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Abstract— A tunable radial basis function (RBF) network
model is proposed for nonlinear system identification using
particle swarm optimisation (PSO). At each stage of orthogonal
forward regression (OFR) model construction, PSO optimises
one RBF unit’s centre vector and diagonal covariance matrix by
minimising the leave-one-out (LOO) mean square error (MSE).
This PSO aided OFR automatically determines how many
tunable RBF nodes are sufficient for modelling. Compared
with the-state-of-the-art local regularisation assisted orthogonal
least squares algorithm based on the LOO MSE criterion
for constructing fixed-node RBF network models, the PSO
tuned RBF model construction produces more parsimonious
RBF models with better generalisation performance and is
computationally more efficient.

I. I NTRODUCTION

The radial basis function (RBF) network is a popular neu-
ral network architecture for nonlinear system identification
[1]. In this application, the parameters of a RBF network,
including nodes’ centre vectors and variances or covariance
matrices as well as connecting weights, can be estimated
based on nonlinear optimisation using gradient-descent al-
gorithms [2], [3], the expectation-maximisation algorithm
[4], [5] or the population-based evolutionary algorithms
[6], [7]. However, these nonlinear estimation methods are
computationally expensive and, moreover, the RBF model
structure or the number of RBF nodes has to be determined
via other means, typically based on costly cross validation.
Clustering algorithms can alternatively be applied to find the
RBF centre vectors as well as the associated basis function
variances [8]– [10]. The remaining RBF weights can then
be determined using the simple linear least squares (LS)
estimate. However, the number of the clusters again has to
be determined via other means, such as cross validation.

A most popular approach for identifying RBF models is to
formulate the problem as a linear regression by considering
the training input data points as candidate RBF centres
and to employ a common variance for every RBF node. A
parsimonious RBF network can then be identified efficiently
using the orthogonal least squares (OLS) algorithm [11]–
[14]. Similarly, the support vector machine (SVM) and other
sparse kernel modelling methods [15]– [17] also place the
kernel centres to the training input data points and adopt a
common kernel variance for every kernel. A sparse kernel
model is then sought. Since the common variance in this
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fixed-node RBF model is not provided by the learning algo-
rithms, it must be determined via cross validation. For the
kernel methods, such as the SVM, two more hyperparameters
must also be specified via cross validation. Our previous
results [14] show that the local regularisation assisted OLS
(LROLS) algorithm based on the leave-one-out (LOO) cross
validation compares favourably with other kernel methods,
in terms of model sparsity and generalisation performance as
well as efficiency of model construction. This LROLS-LOO
algorithm [14] offers a state-of-the-art construction method
for fixed-node RBF models.

This paper considers the tunable RBF model, where each
RBF node has a tunable centre vector and an adjustable
diagonal covariance matrix. We do not attempt to optimise
all the RBF parameters together, as it is a too large and
complex nonlinear optimisation task. Instead, we adopt an
orthogonal forward regression (OFR) to optimise RBF units
one by one based on the LOO mean square error (MSE).
Specifically, we use particle swarm optimisation (PSO) [18],
[19] to optimise one RBF node’s centre vector and covariance
matrix at each stage of the OFR. PSO is a population
based stochastic optimisation technique [18], [19] inspired
by social behaviour of bird flocking or fish schools. It is
becoming popular due to its simplicity in implementation,
ability to quickly converge to a reasonably good solution and
its robustness against local minima. The method has been ap-
plied to many optimisation problems successfully [7], [19]–
[25]. We demonstrate that the proposed PSO aided OFR
algorithm for tunable-node RBF models not only produces
sparser models and better generalisation performance but
also offers computational advantages in model construction,
compared with the state-of-the-art LROLS-LOO construction
algorithm for fixed-node RBF models [14].

II. I DENTIFICATION USING TUNABLE RBF MODELS

Consider the class of discrete-time nonlinear systems that
can be represented by the following NARX structure

yk = fs(yk−1, · · · , yk−my
, uk−1, · · · , uk−mu

) + ek

= fs(xk) + ek (1)

whereuk andyk are the system input and output variables,
respectively,mu and my are the known lags foruk and
yk, respectively,ek is a zero-mean uncorrelated observation
noise,fs(•) denotes the unknown system mapping, and

xk = [x1,k x2,k · · ·xm,k]T

= [yk−1 · · · yk−my
uk−1 · · ·uk−mu

]T (2)



denotes the system input vector with the known dimension
m = my + mu. The NARX system (1) is a special case of
the following generic NARMAX system [26]

yk = fs(yk−1, · · · , yk−my
, uk−1, · · · , uk−mu

,

ek−1, · · · , ek−me
) + ek. (3)

The techniques developed for the NARX structure can be
extended to the general NARMAX system [11], [26], [27].

Given the training data setDK = {xk, yk}
K
k=1, the task

is to identify the system (1) using the RBF network model

ŷ
(M)
k = f̂

(M)
RBF (xk) =

M
∑

i=1

θipi(xk) = pT
M (k)θM (4)

where f̂
(M)
RBF (•) denotes the mapping of theM -term RBF

model,M is the number of RBF units,θM = [θ1 θ2 · · · θM ]T

is the RBF weight vector, and

pT
M (k) = [p1(xk) p2(xk) · · · pM (xk)] (5)

is the response vector of theM RBF nodes to the inputxk.
We consider the general RBF regressor of the form

pi(x) = ϕ

(

√

(x − µi)
T Σ−1

i (x − µi)

)

, (6)

whereµi andΣi = diag{σ2
i,1, σ

2
i,2, · · · , σi,m} are the centre

vector and diagonal covariance matrix of theith RBF node,
respectively,ϕ(•) is the chosen RBF basis function. In this
study, the Gaussian basis function is employed.

Let us define the modelling error at thekth training data
point (xk, yk) as

ε
(M)
k = yk − ŷ

(M)
k . (7)

Then the regression model (4) over the training setDK can
be written in the matrix form

y = PMθM + ε(M), (8)

where y = [y1 y2 · · · yK ]T is the desired output vector,
ε(M) = [ε

(M)
1 ε

(M)
2 · · · ε

(M)
K ]T is the modelling error vector

of the M -term model, and the regression matrixPM =
[p1 p2 · · ·pM ] with the ith regressor given by

pi = [pi(x1) pi(x2) · · · pi(xK)]T , (9)

where1 ≤ i ≤ M . Note thatpk is the kth column ofPM

while pT
M (k) denotes thekth row of PM .

A. Orthogonal Decomposition

Let an orthogonal decomposition ofPM be PM =
WMAM , whereWM = [w1 w2 · · ·wM ] with the orthog-
onal columns that satisfywT

i wl = 0 for l 6= i and

AM =













1 α1,2 · · · α1,M

0 1
. . .

...
...

. ..
. . . αM−1,M

0 · · · 0 1













. (10)

The regression model (8) can alternatively be presented as

y = WMgM + ε(M), (11)

wheregM = [g1 g2 · · · gM ]T satisfies the triangular system
AMθM = gM . Since the space spanned by the original
model basespi(•), 1 ≤ i ≤ M , is identical to the space
spanned by the orthogonal model bases, the RBF model
output can equivalently be expressed as

ŷ
(M)
k = wT

M (k)gM , (12)

wherewT
M (k) = [w1(k) w2(k) · · ·wM (k)] is thekth row of

WM . Orthogonal decomposition can be carried out using
the Gram-Schmidt procedure [11]. Using the model (11)
instead of the original one (8) facilitates an efficient OFR
model construction. In particular, calculation of the LOO
MSE becomes very fast, making it possible to construct
the model by directly optimising the model generalisation
capability rather than minimising the training MSE [14].

B. OFR Based on LOO Cross Validation

The evaluation of model generalisation capability is di-
rectly based on the concept of cross validation [28], and a
commonly used cross validation is the LOO cross validation
with its associated LOO test MSE [29]. Consider the OFR
modelling process that has produced then-node RBF model.
Denote the constructedn columns of regressors asWn =
[w1 w2 · · ·wn], the kth model output of thisn-node RBF
model identified using the entire training data setDK as

ŷ
(n)
k =

n
∑

i=1

giwi(k), (13)

and the correspondingkth modelling error asε(n)
k = yk −

ŷ
(n)
k . If we “remove” thekth data point from the training set

DK and use the remainingK − 1 data pointsDK \ (xk, yk)
to identify then-node RBF model instead, the “test” error
of the resulting model can be calculated on the data point
(xk, yk) not used in training. This LOO modelling error,
denoted asε(n,−k)

k , is given by [29]

ε
(n,−k)
k = ε

(n)
k /η

(n)
k , (14)

whereη
(n)
k is referred to as the LOO error weighting [29].

The LOO MSE for then-node RBF model is defined as

Jn =
1

K

K
∑

k=1

(

ε
(n,−k)
k

)2

. (15)

The LOO MSEJn is a measure of the model generalisation
capability [28], [29]. For the model (11),Jn can be computed
very efficiently becauseε(n)

k and η
(n)
k can be calculated

recursively using [14]

ε
(n)
k = yk −

n
∑

i=1

giwi(k) = ε
(n−1)
k − gnwn(k) (16)

and

η
(n)
k = 1 −

n
∑

i=1

w2
i (k)

wT
i wi + λ

= η
(n−1)
k −

w2
n(k)

wT
nwn + λ

, (17)



respectively, whereλ ≥ 0 is a small regularisation parameter
[14]. The regularisation parameter can simply be set toλ = 0
(no regularisation) or a very small value (10−6).

We can use an OFR procedure based on this LOO MSE to
construct the RBF nodes one by one. At thenth stage of the
construction, thenth RBF node is determined by minimising
Jn with respect toµn andΣn

min
µ

n
,Σn

Jn(µn,Σn). (18)

In the next section, we will detail how to use PSO to perform
this optimisation. The LOO MSEJn is locally convex with
respect to the model sizen [14]. Thus, there exists an
“optimal” number of RBF nodesM such that: forn ≤ M
Jn decreases as the model sizen increases while

JM ≤ JM+1. (19)

Therefore, this OFR construction process is automatically
terminated when the condition (19) is met, yielding a very
small model set containing onlyM RBF nodes. After con-
structing theM -node RBF model using this OFR procedure,
we may apply the LROLS-LOO algorithm of [14] to auto-
matically update individual regularisation parameter foreach
RBF weight which may further reduce the model size. This
refinement with the LROLS-LOO algorithm requires a very
small amount of computation since the regression matrixPM

is completely specified with only a few columns.

III. PARTICLE SWARM OPTIMISATION A IDED OFR

The task at thenth stage of the OFR for constructing a
tunable RBF network is to solve the optimisation problem
(18). This optimisation problem is non-convex with respect
to µn and Σn, and we adopt PSO [18], [19] to determine
µn andΣn. Our study demonstrates that PSO is particularly
suited for the optimisation task (18).

A. Particle Swarm Optimisation

In a PSO algorithm [19], a group ofS particles that
represent potential solutions are initialised over the search
space randomly. Each particle has a fitness value associated
with it, based on the related cost function of the optimisation
problem, and this fitness value is evaluated at each iteration.
The best position,pb, visited by each particle provides the
particle the so-calledcognitive information, while the best
position visited so far among the entire group,gb, offers
the social information. The pbs and gb are updated at
each iteration. Each particle has its own velocity to direct
its “flying”, which relies on its previous speed as well as
its cognitive and social information. In each iteration, the
velocity and the position of the particle are updated based
on the following equations

v
[l+1]
i = ξ ∗ v

[l]
i + rand() ∗ c1 ∗ (pb

[l]
i − u

[l]
i )

+rand() ∗ c2 ∗ (gb[l] − u
[l]
i ), (20)

u
[l+1]
i = u

[l]
i + v

[l+1]
i , (21)

l iteration index,1 ≤ l ≤ L, L is the maximum
number of iterations

i particle index,1 ≤ i ≤ S, S is the particle size

v
[l]
i velocity of ith particle atlth iteration. Thejth

elements ofv[l]
i are in range[−Vjmax

, Vjmax
]

ξ inertia weight
cj the acceleration coefficients,j = 1, 2
rand() uniform random number between 0 and 1

u
[l]
i position of ith particle atlth iteration. Thejth

elements ofu[l]
i are in range[Ujmin

, Ujmax
]

pb
[l]
i best position that theith particle has visited upto

lth iteration
gb[l] best position that all the particles have visited

upto lth iteration

It is reported in [20] that using a time varying acceleration
coefficient (TVAC) enhances the performance of PSO. The
reason is that at the initial stages, a large cognitive compo-
nent and a small social component help particles to wander
around the search space and to avoid local minima. In the
later stages, a small cognitive component and a large social
component help particles to converge quickly to a global
minimum. We adopt this TVAC mechanism in whichc1 for
the cognitive component is reduced from 2.5 to 0.5 andc2

for the social component varies from 0.5 to 2.5 during the
iterative procedure according to

c1 = 2.5 −
2.0 ∗ l

1.0 ∗ L
and c2 = 0.5 +

2.0 ∗ l

1.0 ∗ L
, (22)

respectively. In our experiment, we have found out that using
a random inertia weight,ξ = rand(), achieves better perfor-
mance than usingξ = 0 or constantξ. If the velocity in (20)
approaches zero, it is reinitialised randomly to proportional
to the maximum velocity

v
[l+1]
i |j = ±rand() ∗ γ ∗ Vjmax

, (23)

wherev
[l+1]
i |j denotes thejth element ofv[l+1]

i andγ = 0.1
is a constant.

B. PSO Aided OFR for Tunable RBF Model

The procedure of using the PSO aided OFR to determine
the nth RBF node is now summarised. Letu be the vector
that containsµn andΣn. The dimension ofu is thus2m.
The search space is specified by
{

Ujmin
= min{xj,k, 1 ≤ k ≤ K},

Ujmax
= max{xj,k, 1 ≤ k ≤ K},

1 ≤ j ≤ m, (24)

Ujmin
= σ2

min, Ujmax
= σ2

max, 1 + m ≤ j ≤ 2m. (25)

The velocity bounds are defined by

Vjmax
= 0.5 ∗ (Ujmax

− Ujmin
), 1 ≤ j ≤ 2m. (26)

Give the following initial conditions

ε
(0)
k = yk andη

(0)
k = 1, 1 ≤ k ≤ K,

J0 = 1
N

yT y = 1
N

∑K

k=1 y2
k.

}

(27)

Specify the number of iterationsL and the particle sizeS.



Initialisation . Randomly generate the particlesu
[0]
i , 1 ≤ i ≤

S, in the search space defined by (24) and (25). Set the
initial velocitiesv

[0]
i = 02m, 1 ≤ i ≤ S, where02m denotes

the zero vector of dimension2m. Initialise Jn(gb[0]) and
Jn(pb

[0]
i ), 1 ≤ i ≤ S, to a value larger thanJ0.

Iteration loop . For (l = 0; l ≤ L; l + +) {
Orthogonalisation and cost function evaluation.

1) For 1 ≤ i ≤ S, generatepi)
n from u

[l]
i , the candidates

for the nth model column, according to (9), and
orthogonalise them according to [11]

α
i)
j,n = wT

j pi)
n /wT

j wj , 1 ≤ j < n, (28)

wi)
n = pi)

n −
n−1
∑

j=1

α
i)
j,nwj , (29)

gi)
n =

(

wi)
n

)T

y/

(

(

wi)
n

)T

wi)
n + λ

)

. (30)

2) For 1 ≤ i ≤ S, calculate the LOO cost for eachu[l]
i

ε
(n)
k (i) = ε

(n−1)
k − wi)

n (k)gi)
n , 1 ≤ k ≤ K, (31)

η
(n)
k (i) = η

(n−1)
k −

(

w
i)
n (k)

)2

(

w
i)
n

)T

w
i)
n + λ

, 1 ≤ k ≤ K,

(32)

J i)
n =

1

K

K
∑

k=1

(

ε
(n)
k (i)

η
(n)
k (i)

)2

, (33)

wherew
i)
n (k) is thekth element ofwi)

n .

Update cognitive and social information.

1) For (i = 1; i ≤ S; i++)
If (J i)

n < Jn(pb
[l]
i ))

Jn(pb
[l]
i ) = J

i)
n ;

pb
[l]
i = u

[l]
i ;

End if;
End for;

2) Find
i∗ = arg min

1≤i≤S
Jn(pb

[l]
i ).

If (Jn(pb
[l]
i∗) < Jn(gb[l]))

Jn(gb[l]) = Jn(pb
[l]
i∗);

gb[l] = pb
[l]
i∗ ;

End if;

Update velocities and positions of particles

1) For (i = 1; i ≤ S; i++)
v

[l+1]
i = rand() ∗ v

[l]
i + rand() ∗ c1 ∗ (pb

[l]
i − u

[l]
i )

+rand() ∗ c2 ∗ (gb[l] − u
[l]
i );

For (j = 1; j ≤ 2m; j++)
If (v[l+1]

i |j == 0)
If (rand() < 0.5)

v
[l+1]
i |j = rand() ∗ γ ∗ Vjmax

;
Else

v
[l+1]
i |j = −rand() ∗ γ ∗ Vjmax

;
End if;

End if;
If (v[l+1]

i |j > Vjmax
)

v
[l+1]
i |j = Vjmax

;
Else if (v[l+1]

i |j < −Vjmax
)

vl+1
i |j = −Vjmax

;
End if;

End for;
End for;

2) For (i = 1; i ≤ S; i++)
u

[l+1]
i = u

[l]
i + v

[l+1]
i ;

For (j = 1; j ≤ 2m; j++)
If (u[l+1]

i |j > Ujmax
)

u
[l+1]
i |j = Ujmax

;
Else if (u[l+1]

i |j < Ujmin
)

u
[l+1]
i |j = Ujmin

;
End if

End for;
End for;

} End of iteration loop
This yields the solutionu = gb[L], i.e.µn andΣn of thenth
RBF node, thenth model columnpn, the orthogonalisation
coefficientsαj,n, 1 ≤ j < n, the corresponding orthogonal
model columnwn, and the weightgn, as well as then-
term modelling errorsε(n)

k and the associated LOO error
weightingsη

(n)
k for 1 ≤ k ≤ K.

C. Computational Complexity Comparison

We compare the computational complexity of the proposed
PSO aided OFR algorithm for tunable RBF models with that
of the LROLS-LOO algorithm for fixed-node RBF models
[14]. The LROLS-LOO algorithm involves a few iterations.
The first iteration works on theK × K full regression
matrix and selects a subset ofM

′

RBF nodes, where
M

′

≪ K. The computational complexity of the algorithm is
dominated by this first iteration, and the complexity of the
rest iterations is negligible. For the LROLS-LOO algorithm,
it can be verify that the computational complexity of one
model column orthogonalisation and the associated LOO cost
function evaluation isO(K). Thus, we can characterise the
complexity of the algorithm by the required number of the
LOO cost function evaluations and associated model column
orthogonalisations, which is given by

CLROLS−LOO ≈

M
′

+1
∑

i=1

(K − (i − 1)) ≈
(

M
′

+ 1
)

× K,

(34)
where the second approximation arrives becauseM

′

≪ K.
Since for the PSO aided OFR algorithm, the computational

requirement of one model column orthogonalisation and
the associated LOO cost function evaluation is alsoO(K),
we can also characterise the computational requirements of
the algorithm by the number of the LOO cost function
evaluations and associated model column orthogonalisations.



TABLE I

COMPARISON OF THE TWOGAUSSIAN RBF NETWORK MODELS OBTAINED BY THELROLS-LOO AND PSO-OFRALGORITHMS.

Algorithm RBF type Model size Training MSE Test MSE complexity
LROLS-LOO fixed 30 0.001400 0.002532 15500 ×O(500)

PSO-OFR tunable 20 0.001461 0.002463 4200 ×O(500)

This number is given as

CPSO−OFR ≈ (M + 1) × S × L, (35)

whereM is the constructed model size,S the particle size
andL the number of iterations. Since the model sizeM is
usually much smaller than the model sizeM

′

obtained by
the LROLS-LOO algorithm, we always haveCPSO−OFR <
CLROLS−LOO wheneverK ≥ S × L. Thus, the PSO aided
OFR algorithm for constructing tunable-node RBF models
has clearly computational advantages over the LROLS-LOO
algorithm for selecting fixed-node RBF models when the
size of the training data set is large. Note that the PSO
algorithm is very efficient. Our experimental results have
shown that typicallyL = 20 and S = 10 to 20 are often
sufficient. Furthermore, the complexity of (35) is the true
complexity of the PSO aided OFR algorithm, while the
complexity of (34) is the complexity of the LROLS-LOO
algorithm given a RBF variance. Since the RBF variance
is not provided by the LROLS-LOO algorithm, it must
be determined based cross validation. Taking this fact into
account, computational advantages of the proposed PSO
aided OFR algorithm becomes even more significant.

(a)

(b)
Fig. 1. Liquid level data: (a) system inputuk, and (b) system outputyk.

IV. L IQUID LEVEL DATA SET MODELLING

The data set was collected from a nonlinear liquid level
system, which consisted of a DC water pump feeding a
conical flask which in turn fed a square tank. The system
input uk was the voltage to the pump motor and the system
outputyk was the water level in the conical flask [30]. Fig. 1
shows the 1000 data points of the data set used in this
experiment. From the data set, 1000 data points{xk, yk}
were constructed withxk given by

xk = [yk−1 yk−2 yk−3 uk−1 uk−2 uk−3 uk−4]
T . (36)

The first 500 pairs of the data were used for training and the
remaining 500 pairs for testing the constructed model.

For the fixed-node RBF model with every training input
data used as a candadate RBF centre vector, an appropriate
RBF variance was found to beσ2 = 2.0 via a grid search
based cross validation using the LROLS-LOO algorithm
[14]. With σ2 = 2.0, the LROLS-LOO algorithm auto-
matically selected a model set ofM

′

= 30 nodes from
the candidate set ofK = 500 potential nodes. The results
obtained by the LROLS-LOO algorithm are given in Table I,
where the complexity was computed asCLROLS−LOO =
31 × 500 = 15500 for the givenσ2 = 2.0.

For constructing the tunable-node RBF model, we set
the particle size toS = 10 and the number of iterations
to L = 20. The PSO aided OFR algorithm automatically
constructed a model set ofM = 20 nodes. The results
produced by the the PSO aided OFR are also listed in Table I,
where the complexity was given byCPSO−OFR = 21 ×
10 × 20 = 4200. Fig. 2 shows the model prediction̂yk and
the prediction errorεk = yk − ŷk produced by the 20-node
RBF model constructed using the PSO aided OFR algorithm.
For this example, the PSO aided OFR algorithm has clear
advantages over the benchmark LROLS-LOO algorithm, in
terms of model size and generalisation capability as well as
complexity of model construction.

V. CONCLUSIONS

In this contribution we have proposed a novel PSO aided
OFR algorithm to construct tunable-node RBF network mod-
els for nonlinear system identification. Unlike the standard
fixed-node RBF model where the RBF centre vectors are
placed at the training input data points and a common RBF
variance is used for every RBF node, the proposed algorithm
optimises one RBF node’s centre vector and diagonal covari-
ance matrix by minimising the LOO MSE at each stage of
the OFR. The model construction procedure automatically
determines how many tunable nodes are sufficient, and PSO
ensures that this model construction procedure is compu-
tationally very efficient. Using the best existing algorithm
for fixed-node RBF models, the LROLS-LOO algorithm, as



(a) (b)
Fig. 2. Modelling of the liquid level data by the 20-node RBF network constructed using the PSO aided OFR: (a) model prediction ŷk superimposed on
system outputyk, and (b) model prediction errorεk = yk − ŷk.

the benchmark, it has been shown that the proposed PSO
aided OFR algorithm for constructing tunable-node RBF
models offers clear advantages over the benchmark LROLS-
LOO algorithm for constructing fixed-node RBF models, in
terms of more parsimonious model and better generalisation
performance as well as more efficient model construction.
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