Motivations 00000 Problem Formulation

Main Results

Numerical Example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Conclusions

On Separation Principle for a Class of Networked Control Systems

Dongxiao Wu¹, Jun Wu¹, Sheng Chen²

¹Institute of Cyber-Systems and Control Zhejiang University, China

²School of Electronics and Computer Science University of Southampton, U.K.

48th IEEE Conference on Decision and Control, 2009

Motivations 00000	Problem Formulation	Main Results	Numerical Example	Conclusions
Outline				

Motivations

- Networked Control Systems (NCSs)
- Our Novelties
- Problem Formulation
 - NCS Configuration
 - NCS Close-Loop Dynamics
- 3 Main Results
 - Separation Principle
 - Stabilisation Control

4 Numerical Example

- NCS Plant and Network
- Stabilisation Control Solution

5 Conclusions

Motivations •••••	Problem Formulation	Main Results	Numerical Example	Conclusions
Outline				

Motivations

- Networked Control Systems (NCSs)
- Our Novelties
- Problem Formulation
 - NCS Configuration
 - NCS Close-Loop Dynamics
- 3 Main Results
 - Separation Principle
 - Stabilisation Control
- Numerical Example
 - NCS Plant and Network
 - Stabilisation Control Solution
- Conclusions

Motivations 0000	Problem Formulation	Main Results	Numerical Example	Conclusions
Some Ba	sics			

An NCS is a control system in which a control loop is closed via a shared communication network.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

The advantages:

- Low installation cost.
- Reducing system wiring.
- Easy maintenance.

The basic problems:

- packet dropout.
- packet delay.
- Bandwidth constraint.

Motivations oooo	Problem Formulation	Main Results	Numerical Example	Conclusions
Some Bas	sics			

An NCS is a control system in which a control loop is closed via a shared communication network.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The advantages:

- Low installation cost.
- Reducing system wiring.
- Easy maintenance.

The basic problems:

- packet dropout.
- packet delay.
- Bandwidth constraint.

Motivations	Problem Formulation	Main Results	Numerical Example	Conclusions
Related V	Vorks			

Separation Principle was shown to hold for:

- Network is only located in sensor-to-controller (S/C) channel [7].
- Channels are modeled as Bernoulli process [5].
- Connections of S/C and controller-to-actuator (C/A) are on/off simultaneously [17].

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Motivations ○○○●○	Problem Formulation	Main Results	Numerical Example	Conclusions
Outline				

Motivations

- Networked Control Systems (NCSs)
- Our Novelties
- - NCS Configuration
 - NCS Close-Loop Dynamics
- - Separation Principle
 - Stabilisation Control
- Numerical Example
 - NCS Plant and Network
 - Stabilisation Control Solution

Motivations ○○○○●	Problem Formulation	Main Results	Numerical Example	Conclusions
Our Cor	ntributions			

Necessary & Sufficient conditions

- Separation principle for NCS
 - S/C: Markov chain
 - C/A: Markov chain
- Stabilisation control for NCS
 - S/C: Bernoulli process
 - C/A: Markov chain

Motivations 00000	Problem Formulation	Main Results	Numerical Example	Conclusions
Outline				

- Networked Control Systems (NCSs)
- Our Novelties
- 2 Problem Formulation
 - NCS Configuration
 - NCS Close-Loop Dynamics
- 3 Main Results
 - Separation Principle
 - Stabilisation Control
- Numerical Example
 - NCS Plant and Network
 - Stabilisation Control Solution
- Conclusions

Motivations 00000	Problem Formulation ○●○○○○	Main Results	Numerical Example	Conclusions

Networked Control System

Motivations 00000	Problem Formulation	Main Results	Numerical Example	Conclusions
Network A	Assumptions			

Packet dropouts indicators:

$$\begin{cases} \theta_{s}(k) \in \{0,1\}, & \text{S/C} \\ \theta_{a}(k) \in \{0,1\}, & \text{C/A} \end{cases}$$

Assumption 1:

 θ_s(k) and θ_a(k) are driven by independent Markov chains, with transition probability matrices [π_{t,r}] and [λ_{i,j}].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assumption 2:

- $\theta_a(k)$ is driven by a Markov chain.
- $\theta_s(k)$ is driven by a Bernoulli process, with Prob $(\theta_s(k) = 1) = \alpha$ and Prob $(\theta_s(k) = 0) = 1 - \alpha$.

Motivations	Problem Formulation 000●00	Main Results	Numerical Example	Conclusions
Plant & C	ontroller			

The plant
$$\hat{P}$$
:

$$\begin{cases}
\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) \\
\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k)
\end{cases}$$

• $\mathbf{x}(k)$: state, $\mathbf{u}(k)$: input, and $\mathbf{y}(k)$: output.

The controller \hat{K} :

$$\begin{cases} \hat{\mathbf{x}}(k+1) &= \mathbf{A}\hat{\mathbf{x}}(k) + \mathbf{B}\mathbf{u}(k) + \theta_s(k)\mathbf{L}(\mathbf{C}\hat{\mathbf{x}}(k) - \mathbf{y}(k)) \\ \mathbf{u}(k) &= \theta_a(k)\mathbf{K}\hat{\mathbf{x}}(k), \end{cases}$$

• K: state feedback gain, L: observer gain.

• $\theta_s(k) = 1$: standard observer law, $\theta_s(k) = 0$: imitation law.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations	Problem Formulation 000●00	Main Results	Numerical Example	Conclusions
Plant & C	ontroller			

$$\begin{cases} \mathbf{x}(k+1) &= \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) \\ \mathbf{y}(k) &= \mathbf{C}\mathbf{x}(k) \end{cases}$$

• $\mathbf{x}(k)$: state, $\mathbf{u}(k)$: input, and $\mathbf{y}(k)$: output.

The controller \hat{K} :

$$\begin{cases} \hat{\mathbf{x}}(k+1) &= \mathbf{A}\hat{\mathbf{x}}(k) + \mathbf{B}\mathbf{u}(k) + \theta_{s}(k)\mathbf{L}(\mathbf{C}\hat{\mathbf{x}}(k) - \mathbf{y}(k)) \\ \mathbf{u}(k) &= \theta_{a}(k)\mathbf{K}\hat{\mathbf{x}}(k), \end{cases}$$

• K: state feedback gain, L: observer gain.

• $\theta_s(k) = 1$: standard observer law, $\theta_s(k) = 0$: imitation law.

Motivations 00000	Problem Formulation ○○○○●○	Main Results	Numerical Example	Conclusions
Outline				

- Networked Control Systems (NCSs)
- Our Novelties
- Problem Formulation
 - NCS Configuration
 - NCS Close-Loop Dynamics
- 3 Main Results
 - Separation Principle
 - Stabilisation Control
- 4 Numerical Example
 - NCS Plant and Network
 - Stabilisation Control Solution
- Conclusions

The NCS $\hat{P}_{\mathcal{K}}$ is in the form of Markovian jump linear system:

$$\overline{\mathbf{x}}(k+1) = \overline{\mathbf{A}}_{\theta_{a}(k)\theta_{s}(k)}\overline{\mathbf{x}}(k), \ \forall k \in \mathbb{N},$$

- State of $\hat{P}_{\mathcal{K}}$: $\overline{\mathbf{x}}(k) \triangleq [\mathbf{x}^{\mathsf{T}}(k) \mathbf{e}^{\mathsf{T}}(k)]^{\mathsf{T}}$ with $\mathbf{e}(k) = \mathbf{x}(k) \hat{\mathbf{x}}(k)$.
- $\theta_a(k)\theta_s(k) \in \{00, 01, 10, 11\}$ with

$$\begin{split} \overline{A}_{00} &= \left[\begin{array}{cc} A & 0 \\ 0 & A \end{array} \right], \ \overline{A}_{01} &= \left[\begin{array}{cc} A & 0 \\ 0 & A + LC \end{array} \right], \\ \overline{A}_{10} &= \left[\begin{array}{cc} A + BK & -BK \\ 0 & A \end{array} \right], \overline{A}_{11} &= \left[\begin{array}{cc} A + BK & -BK \\ 0 & A + LC \end{array} \right] \end{split}$$

Motivations 00000	Problem Formulation	Main Results ●00000	Numerical Example	Conclusions
Outline				

- Networked Control Systems (NCSs)
- Our Novelties
- 2 Problem Formulation
 - NCS Configuration
 - NCS Close-Loop Dynamics
- 3 Main Results
 - Separation Principle
 - Stabilisation Control
- 4 Numerical Example
 - NCS Plant and Network
 - Stabilisation Control Solution

Conclusions

Motivations 00000	Problem Formulation	Main Results o●oooo	Numerical Example	Conclusions
Theorem	One			

The NCS \hat{P}_{K} under **Assumption 1** is stochastically stable if and only if the following two conditions hold.

• (i) there exist matrices $\mathbf{Q}_0 > 0$ and $\mathbf{Q}_1 > 0$ such that

$$\left\{ \begin{array}{l} \hat{\mathbf{A}}_{0}^{\mathsf{T}}(\pi_{0,0}\mathbf{Q}_{0}+\pi_{0,1}\mathbf{Q}_{1})\hat{\mathbf{A}}_{0}-\mathbf{Q}_{0}<0\\ \hat{\mathbf{A}}_{1}^{\mathsf{T}}(\pi_{1,0}\mathbf{Q}_{0}+\pi_{1,1}\mathbf{Q}_{1})\hat{\mathbf{A}}_{1}-\mathbf{Q}_{1}<0 \end{array} \right.$$

where $\hat{\textbf{A}}_0 = \textbf{A}, \; \hat{\textbf{A}}_1 = \textbf{A} + \textbf{LC};$

• (ii) there exist matrices $\mathbf{P}_0 > 0$ and $\mathbf{P}_1 > 0$ such that

$$\left\{ \begin{array}{l} \boldsymbol{\Phi}_0^{\mathsf{T}}(\lambda_{0,0}\boldsymbol{\mathsf{P}}_0+\lambda_{0,1}\boldsymbol{\mathsf{P}}_1)\boldsymbol{\Phi}_0-\boldsymbol{\mathsf{P}}_0<0\\ \boldsymbol{\Phi}_1^{\mathsf{T}}(\lambda_{1,0}\boldsymbol{\mathsf{P}}_0+\lambda_{1,1}\boldsymbol{\mathsf{P}}_1)\boldsymbol{\Phi}_1-\boldsymbol{\mathsf{P}}_1<0 \end{array} \right.$$

where $\Phi_0=\boldsymbol{A},\; \Phi_1=\boldsymbol{A}+\boldsymbol{B}\boldsymbol{K}.$

Remarks on Theorem One

Theorem One provides *necessary and sufficient* conditions for ensuring stochastic stability of $\hat{P}_{\mathcal{K}}$, where

• S/C and C/A channels are modelled by two independent Markov chains.

Condition (i) only involves observer gain matrix L, while condition (ii) only involves state feedback gain matrix K \Rightarrow

• State feedback control and observer can be designed separately and independently.

The NCS \hat{P}_{K} under **Assumption 2** is stochastically stable if and only if the following two conditions hold.

• (i) there exists a matrix **Q** > 0 such that

$$\alpha (\mathbf{A} + \mathbf{LC})^{\mathsf{T}} \mathbf{Q} (\mathbf{A} + \mathbf{LC}) + (1 - \alpha) \mathbf{A}^{\mathsf{T}} \mathbf{Q} \mathbf{A} - \mathbf{Q} < 0$$

• (ii) there exist matrices $\mathbf{P}_0 > 0$ and $\mathbf{P}_1 > 0$ such that

$$\left\{ \begin{array}{l} \boldsymbol{\Phi}_0^{\mathsf{T}} \big(\lambda_{0,0} \boldsymbol{\mathsf{P}}_0 + \lambda_{0,1} \boldsymbol{\mathsf{P}}_1 \big) \boldsymbol{\Phi}_0 - \boldsymbol{\mathsf{P}}_0 < 0 \\ \boldsymbol{\Phi}_1^{\mathsf{T}} \big(\lambda_{1,0} \boldsymbol{\mathsf{P}}_0 + \lambda_{1,1} \boldsymbol{\mathsf{P}}_1 \big) \boldsymbol{\Phi}_1 - \boldsymbol{\mathsf{P}}_1 < 0 \end{array} \right.$$

Remark: When the S/C channel is modelled by a Bernoulli process, condition (i) is simplified accordingly.

Motivations 00000	Problem Formulation	Main Results ○○○○●○	Numerical Example	Conclusions
Outline				

- Networked Control Systems (NCSs)
- Our Novelties
- 2 Problem Formulation
 - NCS Configuration
 - NCS Close-Loop Dynamics
- 3 Main Results
 - Separation Principle
 - Stabilisation Control
- 4 Numerical Example
 - NCS Plant and Network
 - Stabilisation Control Solution

Conclusions

 $\hat{P}_{\mathcal{K}}$ under **Assumption 2** is stochastically stable if and only if

there exist matrices Q > 0 and Y; P
₀ > 0, P
₁ > 0 and X such that the following three LMIs hold

$$\begin{bmatrix} -\mathbf{Q} & * & * \\ \sqrt{\alpha}(\mathbf{Q}\mathbf{A} + \mathbf{Y}\mathbf{C}) & -\mathbf{Q} & * \\ \sqrt{1 - \alpha}\mathbf{Q}\mathbf{A} & \mathbf{0} & -\mathbf{Q} \end{bmatrix} < 0; \begin{bmatrix} -\overline{\mathbf{P}}_0 & * & * \\ \sqrt{\lambda_{0,0}}\mathbf{A}\overline{\mathbf{P}}_0 & -\overline{\mathbf{P}}_0 & * \\ \sqrt{\lambda_{0,1}}\mathbf{A}\overline{\mathbf{P}}_0 & \mathbf{0} & -\overline{\mathbf{P}}_1 \end{bmatrix} < 0,$$
$$\begin{bmatrix} -\overline{\mathbf{P}}_1 & * & * \\ \sqrt{\lambda_{1,0}}(\mathbf{A}\overline{\mathbf{P}}_1 + \mathbf{B}\mathbf{X}) & -\overline{\mathbf{P}}_0 & * \\ \sqrt{\lambda_{1,1}}(\mathbf{A}\overline{\mathbf{P}}_1 + \mathbf{B}\mathbf{X}) & \mathbf{0} & -\overline{\mathbf{P}}_1 \end{bmatrix} < 0.$$

State feedback and observer gains are given by K = XP
⁻¹
₁
and L = Q⁻¹Y.

Motivations 00000	Problem Formulation	Main Results	Numerical Example ●○○○○○	Conclusions
Outline				

Networked Control Systems (NCSs)

Our Novelties

NCS Configuration

Separation Principle
 Stabilisation Control

NCS Plant and Network
 Stabilisation Control Solution

Numerical Example

NCS Close-Loop Dynamics

Motivations 00000	Problem Formulation	Main Results	Numerical Example o●oooo	Conclusions
Plant and	Network			

Unstable 4th-order NCS with plant model

$$\mathbf{A} = \begin{bmatrix} 1.4 & 1 & 1 & -1.1 \\ -1.3 & -0.9 & 0.5 & 0.5 \\ 0.3 & -0.2 & -1 & 0 \\ -0.5 & -0.3 & -0.5 & -1 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} -0.7 & -1 \\ 0 & -0.9 \\ 0.8 & 0.6 \\ 0.1 & 0 \end{bmatrix},$$
$$\mathbf{C} = \begin{bmatrix} -1 & 0.6 & -0.3 & 0 \\ 0.5 & 0.5 & 0.2 & -1 \end{bmatrix}.$$

The network specified by (Assumption 2)

• C/A: Markov chain with transition probability matrix

$$[\lambda_{i,j}] = \left[\begin{array}{rrr} 0.6 & 0.4 \\ 0.2 & 0.8 \end{array} \right]$$

(日) (日) (日) (日) (日) (日) (日)

• S/C: Bernoulli process with $\alpha = 0.7$.

Motivations 00000	Problem Formulation	Main Results	Numerical Example	Conclusions
Outline				
1 Mot	ivations			

Networked Control Systems (NCSs)

Our Novelties

NCS Configuration

Separation Principle
 Stabilisation Control

NCS Plant and Network
Stabilisation Control Solution

Numerical Example

4

NCS Close-Loop Dynamics

Solve synthesis of stochastic stabilisation control with **Theorem 3**:

Applying Matlab LMI Control Toolbox to solve the three LMIs, obtaining

$$\boldsymbol{Q}>0,\;\boldsymbol{Y};\;\overline{\boldsymbol{P}}_0>0,\;\overline{\boldsymbol{P}}_1>0,\;\boldsymbol{X}$$

• State feedback gain K and observer gain L are obtained as

k

$$\mathbf{X} = \mathbf{X}\overline{\mathbf{P}}_{1}^{-1} = \begin{bmatrix} 0.6786 & 0.9181 & 1.5972 & 1.8288 \\ 0.2455 & -0.0407 & 0.1753 & -1.2452 \end{bmatrix}$$
$$\mathbf{L} = \mathbf{Q}^{-1}\mathbf{Y} = \begin{bmatrix} 0.3124 & -1.2852 \\ 0.1239 & 1.2140 \\ -0.0061 & -0.3237 \\ -0.1387 & -0.6579 \end{bmatrix}.$$

Motivations 00000	Problem Formulation	Main Results	Numerical Example ○○○○●○	Conclusions
Simulatio	n			

・ロト・日本・山田・ 山田・ 山口・

<u> </u>				
			00000	
Motivations	Problem Formulation	Main Results	Numerical Example	Conclusions

Figure: Error trajectories between state and estimator of \hat{P}_{K} .

Motivations	Problem Formulation	Main Results	Numerical Example	Conclusions
Summary				

We consider observer-based NCSs with random packet dropouts occurring independent in both S/C and C/A channels.

- Establish separation principle for NCSs where S/C and C/A channels are modelled as two independent Markov chains;
- Derive LMI stabilisation control solution for NCSs where C/A and S/C channels are governed by Markov chain and Bernoulli process, respectively.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Motivations 00000	Problem Formulation	Main Results	Numerical Example	Conclusions
Acknowle	dgements			

This work was supported by:

National Natural Science Foundation of China (No.60774001, No.60736021 and No.60721062), 973 Program of China (No.2009CB320603), 863 Program of China (No.2008AA042602), 111 Project of China (Grant No.B07031)

(日) (日) (日) (日) (日) (日) (日)

UK Royal Society and Royal Academy of Engineering