Communication Group S Chen Communication Group S Chen

Motivations and Background
Optimal Floating-Point Realizations of Finite-Precision

Digital Controllers Finite precision controller implementation can seriously influence closed-loop
performance.
J.Wut S. Chent, J.F. Whidborne® and J. Chut e Two types of finite word length errors: roundoff errors in arithmetic
operations — controller signal errors, and controller coefficient
T National Key Laboratory of Industrial Control Technology representation errors — controller parameter errors. This work is concerned
Zhejiang University, Hangzhou, 310027, P. R. China with the latter, which has critical influence on closed-loop stability.
¥ Department of Electronics and Computer Science
University of Southampton, Southampton SO17 1BJ, U.K. e Two strategies: direct and indirect. This work adopts an indirect
§  Department of Mechanical Engineering approach.

King's College London, Strand, London WC2R 2LS, U.K.
e Most works deal with fix-point implementation. This work is for floating-
Presented at 41st IEEE CDC, December 10-13, 2002 point implemented controllers.

Las Vegas, Nevada, USA
e A main contribution of this work is dealing with not only precision but

o also dynamic range of a numerical representation scheme.
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Floating-Point Representation Problem Definition

. ~ . mxm mxl gxm
e Floating-point processor of bit length 5 = 1+ 3, + B represents = € R * Plant: P(z) ~ (Ap,Bp,Cp); Ap €R Bp e R™Y, CpeR '

one bit for sign, B, bits for mantissa, and (3. bits for exponent of x. e Controller: C(z) ~ (Ac,Be,Co,Do): A € R™¥", By € R™1,

. . - . Cc € RX™ De e RIX4.
e Given 3, bits, the lower and upper limits of exponents are e and €, with © ©

€ — e = 2% — 1. Denote the set of integers ¢ < e < € as 2, 7- Denote an initiaIIy_designed controller realization as Xy and a generic
realization X. Let A(X) be the closed-loop transition matrix with X.

o If the exponent of z, e = [logy|z|| + 1, is within Z|. g, there is no

underflow or overflow. In such a case, z is perturbed to e Controller realization set

A _ _
Q) = z(1+9), [o] <2 (FutD Sc={X:Ac=T 'ALT,Bo = T "B, Co = C¢T,De = D¢}

. o . . ) where T € R™*™ is an arbitrary non-singular matrix
The perturbation is multiplicative, unlike the additive perturbation

resulting from fixed-point arithmetic. e All X € S¢ are equivalent in infinite precision implementation: an

_ _ . _ identical set of closed-loop eigenvalues \;(A(X)), 1 <i < m + n, which
e [3. determines the dynamic range, and j3,, the precision of representation. are all within the unit disk.
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Dynamic Range Measure

e An dynamic range (exponent) measure for floating-point realization X:

7(X) £ log <%>

A A
where || X||max = n;e]lcx |z x| and g(X) = I?llcn{|xjk| cxjp # 0}
i) b

e X can be represented in floating-point format of 3. exponent bits without
underflow or overflow, if 25 > ~(X).

o Let 3™ be the smallest exponent bit length for X without underflow and
overflow. Then, 7" = —| —log,(|logs || X||max] — [logs g(X) | + 1)].

e (X)) provides an estimate of 3™ as:
Amin &
pe" = == logyv(X)]
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Tractable Precision Measure

e A tractable precision (mantissa) measure is:

1 - Ni(A(X))]
‘M

1>

X .
ul( ) iE{l,r'l"l'{Ifln-i-n}
O0A

A=0!lsum

2

Ol o[
where H A Z 25
sum 5.k Js

e Under some mild conditions, |A;(A(X+Xo0A))| < 1if || Allmax < p1(X).

e Let 37" be the smallest mantissa bit length that guarantees closed-loop
stability for floating-point implemented X.

e 11(X) provides an estimate of S™i" as: fmin 2 —|logy p1(X)] — 1.
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Finite Precision Stability Consideration

e Even without underflow or overflow, due to finite 8,, X = X + X 0 A,
with perturbation matrix A satisfying || A [lpmax < 2~ PetD),

e With A, N (A(X)) = M(A(X + X o A)): Will any of which become
outside the unit disk? Or how robust closed-loop stability is to A?

e |t is critical to know how large A will cause closed-loop instability for
realization X. Or we would like to know the largest open hypercube in
perturbation space, within which closed-loop system remains stable.

e The size of this open hypercube is defined by

110(X) 2 inf{|| Al max : A(X + X 0 A) is unstable}

However, we do not know how to calculate o(X) given X.
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FWL Closed-Loop Stability Measure

e Goodness of X can be measured by a large value of 11(X) and a small
value of v(X) = FWL closed-loop stability measure:

p1(X) £ i (X)/4(X)

e Define the minimum total bit length required in floating point
implementation: ™™ = grvn 4 g 1. py(X) provides an estimate
of ™" as:

Amin &
B = —logy p1(X)] + 1

e p1(X) takes into account both the dynamic range and precision
considerations.

e Given a controller realization X, the value of p;(X) can be computed.
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Optimal Realization Problem
e An optimal controller realization problem is defined as

A
= X
v = max py(X)

e With respect to a given initial realization Xy, X = X(T). By defining
A
f(T) = p(X(T))
the optimal realization is posed as the optimization problem:

v= max f(T)
TeRNXN
det T#0

e With an optimal transformation matrix Ty, the optimal realization Xp¢
can readily be computed.
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Example One

Example from (Gevers and Li 1993): m =4, n =4 and | = ¢ = 1 with an
initially design controller Xg.

Realization Xo X Xopt

1 2.6644e-9 4.7588e-6  9.5031e-6
jmin 30 19 18

(i1 85182e-8  8.7907e-5  1.5220e-4
gmin 23 13 12

e 31971e+1 1.8473e+1 1.5875e+1
pmin 5 5 4
pmn 26 15 13
Brmin 20 9 8
pmin 5 5 4
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Design Experiments

e MATLAB optimization routine fminsearch.m is used to solve the
optimization problem numerically.

The resulting optimal controller realization is denoted as Xp.
e Compare with an existing work (Whidborne and Gu 2002, IFAC World

Congress), which minimizes a weighted closed-loop eigenvalue sensitivity
index.

This is the only existing work we can find that deals with FWL closed-loop
stability of floating-point implemented controller.

Note that this is effectively a precision measure only.

The resulting “optimal” controller realization is denoted as X.
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Example Two

Example from (Whidborne et al. 2001, IEEE Trans. AC, Vol.46): m = 2,
n =3 and [ = ¢ = 1 with an initially design controller Xj.

Realization Xo X Xopt

1 2.6767e-11 3.1047e-6  5.8446e-6
jnin 37 20 19

(i1 28122e-10 7.6679e-5 8.2771e-5
gmin 31 13 13

v 1.0506e+1 2.4697e+1 1.4162e+1
pmin 4 5 4
pmin 30 15 12
Bmin 25 9 7
pmin 4 5 4
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Conclusions

e A new computationally tractable FWL closed-loop stability measure has
been derived for floating-point controller realizations, which takes into
account both the exponent and mantissa of floating-point representation.

e This new measure yields a more accurate estimate for the FWL robustness
of closed-loop stability for given controller realization.

e Based on this FWL closed-loop stability measure, the optimal controller
realization problem has been formulated, which can be solved for using
standard numerical optimization algorithms.
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