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Some Basics

An NCS is a control system in which a control loop is closed via
a shared communication network.

The advantages:
Low installation cost.
Reducing system wiring.
Easy maintenance.

The basic problems:
packet dropout.
packet delay.
Bandwidth constraint.
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Related Works

Separation Principle was shown to hold for:

Network is only located in sensor-to-controller (S/C)
channel [7].

Channels are modeled as Bernoulli process [5] .

Connections of S/C and controller-to-actuator (C/A) are
on/off simultaneously [17].
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Our Contributions

Necessary & Sufficient conditions

Separation principle for NCS
S/C: Markov chain
C/A: Markov chain

Stabilisation control for NCS
S/C: Bernoulli process
C/A: Markov chain
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Networked Control System
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Figure: Networked control system P̂K .
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Network Assumptions

Packet dropouts indicators:{
θs(k) ∈ {0, 1}, S/C
θa(k) ∈ {0, 1}, C/A

Assumption 1:
θs(k) and θa(k) are driven by independent Markov chains,
with transition probability matrices [πt ,r ] and [λi,j ].

Assumption 2:
θa(k) is driven by a Markov chain.
θs(k) is driven by a Bernoulli process, with
Prob(θs(k) = 1) = α and Prob(θs(k) = 0) = 1− α.
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Plant & Controller

The plant P̂: {
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

x(k): state, u(k): input, and y(k): output.

The controller K̂ :{
x̂(k + 1) = Ax̂(k) + Bu(k) + θs(k)L(Cx̂(k)− y(k))

u(k) = θa(k)Kx̂(k),

K: state feedback gain, L: observer gain.
θs(k) = 1: standard observer law, θs(k) = 0: imitation law.
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NCS Dynamics

The NCS P̂K is in the form of Markovian jump linear system:

x(k + 1) = Aθa(k)θs(k)x(k), ∀k ∈ N,

State of P̂K : x(k) , [xT(k) eT(k)]T with e(k) = x(k)− x̂(k).

θa(k)θs(k) ∈ {00, 01, 10, 11} with

A00 =

[
A 0
0 A

]
, A01 =

[
A 0
0 A + LC

]
,

A10 =

[
A + BK −BK

0 A

]
, A11 =

[
A + BK −BK

0 A + LC

]
.



Motivations Problem Formulation Main Results Numerical Example Conclusions

Outline

1 Motivations
Networked Control Systems (NCSs)
Our Novelties

2 Problem Formulation
NCS Configuration
NCS Close-Loop Dynamics

3 Main Results
Separation Principle
Stabilisation Control

4 Numerical Example
NCS Plant and Network
Stabilisation Control Solution

5 Conclusions



Motivations Problem Formulation Main Results Numerical Example Conclusions

Theorem One

The NCS P̂K under Assumption 1 is stochastically stable if
and only if the following two conditions hold.

(i) there exist matrices Q0 > 0 and Q1 > 0 such that{
ÂT

0
(
π0,0Q0 + π0,1Q1

)
Â0 −Q0 < 0

ÂT
1
(
π1,0Q0 + π1,1Q1

)
Â1 −Q1 < 0

where Â0 = A, Â1 = A + LC;
(ii) there exist matrices P0 > 0 and P1 > 0 such that{

ΦT
0
(
λ0,0P0 + λ0,1P1

)
Φ0 − P0 < 0

ΦT
1
(
λ1,0P0 + λ1,1P1

)
Φ1 − P1 < 0

where Φ0 = A, Φ1 = A + BK.
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Remarks on Theorem One

Theorem One provides necessary and sufficient conditions for
ensuring stochastic stability of P̂K , where

S/C and C/A channels are modelled by two independent
Markov chains.

Condition (i) only involves observer gain matrix L, while
condition (ii) only involves state feedback gain matrix K ⇒

State feedback control and observer can be designed
separately and independently.
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Theorem Two

The NCS P̂K under Assumption 2 is stochastically stable if
and only if the following two conditions hold.

(i) there exists a matrix Q > 0 such that

α(A + LC)TQ(A + LC) + (1− α)ATQA−Q < 0

(ii) there exist matrices P0 > 0 and P1 > 0 such that{
ΦT

0
(
λ0,0P0 + λ0,1P1

)
Φ0 − P0 < 0

ΦT
1
(
λ1,0P0 + λ1,1P1

)
Φ1 − P1 < 0

Remark: When the S/C channel is modelled by a Bernoulli
process, condition (i) is simplified accordingly.
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Theorem Three

P̂K under Assumption 2 is stochastically stable if and only if

there exist matrices Q > 0 and Y; P0 > 0, P1 > 0 and X
such that the following three LMIs hold −Q ∗ ∗√
α(QA + YC) −Q ∗√

1− αQA 0 −Q

 < 0;

 −P0 ∗ ∗√
λ0,0AP0 −P0 ∗√
λ0,1AP0 0 −P1

 < 0,

 −P1 ∗ ∗√
λ1,0(AP1 + BX) −P0 ∗√
λ1,1(AP1 + BX) 0 −P1

 < 0.

State feedback and observer gains are given by K = XP−1
1

and L = Q−1Y.
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Plant and Network

Unstable 4th-order NCS with plant model

A =


1.4 1 1 −1.1
−1.3 −0.9 0.5 0.5
0.3 −0.2 −1 0
−0.5 −0.3 −0.5 −1

 , B =


−0.7 −1

0 −0.9
0.8 0.6
0.1 0

 ,

C =

[
−1 0.6 −0.3 0
0.5 0.5 0.2 −1

]
.

The network specified by (Assumption 2)
C/A: Markov chain with transition probability matrix

[λi,j ] =

[
0.6 0.4
0.2 0.8

]
S/C: Bernoulli process with α = 0.7.
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Stabilisation Control

Solve synthesis of stochastic stabilisation control with Theorem
3:

Applying Matlab LMI Control Toolbox to solve the three
LMIs, obtaining

Q > 0, Y; P0 > 0, P1 > 0, X

State feedback gain K and observer gain L are obtained as

K = XP
−1
1 =

[
0.6786 0.9181 1.5972 1.8288
0.2455 −0.0407 0.1753 −1.2452

]
,

L = Q−1Y =


0.3124 −1.2852
0.1239 1.2140
−0.0061 −0.3237
−0.1387 −0.6579

 .
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Simulation
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Figure: State trajectories of the plant P̂.
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Simulation
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Figure: Error trajectories between state and estimator of P̂K .
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Summary

We consider observer-based NCSs with random packet
dropouts occurring independent in both S/C and C/A channels.

Establish separation principle for NCSs where S/C and C/A
channels are modelled as two independent Markov chains;

Derive LMI stabilisation control solution for NCSs where
C/A and S/C channels are governed by Markov chain and
Bernoulli process, respectively.
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