A Tunable Radial Basis Function Model for Nonlinear System
|dentification Using Particle Swarm Optimisation

S. Chen, X. Hong, B.L. Luk and C.J. Harris

Abstract— A tunable radial basis function (RBF) network fixed-node RBF model is not provided by the learning algo-
model is proposed for nonlinear system identification using rithms, it must be determined via cross validation. For the
particle swarm optimisation (PSO). At each stage of orthogonal | arnel methods. such as the SVM. two more hyperparameters
forward regression (OFR) model construction, PSO optimises t al b ' ified Vi ' lidati o .
one RBF unit’s centre vector and diagonal covariance matrix by must also be specined via Cross Va'_a 'c,m' ur. previous
m|n|m|s|ng the leave-one-out (LOO) mean square error (MSE) TESU|IS [14] ShOW that the |Oca| Fegu|al'lsatlon aSSISte(SOL
This PSO aided OFR automatically determines how many (LROLS) algorithm based on the leave-one-out (LOO) cross
tunable RBF nodes are sufficient for modelling. Compared validation compares favourably with other kernel methods,
with the-state-of-the-art local regularisation assisted orthc_ngn_al in terms of model sparsity and generalisation performasce a
least squares algorithm based on the LOO MSE criterion I ffici f del tructi This LROLS-LOO
for constructing fixed-node RBF network models, the PSO we "?‘S erlciency or model construction. IS ' B
tuned RBF model construction produces more parsimonious algorithm [14] offers a state-of-the-art construction hoet
RBF models with better generalisation performance and is for fixed-node RBF models.
computationally more efficient. This paper considers the tunable RBF model, where each
RBF node has a tunable centre vector and an adjustable
diagonal covariance matrix. We do not attempt to optimise

all the RBF parameters together, as it is a too large and

: oo complex nonlinear optimisation task. Instead, we adopt an
[1]. In this application, the parameters of a RBF network

: . . ' “orthogonal forward regression (OFR) to optimise RBF units
including nodes’ centre vectors and variances or covaﬂan%%e by one based on the LOO mean square error (MSE)

I. INTRODUCTION

The radial basis function (RBF) network is a popular neu
ral network architecture for nonlinear system identificati

matrices as W?” as copngctmg we!ghts, can be estimat ecifically, we use particle swarm optimisation (PSO) [18]
bas_ed on nonlinear optlmlsatlo_n usmg_gradl_ent-desce_znt 9] to optimise one RBF node’s centre vector and covariance
gorithms [2], [3], the expectation-maximisation algorith matrix at each stage of the OFR. PSO is a population

[4]. [5] or the population-ba_sed evo!utiopary algorithmsoased stochastic optimisation technique [18], [19] irexpir
[6], [7]. However, these nonlinear estimation methods arg

ionall . q h q P/ social behaviour of bird flocking or fish schools. It is
computationally expensive and, moreover, the RBF mo %@coming popular due to its simplicity in implementation,

sFructure or the numper of RBF nodes has to be detgrmﬁn% ility to quickly converge to a reasonably good solutiod an
via oth_er means, typically based on costly cross Va“_dat'ori‘ts robustness against local minima. The method has been ap-
Clustering algorithms can alternatively be applied to finel t plied to many optimisation problems successfully [7], 9]
RBF centre vectors as well as the associated basis functigg] We demonstrate that the proposed PSO aided OFR

variances [8]_ [101' The rer_naining RBF weights can the gorithm for tunable-node RBF models not only produces
be determined using the simple linear least squares (Lg

i h ber of the cl in h arser models and better generalisation performance but
estimate. However, the number of the clusters again has fg, (ters computational advantages in model constmctio

be determined via other means, sugh as cross validati_on. compared with the state-of-the-art LROLS-LOO constructio
A most popular approach for identifying RBF models is toalgorithm for fixed-node RBF models [14]
formulate the problem as a linear regression by considering '

the training input data points as candidate RBF centres || | peNTIFICATION USING TUNABLE RBF MODELS

and to employ a common variance for every RBF node. A i ) ) )

parsimonious RBF network can then be identified efficiently Consider the class of dlscrete-tllme nonlinear systems that
using the orthogonal least squares (OLS) algorithm [11]6@n be represented by the following NARX structure

[14]. Similarly, the support vector machine (SVM) and other
sparse kernel modelling methods [15]- [17] also place the
kernel centres to the training input data points and adopt a = folxp) +ex @)

common kernel vanance_for every kernel. A sparse _kemﬁllhereuk andy; are the system input and output variables,
model is then sought. Since the common variance in thﬁspectivelym and m, are the known lags for;, and
1 u y .
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denotes the system input vector with the known dimensiohhe regression model (8) can alternatively be presented as

m = m, + m,. The NARX system (1) is a special case of M
the follgwing generic NARMAX system [26] y = Waugu +e, (11)
wheregy = [g1 g2 -+ gu]? satisfies the triangular system
Uk = fs(Uhmrs e Yoy et Uy s A0, = gy Since the space spanned by the original
€k—15" "> Ch—m,) T €k (3) model basew;(e), 1 < i < M, is identical to the space

. spanned by the orthogonal model bases, the RBF model
The techniques developed for the NARX structure can b Utput can equivalently be expressed as

extended to the general NARMAX system [11], [26], [27].
Given the training data seébx = {xx,yx} |, the task y,(cM) =wl(k)gum, (12)

is to identify the system (1) using the RBF network mocje'wherew]@(k) — [wi(k) wak) - - - was (k)] is the kth row of

) _ . W . Orthogonal decomposition can be carried out using
Uy, o (%) Z&pz x;) =Py (k)0 (4)  the Gram-Schmidt procedure [11]. Using the model (11)
instead of the original one (8) facilitates an efficient OFR
model construction. In particular, calculation of the LOO
MSE becomes very fast, making it possible to construct
the model by directly optimising the model generalisation
capability rather than minimising the training MSE [14].

where fl%}?(o) denotes the mapping of th&/-term RBF
model, M is the number of RBF unit®,, = [01 02 - - 0x/]T
is the RBF weight vector, and

Pir (k) = [pr(x) p2(xi) - s (i) ) B. OFR Based on LOO Cross Validation

is the response vector of thd RBF nodes to the input;.. The evaluation of model generalisation capability is di-

We consider the general RBF regressor of the form rectly based on the concept of cross validation [28], and a
commonly used cross validation is the LOO cross validation

pi(x) = <\/(x — )T (x — M)) , (6) with its associated LOO test MSE [29]. Consider the OFR

modelling process that has produced theode RBF model.

wherep,; andX; = diag{c?,,02,,---,0;.,} are the centre Denote the constructed columns of regressors a4,

vector and diagonal covariance matrix of the RBF node, [W1 W2---wy], the kth model output of thisz:-node RBF

respectivelyp(e) is the chosen RBF basis function. In thismodel identlfled using the entire training data &t as
study, the Gaussian basis function is employed. n
Let us define the modelling error at tfi¢h training data g = > giwilk), (13)
point (xx,yr) as i
M) _ ” y(]\l). ) and the correspondingth modelling error a&é”) = yp —
k k 5™ If we “remove” thekth data point from the training set
Then the regression model (4) over the training Bgt can DK and use the remaininf — 1 data pointsDg \ (xx, yx)
be written in the matrix form to identify then-node RBF model instead, the “test” error
of the resulting model can be calculated on the data point

— M
y =Pubur + e, (8) (x4, y:) not used in training. This LOO modelling error,
n,—k) - .
wherey = [y yo- ~-yK%T is the desired output vector, denoted as,(c ), is given by [29]
@) = [ (M) JMNT g the modelling error vector k) _ () () (14)
of the M-term model, and the regression matiiX,, = k kR
[P1 P2 - - - pm]| with the ith regressor given by wheren,i”) is referred to as the LOO error weighting [29].

[ps(x1) pi(x2) (xx)]” The LOO MSE for then-node RBF model is defined as
Pi = |pi(X1) pi(X2) - pi(XK ,

1 (n,—k)
wherel < ¢ < M. Note thatp;, is the kth column of Py, In = K Z (% ) . (15)
while p1, (k) denotes thekth row of P,. k=1
The LOO MSEJ, is a measure of the model generalisation
A. Orthogonal Decomposition capability [28], [29]. For the model (11¥m can be computed
Let an orthogonal decomposition d?,; be P, = Vvery efficiently because,i”) and 77,(6” can be calculated

WAy, WhereWy, = [wy ws---wyy] With the orthog-  recursively using [14]
onal columns that satisfyw! w; = 0 for [ # i and ) n (1)
€, =Yk — Z giwi(k) = €, — gnwn (k) (16)

1 a1 -+ aum
A 0o 1 . : (10) and
M= . . . ’ n 2 2
: ’ QN —1,M 77]&") 1— w; (k) _ 7]("—1) _ wn(k) , (17)

0 - 0 1 —owlwi+ A" wIw, + A



respectively, wheré > 0 is a small regularisation parameter ! iteration index,1 <1< L, L is the maximum

[14]. The regularisation parameter can simply be setto0 number of iterations _ _ _
(no regularisation) or a very small valugo( ). i l particle index,1 <i < S, S is the particle size
We can use an OFR procedure based on this LOO MSE oy velocity of ith particle atith iteration. Thejth
construct the RBF nodes one by one. At ifth stage of the elements ofvy] are inrangg—V;, .., Vi ..l

construction, thexth RBF node is determined by minimising ¢ inertia weight
Jn, with respect tou,, and ¥, cj the acceleration coefficientg,= 1,2
) rand() uniform random number between 0 and 1
.um,%n T (o, ). (18) ul’ position ofith particle atlth iteration. Thejth
! elements oful” are in rangdU;, ., U, ]

In the next section, we will detail how to use PSO to perform b
this optimisation. The LOO MSH,, is locally convex with ¢
respect to the model size [14]. Thus, there exists an
“optimal” number of RBF nodes\/ such that: forn < M
J, decreases as the model sizéncreases while

best position that théh particle has visited upto
Ith iteration

gbl!  Dbest position that all the particles have visited
upto Ith iteration

It is reported in [20] that using a time varying acceleration
Iv < Jniga- (19)  coefficient (TVAC) enhances the performance of PSO. The

|rea:son is that at the initial stages, a large cognitive compo

Ther_efore, this OFR cons_tr_ucnon process 1S au_tomat|cal Nent and a small social component help particles to wander
terminated when the condition (19) is met, yielding a V€Y round the search space and to avoid local minima. In the

S{nallt_moijhr-.;ljzet c(;)ntsgllzng Odn|&|4 RBFtEpdgT:.RAfter C?jn' later stages, a small cognitive component and a large social
structing -node modetusing this proce uret:omponent help particles to converge quickly to a global

Wetmaﬁ/ app:]:ytthg dL.R.SLSI'LOOI qlgotr_lthm of [14t] t‘; al::o'minimum. We adopt this TVAC mechanism in whiek for
matically update individual reguiarisation parametereacn o cognitive component is reduced from 2.5 to 0.5 and

RB.F weight V.Vh'Ch may further reduce _the mode_l Siz€. Th'?or the social component varies from 0.5 to 2.5 during the
refinement with the LROLS-LOO algorithm requires a VerYiorative procedure according to

small amount of computation since the regression matyix

is completely specified with only a few columns. _or_ 20 *1 _ 2.0*1
cp =25 01 and ¢ =0.5+ L0+ (22)
I1l. PARTICLE SWARM OPTIMISATION AIDED OFR respectively. In our experiment, we have found out thatgisin

The task at theith stage of the OFR for constructing ad random inertia weight, = rand(), achieves better perfor-

tunable RBF network is to solve the optimisation problerrlin"’mce than using = 0 or constant. If the velocity in (20)

(18). This optimisation problem is non-convex with respec?pproaches zero, it is reinitialised randomly to propaxio

to pu,, and X,,, and we adopt PSO [18], [19] to determineto the maximum velocity
i, and3,,. Our study demonstrates that PSO is particularly vIFH | = drand() « v+ V;

i (23)
suited for the optimisation task (18).

max ?

wherev!' ™|, denotes thgth element ofv!'*! andy = 0.1
A. Particle Svarm Optimisation is a constant.

In a PSO algorithm [19], a group of particles that B. PSO Aided OFR for Tunable RBF Model

represent potential solutions are initialised over therddea The procedure of using the PSO aided OFR to determine

space randomly. Each particle has a fithess value associa{ﬁg nth RBE node is how summarised. Latbe the vector
with it, based on the related cost function of the optimgsati that contains, andX,,. The dimension ofu is thus2m

problem, and _t_his fitne;s_ value is evaluate_d at each itaﬂratio]-he search space is specified by
The best positionpb, visited by each particle provides the )
particle the so-callectognitive information, while the best Ujpin = min{z; , 1 <k < K}, -

e ; 1<j<m, (24)
position visited so far among the entire grough, offers Ujmax = max{z;x, 1 <k < K},
the social information. The pbs and gb are updated at ,
each iteration. Each particle has its own velocity to direct ~ 7™"
its “flying”, which relies on its previous speed as well asThe velocity bounds are defined by
its cognitive and social information. In each iteratione th

max

2
= Omin>

Ujpns = 02 1+m<j<2m. (25)

max max?

velocity and the position of the particle are updated based Vimax = 05% (Ujna = Ujin)y 1 < J < 2m. (26)
on the following equations Give the following initial conditions
vith = vt rand() « e+ (pb]! - uy) ep) =weandy) =1 1<k <K, )
+rand()  cq * (gb!!l — uy])7 (20) Jo=wy'y =% 2521 Yi-

u£l+1]

= ull 4yl (21)  Specify the number of iterations and the particle sizé.

7 I



Initialisation . Randomly generate the particlag.)], 1<i<

S, in the search space defined by (24) and (25). Set the

initial velocitieSVZ[.O] = 09,,, 1 <i < S, where0,,, denotes
the zero vector of dimensiodm. Initialise J,,(gb”) and
Jn(pbl™), 1 < < S, to a value larger thad,.

Iteration loop. For ( =0; I < L; I+ +) {
Orthogonalisation and cost function evaluation.

1) Fori<:< S, generatq;n from ul] the candidates
for the nth model column, accordlng to (9), and

orthogonalise them according to [11]
o)

O, = W; pn/w w;, 1<j<n, (28)
w,) =pi) - zﬁ WV (29)
o) = (wD) y/((wz‘z) wl4A). o)

2) Forl <i < S, calculate the LOO cost for eaali”

e (i) ="V —wd(k)g), 1<k <K, (31
(n) (n—1) _ (wi)(k))
nk()*nk ( ) ) alSkSKv
Wi + A
2 (32)
1) _ Z
i) = KZ( ) ) : (33)

wherew? (k) is the kth element ofw?,.
Update cognitive and social information.
1) For(z_l 1< S it++)
If (J2 < J,, (pb[l]))

J(pbll) = J1;
pb! = ol
End if;
End for;
2) Find

pb’).

% .
* = arg min J,
g1gigs n(Pb;

If (J(pb})) < Ju(gb!h))

gl = pbl’;
End if;

Update velocities and positions of particles
1) ForG=1;i<8S;i++)
VZ[lH] = rand() * vy] + rand() * ¢y * (pby] —u
+rand() x ¢y * (gb!) — uy]);
For (j =1; j < 2m; j++)
If (vI"|; == 0)
If (rand() < 0.5)
[1+1] |; = rand() v *V;
i
v,

End if:

[

~—

max !

;= —rand() *y*V;

max !

End if;

If (v [z+1]|j
ﬁ+11

Else if (v[l“]\]
VH—1 j= ez

Vimas)

max !

< ijax)

End for;

2) Forgz_l 1< S itt)

+1] [l] +v [l+1]
For(y—l J<2m J++)
If (u l+1]|] ]mmx)
[H— ]‘
Z Jl+ Jmax?
Else if @™, <U;,.)
I+1
W =T
End if
End for;
End for;

} End of iteration loop

This yields the solutiom = gb!“, i.e.u,, andX,, of thenth
RBF node, theith model columnp,,, the orthogonalisation
coefficientse; ,, 1 < j < n, the corresponding orthogonal
model columnw,,, and the weightg,, as well as then-
term modelling error$§€") and the associated LOO error
Weightingsn,(cn) for1 <k <K.

C. Computational Complexity Comparison

We compare the computational complexity of the proposed
PSO aided OFR algorithm for tunable RBF models with that
of the LROLS-LOO algorithm for fixed-node RBF models
[14]. The LROLS-LOO algorithm involves a few iterations.
The first iteration works on thed x K full regression
matrix and selects a subset dff’ RBF nodes, where
M’ < K. The computational complexity of the algorithm is
dominated by this first iteration, and the complexity of the
rest iterations is negligible. For the LROLS-LOO algorithm
it can be verify that the computational complexity of one
model column orthogonalisation and the associated LOO cost
function evaluation iSO(K). Thus, we can characterise the
complexity of the algorithm by the required number of the
LOO cost function evaluations and associated model column
orthogonalisations, which is given by

M 41
CrroLs-Loo ~ »_ (K —(i—1))~

i=1

(M +1) x K,

(34)

where the second approximation arrives becauSe< K.

Since for the PSO aided OFR algorithm, the computational
requirement of one model column orthogonalisation and
the associated LOO cost function evaluation is al¥dy),
we can also characterise the computational requirements of
the algorithm by the number of the LOO cost function
evaluations and associated model column orthogonalisatio



TABLE |
COMPARISON OF THE TWOGAUSSIAN RBF NETWORK MODELS OBTAINED BY THELROLS-LOOAND PSO-OFRALGORITHMS.

Algorithm RBF type  Model size  Training MSE  Test MSE complgxit
[ROLS-LOO fixed 30 0.001400 0.002532 15500 x O(500)
PSO-OFR tunable 20 0.001461 0.002463 4200 x O(500)
This number is given as IV. LiQuUID LEVEL DATA SET MODELLING
The data set was collected from a nonlinear liquid level
Cpso—orr ~ (M +1) x S x L, (35) system, which consisted of a DC water pump feeding a

conical flask which in turn fed a square tank. The system
input u; was the voltage to the pump motor and the system
outputy, was the water level in the conical flask [30]. Fig. 1
shows the 1000 data points of the data set used in this
experiment. From the data set, 1000 data points, yx }
were constructed witlk; given by

where M is the constructed model siz#, the particle size
and L the number of iterations. Since the model sideis
usually much smaller than the model sizé obtained by
the LROLS-LOO algorithm, we always havérso_orr <
CLroLs—L.oo WheneverK > S x L. Thus, the PSO aided
OFR algorithm for constructing tunable-node RBF models x, = (Y1 Yk—2 Yk—3 Up—1 Ug—2 Ug_3 uk_4]T. (36)

has clearly computational advantages over the LROLS-LOO

algorithm for selecting fixed-node RBF models when thd he first 500 pairs of the data were used for training and the
size of the training data set is large. Note that the PS¢gmaining 500 pairs for testing the constructed model.
algorithm is very efficient. Our experimental results have For the fixed-node RBF model with every training input
shown that typicallyL = 20 and S = 10 to 20 are often data used as a candadate RBF centre vector, an appropriate
sufficient. Furthermore, the complexity of (35) is the truéRBF variance was found to be® = 2.0 via a grid search
complexity of the PSO aided OFR algorithm, while theébased cross validation using the LROLS-LOO algorithm
complexity of (34) is the complexity of the LROLS-LOO [14]. With o® = 2.0, the LROLS-LOO algorithm auto-
algorithm given a RBF variance. Since the RBF variancBatically selected a model set éff = 30 nodes from

is not provided by the LROLS-LOO algorithm, it mustthe candidate set ok” = 500 potential nodes. The results

be determined based cross validation. Taking this fact in@Ptained by the LROLS-LOO algorithm are given in Table I,
account, computational advantages of the proposed Pgdere the complexity was computed @3roLs-rLoo =

aided OFR algorithm becomes even more significant. 31 x 500 = 15500 for the giveno? = 2.0.
For constructing the tunable-node RBF model, we set
] the particle size toS = 10 and the number of iterations
to L = 20. The PSO aided OFR algorithm automatically
05 ltl ‘ ‘| . ’ constructed a model set o/ = 20 nodes. The results
= : produced by the the PSO aided OFR are also listed in Table I,
g where the complexity was given b{pso_orr = 21 X
£ 0 '\W\M\ 10 x 20 = 4200. Fig. 2 shows the model predictig. and
I3 the prediction erroe;, = y, — g produced by the 20-node
@ 05 ‘ (s RBF model constructed using the PSO aided OFR algorithm.
I I V For this example, the PSO aided OFR algorithm has clear

advantages over the benchmark LROLS-LOO algorithm, in
0 200 400 600 800 1000 terms of model size and generalisation capability as well as
sample complexity of model construction.

(@ V. CONCLUSIONS

05 o g In this contribution we have proposed a novel PSO aided
. A/h M \M N Wnﬂm ﬂ OFR algorithm to construct tunable-node RBF network mod-
| '\

els for nonlinear system identification. Unlike the staaddar

—

fixed-node RBF model where the RBF centre vectors are
\ placed at the training input data points and a common RBF
’ l ' u variance is used for every RBF node, the proposed algorithm
1.5 optimises one RBF node’s centre vector and diagonal covari-
2 ance matrix by minimising the LOO MSE at each stage of
the OFR. The model construction procedure automatically
0 200 400 600 800 1000 determines how many tunable nodes are sufficient, and PSO
sample ensures that this model construction procedure is compu-

(b) tationally very efficient. Using the best existing algomith
Fig. 1. Liquid level data: (a) system inpuj,, and (b) system outpuf,.  for fixed-node RBF models, the LROLS-LOO algorithm, as

=
—

system output
=
—_T




Fig. 2.
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0 200 400 600
sample

(b)

800 1000

Modelling of the liquid level data by the 20-node RB&work constructed using the PSO aided OFR: (a) model predigi, superimposed on

the benchmark, it has been shown that the proposed P$B] V. Vapnik, The Nature of SQatistical Learning Theory. New York:
aided OFR algorithm for constructing tunable-node RBFE

models offers clear advantages over the benchmark LROLEEs ]
LOO algorithm for constructing fixed-node RBF models, in17]
terms of more parsimonious model and better generalisation
performance as well as more efficient model construction. ;g
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