Optimal Floating-Point Realizations of Finite-Precision Digital Controllers

J. Wu[†], S. Chen[‡], J.F. Whidborne[§] and J. Chu[†]

- [†] National Key Laboratory of Industrial Control Technology Zhejiang University, Hangzhou, 310027, P. R. China
- [‡] Department of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, U.K.
- § Department of Mechanical Engineering King's College London, Strand, London WC2R 2LS, U.K.

Presented at 41st IEEE CDC, December 10-13, 2002 Las Vegas, Nevada, USA

Support of U.K. Royal Society is gratefully acknowledged

Electronics and Computer Science	University of Southampton	1
Communication Group		S Chen

- Floating-point processor of bit length β = 1 + β_w + β_e represents x ∈ R: one bit for sign, β_w bits for mantissa, and β_e bits for exponent of x.
- Given β_e bits, the lower and upper limits of exponents are \underline{e} and \overline{e} , with $\overline{e} \underline{e} = 2^{\beta_e} 1$. Denote the set of integers $\underline{e} \leq e \leq \overline{e}$ as $\mathcal{Z}_{[\underline{e}, \overline{e}]}$.
- If the exponent of x, $e = \lfloor \log_2 |x| \rfloor + 1$, is within $\mathcal{Z}_{[\underline{e}, \overline{e}]}$, there is no underflow or overflow. In such a case, x is perturbed to

$$\mathcal{Q}(x) = x(1+\delta), \ |\delta| < 2^{-(\beta_w+1)}$$

The perturbation is multiplicative, unlike the additive perturbation resulting from fixed-point arithmetic.

+ β_e determines the dynamic range, and β_w the precision of representation.

S Chen

Motivations and Background

Finite precision controller implementation can seriously influence closed-loop performance.

- Two types of finite word length errors: roundoff errors in arithmetic operations controller signal errors, and controller coefficient representation errors controller parameter errors. This work is concerned with the latter, which has critical influence on closed-loop stability.
- Two strategies: direct and indirect. This work adopts an indirect approach.
- Most works deal with fix-point implementation. This work is for floating-point implemented controllers.
- A main contribution of this work is dealing with not only precision but also dynamic range of a numerical representation scheme.

Communication Group

Communication Group

S Chen

Problem Definition

- Plant: $P(z) \sim (\mathbf{A}_P, \mathbf{B}_P, \mathbf{C}_P)$; $\mathbf{A}_P \in \mathcal{R}^{m \times m}$, $\mathbf{B}_P \in \mathcal{R}^{m \times l}$, $\mathbf{C}_P \in \mathcal{R}^{q \times m}$.
- Controller: $C(z) \sim (\mathbf{A}_C, \mathbf{B}_C, \mathbf{C}_C, \mathbf{D}_C)$; $\mathbf{A}_C \in \mathcal{R}^{n \times n}$, $\mathbf{B}_C \in \mathcal{R}^{n \times q}$, $\mathbf{C}_C \in \mathcal{R}^{l \times n}$, $\mathbf{D}_C \in \mathcal{R}^{l \times q}$.

Denote an initially designed controller realization as ${\bf X}_0$ and a generic realization ${\bf X}$. Let $\overline{{\bf A}}({\bf X})$ be the closed-loop transition matrix with ${\bf X}$.

• Controller realization set

Electronics and

$$\mathcal{S}_C \stackrel{ riangle}{=} \left\{ \mathbf{X} : \mathbf{A}_C = \mathbf{T}^{-1} \mathbf{A}_C^0 \mathbf{T}, \mathbf{B}_C = \mathbf{T}^{-1} \mathbf{B}_C^0, \mathbf{C}_C = \mathbf{C}_C^0 \mathbf{T}, \mathbf{D}_C = \mathbf{D}_C^0
ight\}$$

where $\mathbf{T} \in \mathcal{R}^{n imes n}$ is an arbitrary non-singular matrix

• All $\mathbf{X} \in \mathcal{S}_C$ are equivalent in infinite precision implementation: an identical set of closed-loop eigenvalues $\lambda_i(\overline{\mathbf{A}}(\mathbf{X}))$, $1 \leq i \leq m+n$, which are all within the unit disk.

of Southampton

Dynamic Range Measure

• An dynamic range (exponent) measure for floating-point realization X:

$$\gamma(\mathbf{X}) \stackrel{ riangle}{=} \log_2\left(rac{4\|\mathbf{X}\|_{\max}}{g(\mathbf{X})}
ight)$$

where $\|\mathbf{X}\|_{\max} \stackrel{\triangle}{=} \max_{j,k} |x_{j,k}|$ and $g(\mathbf{X}) \stackrel{\triangle}{=} \min_{j,k} \{|x_{j,k}| : x_{j,k} \neq 0\}.$

- X can be represented in floating-point format of β_e exponent bits without underflow or overflow, if $2^{\beta_e} \geq \gamma(\mathbf{X})$.
- Let β_e^{min} be the smallest exponent bit length for X without underflow and overflow. Then, $\beta_e^{min} = -\lfloor -\log_2(\lfloor \log_2 \|\mathbf{X}\|_{\max} \rfloor \lfloor \log_2 g(\mathbf{X}) \rfloor + 1) \rfloor$.
- $\gamma(\mathbf{X})$ provides an estimate of β_e^{min} as:

Communication Group

Electronics and Computer Science

7

5

• A tractable precision (mantissa) measure is:

$$\mu_1(\mathbf{X}) \stackrel{\triangle}{=} \min_{i \in \{1, \cdots, m+n\}} \frac{1 - |\lambda_i(\overline{\mathbf{A}}(\mathbf{X}))|}{\left\|\frac{\partial |\lambda_i|}{\partial \mathbf{\Delta}}\right|_{\mathbf{\Delta} = \mathbf{0}}} \Big\|_{\text{sum}}$$

where $\left\|\frac{\partial|\lambda_i|}{\partial \mathbf{\Delta}}\right\|_{\mathrm{sum}} \stackrel{\Delta}{=} \sum_{j,k} \left|\frac{\partial|\lambda_i|}{\partial \delta_{j,k}}\right|.$

- Under some mild conditions, $|\lambda_i(\overline{\mathbf{A}}(\mathbf{X}+\mathbf{X}\circ\mathbf{\Delta}))| < 1$ if $\|\mathbf{\Delta}\|_{\max} < \mu_1(\mathbf{X})$.
- Let β_w^{min} be the smallest mantissa bit length that guarantees closed-loop stability for floating-point implemented \mathbf{X} .
- $\mu_1(\mathbf{X})$ provides an estimate of β_w^{min} as: $\hat{\beta}_{w1}^{min} \stackrel{\triangle}{=} -\lfloor \log_2 \mu_1(\mathbf{X}) \rfloor 1$.

- Even without underflow or overflow, due to finite β_w , $\mathbf{X} \Rightarrow \mathbf{X} + \mathbf{X} \circ \mathbf{\Delta}$, with perturbation matrix $\mathbf{\Delta}$ satisfying $\|\mathbf{\Delta}\|_{\max} < 2^{-(\beta_w+1)}$.
- With Δ , $\lambda_i(\overline{\mathbf{A}}(\mathbf{X})) \Rightarrow \lambda_i(\overline{\mathbf{A}}(\mathbf{X} + \mathbf{X} \circ \Delta))$: Will any of which become outside the unit disk? Or how robust closed-loop stability is to Δ ?
- It is critical to know how large Δ will cause closed-loop instability for realization X. Or we would like to know the largest open hypercube in perturbation space, within which closed-loop system remains stable.
- The size of this open hypercube is defined by

$$\mu_0(\mathbf{X}) \stackrel{\triangle}{=} \inf\{\|\mathbf{\Delta}\|_{\max} : \overline{\mathbf{A}}(\mathbf{X} + \mathbf{X} \circ \mathbf{\Delta}) \text{ is unstable}\}$$

However, we do not know how to calculate $\mu_0(\mathbf{X})$ given \mathbf{X} .

Electronics and Computer Science Science Science 6 Communication Group S Chen

FWL Closed-Loop Stability Measure

• Goodness of X can be measured by a large value of $\mu_1(X)$ and a small value of $\gamma(X) \Rightarrow FWL$ closed-loop stability measure:

$$\rho_1(\mathbf{X}) \stackrel{\triangle}{=} \mu_1(\mathbf{X}) / \gamma(\mathbf{X})$$

• Define the minimum total bit length required in floating point implementation: $\beta^{min} = \beta_e^{min} + \beta_w^{min} + 1$. $\rho_1(\mathbf{X})$ provides an estimate of β^{min} as:

$$\hat{\beta}_1^{min} \stackrel{\triangle}{=} -\lfloor \log_2 \rho_1(\mathbf{X}) \rfloor + 1$$

- $\rho_1(\mathbf{X})$ takes into account both the dynamic range and precision considerations.
- Given a controller realization ${f X}$, the value of $ho_1({f X})$ can be computed.

8

Optimal Realization Problem

• An optimal controller realization problem is defined as

$$v \stackrel{ riangle}{=} \max_{\mathbf{X} \in \mathcal{S}_C}
ho_1(\mathbf{X})$$

• With respect to a given initial realization \mathbf{X}_0 , $\mathbf{X} = \mathbf{X}(\mathbf{T})$. By defining

$$f(\mathbf{T}) \stackrel{ riangle}{=}
ho_1(\mathbf{X}(\mathbf{T}))$$

the optimal realization is posed as the optimization problem:

$$v = \max_{\substack{\mathbf{T} \in \mathcal{R}^{n \times n} \\ \det \mathbf{T} \neq 0}} f(\mathbf{T})$$

- With an optimal transformation matrix ${\bf T}_{opt},$ the optimal realization ${\bf X}_{opt}$ can readily be computed.

Example One

Example from (Gevers and Li 1993): m = 4, n = 4 and l = q = 1 with an initially design controller \mathbf{X}_0 .

Realization	\mathbf{X}_0	\mathbf{X}_{s}	$\mathbf{X}_{\mathrm{opt}}$
$ ho_1$	2.6644e-9	4.7588e-6	9.5931e-6
\hat{eta}_1^{min}	30	19	18
μ_1	8.5182e-8	8.7907e-5	1.5229e-4
\hat{eta}_{w1}^{min}	23	13	12
γ	3.1971e+1	1.8473e+1	$1.5875e{+1}$
\hat{eta}_e^{min}	5	5	4
β^{min}	26	15	13
eta_w^{min}	20	9	8
β_e^{min}	5	5	4

• MATLAB optimization routine *fminsearch.m* is used to solve the optimization problem numerically.

Design Experiments

The resulting optimal controller realization is denoted as $\mathbf{X}_{\mathrm{opt}}$.

• Compare with an existing work (Whidborne and Gu 2002, IFAC World Congress), which minimizes a weighted closed-loop eigenvalue sensitivity index.

This is the only existing work we can find that deals with FWL closed-loop stability of floating-point implemented controller.

Note that this is effectively a precision measure only.

The resulting "optimal" controller realization is denoted as $\mathbf{X}_{\mathrm{s}}.$

Example Two

Example from (Whidborne *et al.* 2001, IEEE Trans. AC, Vol.46): m = 2, n = 3 and l = q = 1 with an initially design controller X_0 .

Realization	\mathbf{X}_0	\mathbf{X}_{s}	$\mathbf{X}_{ ext{opt}}$
$ ho_1$	2.6767e-11	3.1047e-6	5.8446e-6
\hat{eta}_1^{min}	37	20	19
μ_1	2.8122e-10	7.6679e-5	8.2771e-5
\hat{eta}_{w1}^{min}	31	13	13
γ	$1.0506e{+1}$	2.4697e+1	$1.4162e{+1}$
\hat{eta}_e^{min}	4	5	4
eta^{min}	30	15	12
β_w^{min}	25	9	7
β_e^{min}	4	5	4

S Chen

13

Conclusions

- A new computationally tractable FWL closed-loop stability measure has been derived for floating-point controller realizations, which takes into account both the exponent and mantissa of floating-point representation.
- This new measure yields a more accurate estimate for the FWL robustness of closed-loop stability for given controller realization.
- Based on this FWL closed-loop stability measure, the optimal controller realization problem has been formulated, which can be solved for using standard numerical optimization algorithms.

