— 23
< N8l G2 | (23)
This leads to the following mantissa measureXor
A . 1—Xi(AX))|
X) = — 24
1 (X) ie{lfp"l,l'r}z-&-n} |_ (24)
oA A=0llsum

Obviously, if [|A|lmax < p1(X), then | N;(A(X + X o
A))| < 1 which means that the closed-loop remains stable
underA. In other words, for a giveX, the closed-loop can
tolerate those FWL perturbatiods whose norm4{ A ||max

are less tham, (X). The largem, (X) is, the larger FWL
errors the closed-loop system can tolerate. Similar to,(16)
from the mantissa measuge (X), an estimate oB™" is
given as

Aamin
wl

£ ~[logy (X)) — 1. (25)
The assumption of smad is usually valid in floating-point
implementation. Generally speaking, there is no rigorous
relationship between, (X) andy, (X), butu; (X) may be
viewed as a lower bound ¢fy (X), since there are “stable
perturbation cubes” larger thaA : ||A||max < 1 (X)}
while there is no “stable perturbation cube” larger than
{A : [|Almax < p0(X)}[8],[9]. Hence, in most cases, itis
reasonable to take that (X) < j(X) andfmin > gmin,
More importantly, unlike the measure (X), the value of

w1 (X) can be computed explicitly. It is easy to see that

O\l _ O]

= X.
DA |p o OX °

(26)

Let p; be a right eigenvector ok (X) corresponding to the
eigenvalue\; andy; be the related reciprocal left eigenvec-
tor. The following lemma is due to [5].

Lemmal Let A(X)

diagonalizable. Then
O\
0X

where the superscriptdenotes the conjugate operation and
T the transpose operator.

= My + M; XM, given in (8) be

Ml yz P; MT

(27)



The following proposition shows that, giver’g the value
of uy (X) can easily be calculated. The proof of this propo-
sition is straightforward.

Proposition 4 Let A(X) be diagonalizable. Then

Al (1 = Al

mX) = TMT Ry pTIMT) o X

sum

Replacinguq (X) with pq(X) in (18) leads to a computa-
tionally tractable FWL closed-loop stability measure

pr(X) £ (X)/7(X) .

From the above measure, an estimatg™®f” is given as

(29)

3min £ _|logy p1 (X)] + 1. (30)

It is useful to compare the proposed measure with the pre-
vious results, especially the most recent one given by [11].
For a complex-valued matri¥ = [y, x|, define the Frobe-
nius norm

1/2

A
N4
ik

(31)

Under an assumption that the exponent bits are unlimited,
the computationally tractable weighted closed-loop eigen
value sensitivity index addressed in [11] is given by

m+n

TX)E Y ali(X) (32)

whereq; are non-negative weighting scalars ahdX) are
single-eigenvalue sensitivities defined by
i |I”

A .
Ti(X) = |IX][|3 X

(33)

F
The thinking behind the above definition is as follows. From
a first-order approximation, it can easily be shown that

O\
X|p

(34)
Therefore, for those multiplicative perturbations bouwhde
by || Al|max, @ smallY;(X) will limit the resulting change
of the corresponding eigenvalue within a small range.

IAi(A(X+X0A))=Ai(A(X))] < [[Allmax]IX]|r

The first observation is that (X) considers both the man-
tissa and exponent of floating-point arithmetic and is there
fore able to handle all the aspects of underflow, overflow and
closed-loop stability, whilél' (X) only considers the man-
tissa part and is thus “incomplete”. Secondly(X) deals
with the sensitivity of\; while p; (X) (1 (X)) considers the

the sensitivity ofl)\;|. It is well-known that the stability of a
discrete-time linear time-invariant system depends only o
the module of its eigenvalues. AYX) includes the unnec-
essary eigenvalue arguments in consideration, it is giypera
conservative in comparison withy (X). Thirdly, p; (X)

O A; i i i
usesH o X . while T(X) uses||X|lr | 7% |5 in

checking the change of an eigenvalue. It is easy to see that

i (A(X + X 0 A))] = |Xi(A(X))]

9|\
o
0X

O\
0X

< A lmax Xl <[[Allmax] X[l

sum F
3

]

Obviously,H

X
IX[lr || 3% ]| does on the change of the corresponding
eigenvalue module due to the multiplicative perturbations
This again implies thap;(X) is less conservative than

T (X) in estimating the robustness of closed-loop stability
with respect to controller perturbations. The fourth obser
vation is thatp; (X) provides an estimate gf™i®, gmin in

(30), while YT (X) cannot provide information on bit length

to the designer. One reason is that the measi(X) con-
sists of two components, witta; (X) addressing the stabil-

ity margin and eigenvalue sensitivity linked to the maraiss
bits, andv(X) considering the exponent bits, while(X)

only focuses on the eigenvalue sensitivity partially lidke
to the mantissa part. The other reason is that, over all the
closed-loop eigenvalueg, (X) considers the “worst” one
while T (X) considers a “weighted average”.

o XH gives a more accurate limit than
sum

5 Optimization Procedure

As differentrealizationX have different values of the FWL
closed-loop stability measurg (X), it is of practical im-
portance to find an “optimal” realizatioX, that maxi-
mizesp, (X). The controllerimplemented with this optimal
realizationX, ¢ needs a minimum bitlength and has a max-
imum tolerance to the FWL error. This optimal controller
realization problem is formally defined as

v 2 max p(X).

XeSe (36)

Assume that a controller has been designed using some
standard controller design method. This controller, detot

as
A [DO?

Co

, 37

is used as the initial realization in the above optimization
problem. Letpy; be a right eigenvector angl; the related
reciprocal left eigenvector oA (X;) corresponding to the
eigenvalue\;. The definition ofS¢ in (6) means that

xo-[§ 2[5 3]

I, 0

X 0 T!

X(T) = [



wheredet(T) # 0. It can then be shown that

I, O

0 T] (39)

A0 = [ &) |

which implies that

1, 0 (I,, O
pi = [ 0 Tl} Poi, Yi=| TT} Yoi- (40)
Hence
* * I 0 ] * *
M{Re[Ai Y PZT]MT = [01 TT MTReP‘i YOin;]Mg
I, 0 1a[L 0], [, o7
X[o TT}_[O TT](}’{O p-r| =TT

(41)
with ®; = M7 Re[\[y;;pe;]M1. Define the following
cost function:

IT(T) © X(T)llgym
Al (1 = |Ad])

>

T .
H(T) i€{1rn-l-1,rnlm+n}<

x log,

4||X<T>||max>1 )

9(X(T))
Then the optimal controller realization problem (36) can be
posed as the following optimization problem:
max f(T).

TE RM™ Xn
det T#0

(43)

v =

Efficient numerical optimization methods exist for solving
for this optimization problem to provide an optimal trans-
formation matrixT,p,. With Top¢, the optimal realization
Xopt Can readily be computed.

6 A numerical Example

The example taken from [2] was used to illustrate the
proposed design procedure for obtaining optimal FWL
floating-point controller realizations and to compare ithwi

the method givenin [11]. The discrete-time plant was given

by

3.7156e + 0 —5.4143¢ + 0
1 0
Arp 0 1
0 0
3.6525¢ + 0 —9.6420e — 1
0 0
0 0 ’
1 0
Bpr = [1 0 0 0]",
Cp [1.1160e — 6  4.3000e — 8

1.0880e — 6 1.4000e — 8] .

The initial realization of the digital controller was givewg

2.6743¢ +0 —5.7446e + 0
A0 _ | 28769 —1 —2.7446e — 2
¢ —3.3773e -1  9.8699%¢ — 1
~-8.3021e —2 —3.1988¢ — 3
2.510le +0 —9.1782¢ — 1
—6.9444¢ — 1 —8.9358¢ — 3
—-3.2925e — 1 —4.2367e—3 |’
9.1906e — 1 —1.0415¢ — 3
BY = [1.0959¢+6 6.3827e+5
3.0262¢ +5 7.4392e+4]"
C% = [1.8180e—1 —2.8313e—1

5.0006e —2 6.1722e —2], D% =0.

Based on the proposed FWL closed-loop stability measure,
the optimization problem (43) was formed and solved for
using the MATLAB routinefminsearch.mto obtain an opti-
mal transformation matrix

7.7275e +3 —1.0904e + 2
T | 6.9729¢+3  2.1370e + 3
opt T 1 §.2844e+ 3 3.9092¢ + 3
5.5879% + 3  5.2862¢ + 3
—2.1292e + 2 9.8042¢ + 1
4.4988¢ +1 2.1812¢ + 2
2.9303¢ +2  2.9240e + 2
5.5027¢ + 2 3.4367e + 2

An “optimal” controller realization problem was given in
[11] based on the weighted closed-loop eigenvalue sensitiv
ity index (32). We will use the index “s”, rather then “opt”,
to denote the solution of this “optimal” realization profle
For this example, the transformation matrix obtained using
the MATLAB routinefminsearch.mgiven in [11] is

8.1477e + 3 0
T. — 7.0104e +3 2.2671e+3
= 6.1991e +3 3.9989% + 3
5.676le +3 5.2680e + 3
0 0
0 0
1.1558e + 2 0

3.5814e+2 1.5299e+1

It is obvious that the true minimum exponent bit length
Bmir for a realizationX can directly be obtained by ex-
amining the elements aX. The true minimum mantissa
bit length 3" however can only be obtained through sim-
ulation. That is, starting from a very larggk,, reduceg,,

by one bit and check the closed-loop stability. The pro-
cess is repeated until there appears closed-loop insyabili
at By = Bwu. Thenpm™™ = B, + 1. Table 1 sum-
marizes the various measures, the corresponding estimated
minimum bit lengths and the true minimum bit lengths for
the three controller realizatior®,, X andX,p, respec-
tively. It can be seen that the floating-point implementatio



of X, needs at least 26 bits (20 mantissa bits and 5 exponent
bits) while the implementation &, needs at least 13 bits

(8 mantissa bits and 4 exponent bits). The reduction in the
bit length required is 13 (12-bit reduction for the mantissa
part and 1-bit reduction for the exponent part). Comparing
Xopt With X, it can be seen thaX,,, needs one bit less

in the exponent part and one bit less in the mantissa part to
maintain the closed-loop stability.

7 Conclusions

The closed-loop stability issue of finite-precision realiz
tions has been investigated for digital controller imple-
mented in floating-point arithmetic. A new computationally
tractable FWL closed-loop stability measure has been de-
rived for floating-point controller realizations. Unlikbe
existing methods, which only consider the mantissa part of
floating-point scheme, the proposed measure takes into ac-
count both the exponent and mantissa parts of floating-point
format. It has been shown that this new measure yields a
more accurate estimate for the FWL robustness of closed-
loop stability. Based on this FWL closed-loop stability mea
sure, the optimal controller realization problem has been
formulated, which can easily be solved for using standard
numerical optimization algorithms. A numerical example

Table 1. Various measures, corresponding estimated minimum
bit lengths and true minimum bit lengths for three con-
troller realizationsX o, Xs andXpt.

Realization Xo X5 Xopt
1 2.6644e-9 4.7588e-6 9.5931e-6
gmin 30 19 18
141 8.5182e-8 8.7907e-5 1.5229e-4
gmin 23 13 12
y 3.1971e+1 1.8473e+1 1.5875e+1
pmin 5 5 4
B 26 15 13
g 20 9 8
Brmin 5 5 4

[5] G. Li, “On the structure of digital controllers with
finite word length consideration]JEEE Trans. Automatic
Control, Vol.43, No.5, pp.689—693, 1998.

[6] J.F. Whidborne, J. Wu and R.S.H. Istepanian, “Finite
word length stability issues in dnframework,”Int. J. Con-

trol, Vol.73, No.2, pp.166-176, 2000.

[71 S.Chen, R.S.H. Istepanian, J. Wu and J. Chu, “Com-
parative study on optimizing closed-loop stability bounds
of finite-precision controller structures with shift andtde

has demonstrated that the proposed design procedure yieldsoperators " Systems and Control Letters, Vol.40, No.3

computationally efficient controller realizations suigafor
FWL float-point implementation in real-time applications.
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