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1.1 INTRODUCTION

Communication signal processing applications often involve complex-valued
(CV) functional representations for signals and systems. CV artificial neural
networks have been studied theoretically and applied widely in nonlinear sig-
nal and data processing [1–11]. Note that most artificial neural networks can-
not be automatically extended from the real-valued (RV) domain to the CV
domain because the resulting model would in general violate Cauchy-Riemann
conditions, and this means that the training algorithms become unusable. A
number of analytic functions were introduced for the fully CV multilayer per-
ceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was
introduced in [8] for regression and classification applications. Alternatively,
the problem can be avoided by using two RV artificial neural networks, one
processing the real part and the other processing the imaginary part of the
CV signal/system. A even more challenging problem is the inverse of a CV
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nonlinear system, which is typically found in practical applications. This is
an under-researched area, and a few existing methods, such as the algorithm
proposed in [10], are not very effective in tackling practical CV signal pro-
cessing problems. In order to develop an efficient approach for modelling and
inverse of CV Wiener systems, we have turned to the RV signal processing
field for motivations and inspirations.

A popular approach to nonlinear systems identification in the RV domain
is to use block-oriented nonlinear models which comprise the linear dynamic
models and static or memoryless nonlinear functions [12–17]. Specifically,
the Wiener model, which comprises a linear dynamical model followed by a
nonlinear static transformation, offers a reasonable model for linear systems
with a nonlinear measurement device that are widely found in industrial and
biological systems [18–23]. The model representation of the unknown nonlin-
ear static function in the Wiener model is fundamental to its identification,
control and/or other applications. Various approaches have been developed
in order to capture the a priori unknown nonlinearity in the Wiener system,
including the nonparametric method [24], subspace model identification meth-
ods [22], fuzzy modelling [25] and the parametric method [13, 20, 21]. With
its best conditioning property, the B-spline curve has been widely used in
computer graphics and computer aided geometric design [26]. The B-spline
curves consist of many polynomial pieces, offering versatility. In particular,
the De Boor algorithm [27], which uses numerically stable recurrence relations,
offers a highly efficient means of constructing B-spline curve. The B-spline
basis functions for RV nonlinear systems modelling have been widely applied
[28–31].

Many practical communication applications involve propagating CV signals
through CV nonlinear dynamic systems that can be represent by the Wiener
model. For example, at the transmitter of broadband communication sys-
tems, the transmitted signal is distorted by the high power amplifier (HPA)
with memory that can be characterised by the CV Wiener model [32, 33].
Also some nonlinear communication channels can usually be represented by
a finite duration impulse response (FIR) filter followed by a CV static non-
linear function, namely, a CV Wiener model. Accurate identification of a CV
Wiener model is often the first successful step in these applications. Moreover,
an accurate inverse of the estimated CV Wiener model is required, such as
in digital predistorter design for compensating the distortions of the Wiener
HPA at the transmitter [34–39] and deconvolution or equalisation at the re-
ceiver [2,3]. Our previous work [40] has developed an efficient B-spline neural
network approach for general modelling of CV Wiener systems, which repre-
sents the CV nonlinear static function in the Wiener system using the tensor
product from two univariate B-spline neural networks. This novel approach
is different from the existing CV neural network based on spline functions
[3, 41, 42], in both model representation and identification algorithms [40].
By minimising the mean square error (MSE) between the model output and
the system output, the Gauss-Newton algorithm, coupled with a simple least
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squares (LS) parameter initialisation, is readily applicable for the parameter
estimation in the proposed CV model, which naturally incorporates the De
Boor recursions for both the B-spline curves and first order derivatives.

The significance of the proposed method [40] is twofold. Firstly, it extends
the B-spline model to accommodate general CV Wiener systems. Secondly the
proposed model based on B-spline functions has a significant advantage over
many other modelling paradigms in that it enables stable and efficient eval-
uations of functional and derivative values, as required in the Gauss-Newton
optimisation algorithm. The additional contribution of our current work is
to develop an effective inverse of the CV Wiener system so as to complete
the whole task for identification and inverse of the generic Wiener system.
We demonstrate that the B-spline neural network scheme for modelling of
CV Wiener systems proposed in [40] has a further advantage in that an ac-
curate inverse of the CV Wiener system can directly be achieved from the
estimated Wiener model in an very efficient way. In particular, the inverse
of the CV nonlinear static function in the Wiener model is calculated effec-
tively using the Gauss-Newton algorithm based on the inverse of De Boor
algorithm, which again utilises naturally the B-spline curve and first order
derivative recursions. The effectiveness of the proposed approach for identifi-
cation and inverse of CV Wiener systems is illustrated using the application of
digital predistorter design for broadband communication systems that employ
power-efficient nonlinear HPA transmitter.

1.2 IDENTIFICATION AND INVERSE OF COMPLEX-VALUED
WIENER SYSTEMS

Throughout this contribution, a CV number x ∈ C is represented either by
the rectangular form x = xR + jxI , where j =

√
−1, while xR = ℜ[x] and

xI = ℑ[x] denote the real and imaginary parts of x, or alternatively by the
polar form x = |x| · exp(j∠x) with |x| denoting the amplitude of x and ∠x its
phase.

1.2.1 The complex-valued Wiener system

The generic CV Wiener system considered in this study consists of a cascade
of two subsystems, an FIR filter of order L that represents the memory effect
on the input signal x(k) ∈ C, followed by a nonlinear memoryless function
Ψ(•) : C → C. The system is represented by

w(k) =
L∑

i=0

hix(k − i), h0 = 1, (1.1)

y(k) =Ψ (w(k)) + ξ(k), (1.2)

where y(k) ∈ C is the system output, and ξ(k) is a CV white noise sequence
independent of x(k) and with E

[
|ξR(k)|2

]
= E

[
|ξI(k)|2

]
= σ2

ξ . The z transfer
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function of the FIR filter is defined by

H(z) =
L∑

i=0

hiz
−i, h0 = 1, (1.3)

with the CV coefficient vector given by h = [h1 h2 · · ·hL]T ∈ CL. Note that,
without loss of generality, we assume that h0 = 1. If this is not the case, h0

can always be absorbed into the CV static nonlinearity Ψ(•), and the linear
filter’s coefficients are re-scaled as hi/h0 for 0 ≤ i ≤ L.

Without lose of generality, the following assumptions are made regarding
the CV Wiener system (1.1) and (1.2).
Assumption 1 : Ψ(•) is a one to one mapping, i.e. it is an invertible and
continuous function.
Assumption 2 : yR(k), yI(k), wR(k), wI(k) xR(k) and xI(k) are upper and
lower bounded by some finite real values.

For practical applications, these two assumptions typically hold. Our aim
is to identify the above Wiener system, i.e. given the input-output data set
DN = {x(k), y(k)}K

k=1, to identify the underlying nonlinear function Ψ(•)
and to estimate the FIR filter parameters h, as well as to provide an accurate
inverse of the above Wiener system based on the identified model. Note that
the signal w(k) between the two subsystems are unavailable. We will use
the CV B-spline neural network approach proposed in [40] for an efficient
identification of this Wiener system and then develop an effective algorithm
for an accurate inverse of this Wiener system based on the estimated Wiener
model Ψ̂(•) and ĥ.

1.2.2 Complex-valued B-spline neural network

The CV B-spline neural network proposed in [40] is adopted to represent the
mapping ŷ = Ψ̂(wR + jwI) : C → C that is the estimate of the underlying CV
nonlinear function Ψ(•). Assume that Umin < wR < Umax and Vmin < wI <
Vmax, where Umin, Umax, Vmin and Vmax are known finite real values.

A set of univariate B-spline basis functions based on wR is parametrised by
the order (Po − 1) of a piecewise polynomial and a knot vector which is a set
of values defined on the real line that break it up into a number of intervals.
Suppose that there are NR basis functions. Then the knot vector is specified
by (NR + Po + 1) knot values, {U0, U1, · · · , UNR+Po

}, with

U0 < U1 < · · · < UPo−2 < UPo−1 = Umin < UPo < · · ·
< UNR < UNR+1 = Umax < UNR+2 < · · · < UNR+Po . (1.4)

At each end, there are Po − 1 external knots that are outside the input region
and one boundary knot. As a result, the number of internal knots is NR +1−
Po. Given the set of predetermined knots (1.4), the set of NR B-spline basis
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functions can be formed by using the De Boor recursion [27], yielding

B
(ℜ,0)
l (wR) =

{
1, if Ul−1 ≤ wR < Ul,
0, otherwise, 1 ≤ l ≤ NR + Po, (1.5)

B
(ℜ,p)
l (wR) =

wR − Ul−1

Up+l−1 − Ul−1
B

(ℜ,p−1)
l (wR) +

Up+l − wR

Up+l − Ul
B

(ℜ,p−1)
l+1 (wR),

for l = 1, · · · , NR + Po − p and p = 1, · · · , Po. (1.6)

The derivatives of the B-spline basis functions B(ℜ,Po)
l (wR) for 1 ≤ l ≤ NR

can also be computed recursively according to

dB
(ℜ,Po)
l (wR)
dwR

=
Po

UPo+l−1 − Ul−1
B

(ℜ,Po−1)
l (wR)

− Po

UPo+l − Ul
B

(ℜ,Po−1)
l+1 (wR). (1.7)

Similarly, a set of univariate B-spline basis functions based on wI can be
established. Suppose that the order of the piecewise polynomial is again
predetermined as (Po − 1) and there are NI basis functions. Then the knot
vector is defined on the imaginary line in a similar manner, which is specified
by the (NI + Po + 1) knot values, {V0, V1, · · · , VNI+Po}. Specifically,

V0 < V1 < · · · < VPo−2 < VPo−1 = Vmin < VPo < · · ·
< VNI

< VNI+1 = Vmax < VNI+2 < · · · < VNI+Po . (1.8)

Again, at each end, there are Po − 1 external knots that are outside the input
region and one boundary knot. Consequently, the number of internal knots is
NI + 1−Po. Similarly, the set of NI B-spline basis functions are constructed
by the De Boor recursion [27] as

B(ℑ,0)
m (wI) =

{
1, if Vm−1 ≤ wI < Vm,
0, otherwise, 1 ≤ m ≤ NI + Po, (1.9)

B(ℑ,p)
m (wI) =

wI − Vm−1

Vp+m−1 − Vm−1
B(ℑ,p−1)

m (wI) +
Vp+m − wI

Vp+m − Vm
B

(ℑ,p−1)
m+1 (wI),

for m = 1, · · · , NI + Po − p and p = 1, · · · , Po, (1.10)

while the derivatives of the B-spline basis functions B(ℑ,Po)
m (wI) for 1 ≤ m ≤

NI are computed recursively according to

dB
(ℑ,Po)
m (wI)
dwI

=
Po

VPo+m−1 − Vm−1
B(ℑ,Po−1)

m (wI)

− Po

VPo+m − Vm
B

(ℑ,Po−1)
m+1 (wI). (1.11)
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Using the tensor product between the two sets of univariate B-spline basis
functions [30], B(ℜ,Po)

l (wR) for 1 ≤ l ≤ NR and B(ℑ,Po)
m (wI) for 1 ≤ m ≤ NI ,

a set of new B-spline basis functions B(Po)
l,m (w) can be formed and used in the

CV B-spline neural network, giving rise to

ŷ = Ψ̂(w) =
NR∑
l=1

NI∑
m=1

B
(Po)
l,m (w)ωl,m =

NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (wR)B(ℑ,Po)

m (wI)ωl,m,

(1.12)

where ωl,m = ωRl,m
+ jωIl,m

∈ C, 1 ≤ l ≤ NR and 1 ≤ m ≤ NI , are the CV
weights. The CV B-spline neural network (1.12) can obviously be decomposed
as the following two RV B-spline neural networks

ŷR =
NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (wR)B(ℑ,Po)

m (wI)ωRl,m
, (1.13)

ŷI =
NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (wR)B(ℑ,Po)

m (wI)ωIl,m
. (1.14)

Because of the piecewise nature of B-spline functions, for any point evalua-
tion, there are only Po basis functions with nonzero values for each of the real
and imaginary parts, leading to P 2

o nonzero terms in both (1.13) and (1.14).
This is advantageous as Po can be set to a quite low value. The complexity of
the De Boor recursion is in the order of P 2

o , O(P 2
o ). Thus the computational

cost of calculating both (1.13) and (1.14) scales up to about three times of the
De Boor recursion, including evaluation of both real and imaginary parts as
well as the tensor product calculation. Notably, additional cost for derivative
evaluation is minimal, as (1.7) and (1.11) are a byproduct of the De Boor
recursion. Also there are only Po nonzero first order derivative terms in each
of (1.7) and (1.11). Compared with other CV neural networks based on dif-
ferent spline functions [3, 41, 42], our approach is clearly different in terms of
model representation and identification algorithm. The advantages of our CV
B-spline neural network are discussed in [40].

1.2.3 Wiener system identification

The Schematic of CV Wiener system identification is depicted in Fig. 1.1. For
the chosen two sets of knots, (1.4) and (1.8), and the polynomial degree Po,
denote the weight vector of the CV B-spline neural network (1.12) as ω =[
ω1,1 ω1,2 · · ·ωl,m · · ·ωNR,NI

]T ∈ CN , where N = NRNI . Given a set of train-
ing input-output data {x(k), y(k)}K

k=1, where x(k) = [x(k) x(k − 1) · · ·x(k −
L)]T, the task is to estimate the parameter vector θ =

[
θ1 θ2 · · · θ2(N+L)

]T of
the Wiener model, defined as

θ =
[
ωT

R ωT
I ĥT

R ĥT
I

]T ∈ R2(N+L), (1.15)
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Σ

e(k)

Figure 1.1 Schematic of Wiener system identification.

where ĥ = ĥR + jĥI denotes the estimate of h = hR + jhI and ω = ωR + jωI .
The CV B-spline neural network used in representing Ψ(•) is given by

ŷ(k) = Ψ̂ (ŵ(k)) =
NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (ŵR(k))B(ℑ,Po)

m (ŵI(k))ωl,m, (1.16)

which is equivalent to the two RV B-spline neural networks

ŷR(k) =
NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (ŵR(k))B(ℑ,Po)

m (ŵI(k))ωRl,m
, (1.17)

ŷI(t) =
NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (ŵR(k))B(ℑ,Po)

m (ŵI(k))ωIl,m
, (1.18)

where

ŵ(k) =
[
1 ĥT

]
x(k) =

(
xR(k) +

L∑
i=1

(
ĥRixR(k − i) − ĥIixI(k − i)

))
+ j

(
xI(k) +

L∑
i=1

(
ĥRixI(k − i) + ĥIixR(k − i)

))
. (1.19)

Define the error between the desired output y(k) and the Wiener model output
ŷ(k) as e(k) = y(k) − ŷ(k), yielding the sum of squared errors (SSE) cost
function

JSSE(θ) =
K∑

k=1

|e(k)|2 =
K∑

k=1

(
e2R(k) + e2I(k)

)
. (1.20)

We apply the Gauss-Newton algorithm to minimise the cost function (1.20).

The Gauss-Newton algorithm First denote ε = [ε1 ε2 · · · ε2K ]T ∈ R2K as

ε = [eR(1) eR(2) · · · eR(K) eI(1) eI(2) · · · eI(K)]T. (1.21)
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By denoting the iteration step with the superscript (τ) and with an initial
value θ(0), the iteration formula is given by

θ(τ) = θ(τ−1) − µ
((

J(τ)
)T

J(τ)
)−1(

J(τ)
)T

ε
(
θ(τ−1)

)
, (1.22)

where µ > 0 is the step size, and J(τ) denotes the Jacobian of ε
(
θ(τ−1)

)
,

which is given by

J =


∂ε1
∂θ1

∂ε1
∂θ2

· · · ∂ε1
∂θ2(N+L)

∂ε2
∂θ1

∂ε2
∂θ2

· · · ∂ε2
∂θ2(N+L)

...
...

. . .
...

∂ε2K

∂θ1

∂ε2K

∂θ2
· · · ∂ε2K

∂θ2(N+L)

 . (1.23)

The partial derivatives in the Jacobian (1.23) can be calculated as follows.
For 1 ≤ k ≤ K,

∂εk

∂θq
=



∂eR(k)
∂ωRl,m

= −B(ℜ,Po)
l (ŵR(k))B(ℑ,Po)

m (ŵI(k)),

q = l ·m, 1 ≤ l ≤ NR, 1 ≤ m ≤ NI ,
∂eR(k)
∂ωIl,m

= 0, q = N + l ·m, 1 ≤ l ≤ NR, 1 ≤ m ≤ NI ,

∂eR(k)

∂bhRi

= −
NR∑
l=1

NI∑
m=1

(
dB

(ℜ,Po)
l ( bwR(k))

d bwR(k) B
(ℑ,Po)
m (ŵI(k))xR(k − i)

+B(ℜ,Po)
l (ŵR(k))dB(ℑ,Po)

m ( bwI(k))
d bwI(k) xI(k − i)

)
ωRl,m

,

q = 2N + i, 1 ≤ i ≤ L,

∂eR(k)

∂bhIi

= −
NR∑
l=1

NI∑
m=1

(
− dB

(ℜ,Po)
l ( bwR(k))

d bwR(k) B
(ℑ,Po)
m (ŵI(k))xI(k − i)

+B(ℜ,Po)
l (ŵR(k))dB(ℑ,Po)

m ( bwI(k))
d bwI(k) xR(k − i)

)
ωRl,m

,

q = 2N + L+ i, 1 ≤ i ≤ L,
(1.24)

but for K + 1 ≤ k ≤ 2K and t = k −K,

∂εk

∂θq
=



∂eI(t)
∂ωRl,m

= 0, q = l ·m, 1 ≤ l ≤ NR, 1 ≤ m ≤ NI ,

∂eI(t)
∂ωIl,m

= −B(ℜ,Po)
l (ŵR(t))B(ℑ,Po)

m (ŵI(t)),

q = N + l ·m, 1 ≤ l ≤ NR, 1 ≤ m ≤ NI ,

∂eI(t)

∂bhRi

= −
NR∑
l=1

NI∑
m=1

(
dB

(ℜ,Po)
l ( bwR(t))

d bwR(t) B
(ℑ,Po)
m (ŵI(t))xR(t− i)

+B(ℜ,Po)
l (ŵR(t))dB(ℑ,Po)

m ( bwI(t))
d bwI(t) xI(t− i)

)
ωIl,m

,

q = 2N + i, 1 ≤ i ≤ L,

∂eI(t)

∂bhIi

= −
NR∑
l=1

NI∑
m=1

(
− dB

(ℜ,Po)
l ( bwR(t))

d bwR(t) B
(ℑ,Po)
m (ŵI(t))xI(t− i)

+B(ℜ,Po)
l (ŵR(t))dB(ℑ,Po)

m ( bwI(t))
d bwI(t) xR(t− i)

)
ωIl,m

,

q = 2N + L+ i, 1 ≤ i ≤ L.
(1.25)
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It is seen that the De Boor algorithm, (1.5)–(1.7) and (1.9)–(1.11), is applied
in evaluating all entries in the Jacobian. Effectively, this enables stable and
efficient evaluations of B-spline functional and derivative values, which could
be very difficult for many other nonlinear models, including some spline func-
tions based nonlinear models. The iterative procedure (1.22) is terminated
when θ(τ) converges or when a predetermined sufficiently large number of
iterations has been reached.

Parameter initialisation for the Gauss-Newton algorithm As the cost function
(1.20) is highly nonlinear in the parameters, the solution of the Gauss-Newton
algorithm depends on the initial condition. It is important to properly ini-
tialise θ(0) so that it is as close as possible to an optimal solution. A simple
and effective LS parameter initialisation scheme was introduced in [40], which
we adopt in this study.
Initialisation of the linear filter parameters. Denote an estimate of the
linear filter parameter vector as h̃ =

[
h̃1 h̃2 · · · h̃L

]T and the inverse function
of Ψ(•) as φ(•) = Ψ−1(•) : C → C. Consider now using the proposed CV
B-spline neural network to model φ(•). For notational simplicity, assume
that the polynomial degree used is still denoted as Po − 1 and the numbers
of basis functions used in the modeling of the real and imaginary parts are
still denoted as NR and NI , respectively. With the two knot vectors for the
real and imaginary parts being set based on yR(k) and yI(k), respectively, we
have an estimate of φ(•)

φ̃ (y(k)) =
NR∑
l=1

NI∑
m=1

B
(Po)
l,m (y(k))αl,m, (1.26)

where αl,m ∈ C, 1 ≤ l ≤ NR and 1 ≤ m ≤ NI , are CV weights. Let the error
between w̃(k) and φ̃(y(k)) be defined as ϵ(k) = w̃(k) − φ̃(y(k)), where

w̃(k) = x(k) +
L∑

i=1

h̃ix(k − i) (1.27)

is used as the target for φ̃(y(k)). Thus,

x(k) = −
L∑

i=1

h̃ix(k − i) +
NR∑
l=1

NI∑
m=1

B
(Po)
l,m (y(k))αl,m + ϵ(k)

=
(
p(x(k))

)T
ϑ + ϵ(k), (1.28)

where

x(k) =
[
x(k − 1) x(k − 2) · · · x(k − L) y(k)

]T
,

p
(
x(k)

)
=

[
− x(k − 1) − x(k − 2) · · · − x(k − L)

B
(Po)
1,1 (y(k)) B(Po)

1,2 (y(k)) · · ·B(Po)
NR,NI

(y(k))
]T

=
[
p1

(
x(k)

)
p2

(
x(k)

)
· · · pN+L

(
x(k)

)]T ∈ CN+L,
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ϑ =
[
h̃1 h̃2 · · · h̃L α1,1 α1,2 · · ·αl,m · · ·αNR,NI

]T
=

[
ϑ1 ϑ2 · · ·ϑN+L

]T ∈ CN+L.

Over the training data set, (1.28) can be written in the matrix form as

x = Pϑ + ϵ, (1.29)

where x = [x(1) x(2) · · ·x(K)]T, ϵ = [ϵ(1) ϵ(2) · · · ϵ(K)]T, and P is the regres-
sion matrix defined as P = [p(x(1)) p(x(2)) · · ·p(x(K))]T. The LS solution
for the parameter vector ϑ is readily given as

ϑLS =
(
PHP

)−1
PHx. (1.30)

The sub-vector of the resulting ϑLS, consisting of its first L CV elements,
forms our initial estimate ĥ(0) = ĥ(0)

R + jĥ(0)
I , which are used as the last

2L RV elements of θ(0) in the parameter initialisation for the Gauss-Newton
iteration procedure.
Initialisation of the B-spline neural network weights. Given the esti-
mate ĥ(0), generate the auxiliary signal

̂̃w(k) = x(k) +
L∑

i=1

ĥ
(0)
i x(k − i). (1.31)

Using the CV B-spline neural network (1.12) to model the nonlinear static
function Ψ(•) based on the training data set { ̂̃w(k), y(k)}K

k=1 yields

y(k) =
NR∑
l=1

NI∑
m=1

B
(Po)
l,m

(̂̃w(k)
)
ωl,m + ê(k) =

(
q
(̂̃w(k)

))T

ω + ê(k), (1.32)

where

q
(̂̃w(k)

)
=

[
B

(Po)
1,1

(̂̃w(k)
)
B

(Po)
1,2

(̂̃w(k)
)
· · ·B(Po)

l,m

(̂̃w(k)
)
· · ·B(Po)

NR,NI

(̂̃w(k)
)]T

=
[
q1

(̂̃w(k)
)
q2

(̂̃w(k)
)
· · · , qN

(̂̃w(k)
)]T ∈ RN .

Over the training data set, (1.32) can be written in the matrix form

y = Qω + ê, (1.33)

with y = [y(1) · · · y(K)]T, ê = [ê(1) · · · ê(K)]T and Q =
[
q
(̂̃w(1)

)
· · ·q

(̂̃w(K)
)]T.

The LS solution for ω ∈ CN

ωLS =
(
QTQ

)−1

QTy (1.34)

is used as the initial estimate of ω(0) = ω
(0)
R + jω

(0)
I that forms the first

2N RV elements of θ(0) for the parameter initialisation of the Gauss-Newton
algorithm.
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The LS estimates ĥ(0) and ω(0) are generally not consistent. This is because
the B-spline regressors in (1.26) and (1.32) are subject to the output noise
which will in general propagate to the parameter estimates, yielding a bias.
However, this estimate represents an excellent initialisation for the Gauss-
Newton algorithm. The final parameter estimate via minimising (1.20) is
optimal in the sense that it is the maximum likelihood estimate in the case
that ξ(t) is Gaussian.

1.2.4 Wiener system inverse

For the CV Wiener system (1.1) and (1.2), there are two types of inverse as
depicted in Fig. 1.2. The “pre-inverse” can be found for example in the digital
predistorter design for compensating the Wiener HPA [34–39], while the “post-
inverse” is typically found in the deconvolution or equalisation applications
[2, 3]. Note that in either case, the exact inverse of the Wiener system is a
Hammerstein system consisting of a nonlinear static function followed by a
linear filter. The difference between these two cases is that in the pre-inverse
case, the input to the Hammerstein model is a clean, i.e. noise-free, signal,
while in the post-inverse case, the input signal to the Hammerstein model is
corrupted by the noise. Without significant loss of generality, we consider the
pre-inverse case in this study.

Inverse of Wiener system’s static nonlinear function Given the CV Wiener
system’s static nonlinearity Ψ(•), we wish to compute its inverse defined by
v(k) = Ψ−1(x(k)). This task is identical to find the CV root of x(k) =
Ψ(v(k)), given x(k). In Subsection 1.2.3, the estimate Ψ̂(•) for Ψ(•) has been
obtained based on the CV B-spline neural network with the aid of the De
Boor algorithm. We now show that Ψ̂−1(•) can be effectively obtained with
the aid of the inverse of De Boor algorithm. Given Ψ̂(•) of (1.17) and (1.18),

ΣΨ(.)

Hammerstein system Wiener system

(a) Pre−Inverse

x(k) y(k)

ξ (k)

H(z)
x(k)

Wiener system Hammerstein system
(b) Post−Inverse

H(z)Ψ
−1

Ψ(.)

(k)ξ

y(k)
Σ

(.) H  (z)
−1v(k)

Ψ
−1
(.)

v(k) −1
H  (z)

Figure 1.2 Schematic of inverse for Wiener system.
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we have

x̂R(k) =
NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (vR(k))B(ℑ,Po)

m (vI(k))ωRl,m
, (1.35)

x̂I(t) =
NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (vR(k))B(ℑ,Po)

m (vI(k))ωIl,m
. (1.36)

Define ζ(k) = x(k) − x̂(k) and the squared error (SE)

S(k) = ζ2
R(k) + ζ2

I (k). (1.37)

If S(k) = 0, then v(k) is the CV root of x(k) = Ψ̂(v(k)). Thus, the task is
equivalent to the one that minimises the SE (1.37). We propose to use the
following Gauss-Newton algorithm to solve this optimisation problem with
the aid of the inverse of De Boor algorithm.

By denoting again the iteration step with the superscript (τ) and giving
a random initialisation of v(0)(k) that satisfies Umin < v

(0)
R (k) < Umax and

Vmin < v
(0)
I (k) < Vmax, the iterative procedure is given by[

v
(τ)
R (k)
v
(τ)
I (k)

]
=

[
v
(τ−1)
R (k)
v
(τ−1)
I (k)

]
− η

((
J(τ)

v

)T
J(τ)

v

)−1(
J(τ)

v

)T

[
ζ
(τ−1)
R (k)
ζ
(τ−1)
I (k)

]
,

(1.38)
where η > 0 is the step size, ζ(τ)(k) = x(k)−x̂(τ)(k) with x̂(τ)(k) = Ψ̂

(
v(τ)(k)

)
,

and J(τ)
v is the 2 × 2 Jacobian matrix given by

J(τ)
v =

[
∂ζR(k)
∂vR(k)

∂ζR(k)
∂vI(k)

∂ζI(k)
∂vR(k)

∂ζI(k)
∂vI(k)

]
|v(k)=v(τ)(k)

. (1.39)

The entries in (1.39) are given by

∂ζR(k)
∂vR(k) = −

NR∑
l=1

NI∑
m=1

dB
(ℜ,Po)
l (vR(k))

dvR(k) B
(ℑ,Po)
m (vI(k))ωRl,m

,

∂ζR(k)
∂vI(k) = −

MR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (vR(k))dB(ℑ,Po)

m (vI(k))
dvI(k) ωRl,m

,

∂ζI(k)
∂vR(k) = −

NR∑
l=1

NI∑
m=1

dB
(ℜ,Po)
l (vR(k))

dvR(k) B
(ℑ,Po)
m (vI(k))ωIl,m

,

∂ζI(k)
∂vI(k) = −

NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (vR(k))dB(ℑ,Po)

m (vI(t))
dvI(k) ωIl,m

,

(1.40)

for which the De Boor algorithm, (1.5)–(1.7) and (1.9)–(1.11), can be used
for their calculation efficiently. The algorithm is terminated when S(k) < ρ,
where ρ is a preset required precision, e.g. ρ = 10−8, or when τ reaches a
predetermined maximum value.
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Inverse of Wiener system’s linear filter The identification algorithm presented
in Subsection 1.2.3 also provides the estimate of the Wiener system’s linear

filter Ĥ(z) = 1 +
L∑

i=1

ĥiz
−i. Let the transfer function of the Hammerstein

model’s linear filter be

G(z) = z−ι ·
Lg∑
i=0

giz
−i, (1.41)

where the delay ι = 0 if H(z) is minimum phase. The solution of the Ham-
merstein model’s linear filter g = [g0 g1 · · · gLg ]T can readily be obtained by
solving the set of linear equations specified by

G(z) · Ĥ(z) = z−ι. (1.42)

To guarantee an accurate inverse, the length of g should be chosen to be three
to four times of the length of h. Note that g0 = 1 as h0 = 1.

1.3 APPLICATION TO DIGITAL PREDISTORTER DESIGN

HPA is an indispensable component in any wireless communication system.
The operation of HPAs in modern wireless systems may introduce serious
memory effects and nonlinear distortions [32, 33, 43, 44], causing intersym-
bol interference and adjacent channel interference that degrade the system’s
achievable bit error rate (BER) performance. The problem becomes particu-
larly acute, as the recent green-radio initiative [45] places the emphasis on the
energy-efficiency aspect of communication. To achieve high energy efficiency,
HPAs should operate at their output saturation regions but this operational
mode could not accommodate high bandwidth-efficiency single-carrier high-
order quadrature amplitude modulation (QAM) signals [46] as well as multi-
carrier orthogonal frequency division multiplexing (OFDM) signals [47], which
are essential modern transmission technologies. It is therefore critical to com-
pensate the distortions caused by the HPA with a digital predistorter in the
design of a wireless system [34–39].

1.3.1 High power amplifier model

A widely used model for HPAs is the Wiener model [32]. Without loss of
generality, we consider single-carrier QAM systems [46], but our approach is
equally applicable to multi-carrier OFDM systems [47]. The CV input signal
to the HPA, x(k), where k denotes the discrete time or symbol index, takes
the values from the CV M -QAM symbol set

S = {d(2l −
√
M − 1) + jd(2q −

√
M − 1), 1 ≤ l, q ≤

√
M}, (1.43)

where 2d is the minimum distance between symbol points. The 16-QAM
symbol constellation is illustrated in Fig. 1.3. The memory effect of the Wiener
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Re

−3d

3d

Im
3d

d

−3d d−d

−d

Figure 1.3 16-QAM symbol constellation.

HPA can be modelled by the FIR filter (1.1), while the nonlinear saturating
distortion of the Wiener HPA can be represented by the static nonlinearity
(1.2). Note that in practical HPAs, the noise ξ(k) is often negligible, that is,
σ2

ξ is zero or extremely small. Two typical CV nonlinearities Ψ(•) of HPAs
are the travelling-wave tube (TWT) nonlinearity [43] and the nonlinearity of
solid state power amplifiers [44]. Nonlinear characteristics of these two types
of HPAs are similar. The static nonlinearity of the HPA considered in this
study is the TWT nonlinearity, but the approach is equally applicable to the
other type of nonlinearity.

Express the (unavailable) input signal w(k) to the static nonlinearity part
Ψ(•) of the HPA by

w(k) = r(k) · exp(jψ(k)), (1.44)

with the amplitude r(k) = |w(k)| and phase ψ(k) = ∠w(k). The input signal
w(k) is affected by the nonlinear amplitude and phase functions of the HPA,
and the output signal y(k) is distorted mainly depending on the input signal
amplitude r(k), yielding

y(k) = |y(k)| · exp(j∠y(k)) = A(r(k)) · exp(j(ψ(k) + Φ(r(k)))). (1.45)

The output amplitude A(r(k)) and the phase Φ(r(k)) = ∠y(k) − ψ(k) of the
HPA are specified respectively by [32,39,43]

A(r) =
{ αar

1+βar2 , 0 ≤ r ≤ rsat,

Amax, r > rsat,
(1.46)

Φ(r) =
αϕr

2

1 + βϕr2
, (1.47)

where the saturating input amplitude is defined as

rsat =
1√
βa

, (1.48)
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while the saturation output amplitude is given by

Amax =
αa

2
√
βa
. (1.49)

The underlying physics require that Amax > rsat and the input amplitude r
meets the condition r < Rmax, where Rmax is some large positive number.
The TWT nonlinearity is specified by the positive RV parameter vector t =
[αa βa αϕ βϕ]T. The operating status of the HPA is specified by the input
back-off (IBO), which is defined as

IBO = 10 · log10

Psat

Pavg
, (1.50)

where Psat = r2sat is the saturation input power and Pavg is the average power
of the signal at the input of the TWT nonlinearity. Note that here Pavg is
defined as the average power of w(k), which is equal to the average power
of x(k) scaled by the linear filter power gain 1 + ∥h∥2. A small IBO value
indicates that the HPA operates in the highly nonlinear saturation region.

1.3.2 A novel digital predistorter design

Based on the technique developed in Section 1.2 for identification and inverse
of the CV Wiener system, a novel digital predistorter can readily be designed
to compensate the distortions caused by the HPA. Because both the pre-
distorter and the HPA are operating at the transmitter, the input M -QAM
signal x(k) to the HPA and the HPA’s output signal y(k) are readily available
to identify the Wiener HPA model Ĥ(z) and Ψ̂(•) using the Gauss-Newton
method based on the De Door algorithm of Subsection 1.2.3. Since the dis-
tributions of xR(k) and xI(k) are symmetric, the distributions of wR(k) and
wI(k) are also symmetric. Furthermore, from the underlying physics of the
HPA, Rmax is known or can easily be found. Therefore, the two knot sequences
(1.4) and (1.8) can be chosen to be identical with Umax = Vmax = Rmax,
Umin = Vmin = −Rmax and NR = NI =

√
N . In practice, Po = 4 is sufficient,

and an appropriate value of
√
N can be chosen by trail and error. Specifically,

the number of internal knots should be sufficient to provide good modelling
capability but should not be too large in order to avoid overfitting.

Based on the estimated Ψ̂(•) = Ψ̂R(•) + jΨ̂I(•), an accurate inverse to
Ψ(•) = ΨR(•) + jΨI(•) can readily be obtained. Note that over the input
range, ΨR(•) and ΨI(•) are monotonic. Since Ψ̂(•) is an accurate estimate of
Ψ(•), Ψ̂R(•) and Ψ̂I(•) can also be assumed to be monotonic over the input
range. Therefore, the Gauss-Newton method of Subsection 1.2.4 based on
the inverse of De Door algorithm converges to the unique solution Ψ̂−1(•).
For the M -QAM signal (1.43), there are M different symbol points x(k).
Thus, v(k) = Ψ̂−1(x(k)) has M distinct values, and these values can be pre-
calculated off-line and stored for on-line transmission. Therefore, our proposed
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digital predistorter solution has extremely low on-line computational complex-
ity, which is critically important for high-throughput wireless systems.

1.3.3 A simulation example

We considered the single-carrier 16-QAM system with the static nonlinearity
of the Wiener HPA described by (1.46) and (1.47). The parameters of the
Wiener HPA were given as

hT = [0.75 + j0.2 0.15 + j0.1 0.08 + j0.01],
tT = [2.1587 1.15 4.0 2.1]. (1.51)
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Figure 1.4 The case of IBO= 4 dB: (a) the HPA’s input x(k), marked by •, and
(b) the HPA’s output y(k), marked by ×.
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Figure 1.5 The case of IBO= 0 dB: (a) the HPA’s input x(k), marked by •, and
(b) the HPA’s output y(k), marked by ×.
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The serious nonlinear and memory distortions caused by this memory HPA
are illustrated in Figs. 1.4 and 1.5. Note that, for IBO= 0 dB, the HPA is
operating well into the saturation region.

Results of Wiener HPA identification The 16-QAM training sets each con-
taining K = 3000 data samples were generated given the HPA’s parameters
(1.51) and with the HPA operating at the IBO values of 4 dB and 0 dB,
respectively, where the power of the CV output measurement noise ξ(k) was
2σ2

ξ . Note that since the identification is carried out at the transmitter, both
the HPA’s input x(k) and the corresponding HPA’s output measurement y(k)
are available. Furthermore, the measurement y(k) can usually be considered
as noise free. However, to demonstrate the effectiveness of the proposed CV
B-spline identification approach, we considered both the noise-free and noisy
measurement cases with 2σ2

ξ = 0.0 and 2σ2
ξ = 0.01, respectively.

The piecewise cubic polynomial (Po = 4) was chosen as the B-spline basis
function, and the number of B-spline basis functions was set to

√
N = 8.

For this HPA, we set Rmax = 1.2, and used the empirically determined knot
sequence

{−12.0,−6.0,−2.0,−1.2,−0.6,−0.3, 0.0, 0.3, 0.6,1.2, 2.0, 6.0, 12.0}.

The Gauss-Newton identification algorithm with the LS parameter initialisa-
tion, as described in Subsection 1.2.3, was carried out. The results obtained
are summarised in Table 1.1 and illustrated in Figs. 1.6 to 1.9, which confirm
that an accurate CV B-spline neural network model can be obtained for the
HPA even in the cases that the measurements y(k) are corrupted by noise.

In order to achieve an accurate identification of a nonlinear system, the non-
linear system should be sufficiently excited over all the amplitudes concerned
by the input signal, which is known as the “persistent excitation” condition.
Note that, under the identification condition of IBO= 4 dB, there were rel-
ative few data points which yielded the signal amplitude r(k) = |w(k)| with

Table 1.1 Identification results for the linear filter part, h, of the HPA.

true parameter vector:
hT =

[
0.7500 + j0.2000 0.1500 + j0.1000 0.0800 + j0.0010

]
estimate under IBO= 0 dB and 2σ2

ξ = 0.0:
ĥT =

[
0.7502 + j0.1996 0.1499 + j0.0999 0.0800 + j0.0008

]
estimate under IBO= 0 dB and 2σ2

ξ = 0.01:
ĥT =

[
0.7519 + j0.1963 0.1510 + j0.1000 0.0814 + j0.0014

]
estimate under IBO= 4 dB and 2σ2

ξ = 0.0:
ĥT =

[
0.7502 + j0.2001 0.1501 + j0.1001 0.0800 + j0.0011

]
estimate under IBO= 4 dB and 2σ2

ξ = 0.01:
ĥT =

[
0.7533 + j0.1978 0.1518 + j0.1002 0.0810 + j0.0019

]
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Figure 1.6 Comparison of the HPA’s static nonlinearity Ψ(•) and the estimated
static nonlinearity bΨ(•) under IBO= 0 dB and 2σ2

ξ = 0.0: (a) the amplitude response,
and (b) the phase response.
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Figure 1.7 Comparison of the HPA’s static nonlinearity Ψ(•) and the estimated
static nonlinearity bΨ(•) under IBO= 4 dB and 2σ2

ξ = 0.0: (a) the amplitude response,
and (b) the phase response.

the values near or over the saturation value rsat. Consequently, the amplitude
response and phase response of the estimated B-spline neural network Ψ̂(•)
exhibits noticeable deviation from the HPA’s true amplitude response A(r)
and true phase response Φ(r) in the region r > Rmax, as can be seen from
Figs. 1.7 and 1.9. This of course does not matter, as this region is well beyond
the operating region of the HPA. Interestingly, under the operating condition
of IBO= 0 dB, the deviation between the estimated response and the true
response at the region of r > Rmax is no longer noticeable, as can be noted
from Figs. 1.6 and 1.8, because of the better excitation of the input signal.
From Figs. 1.7 and 1.9, it can be seen that the noise ξ(k) mainly affects the
estimated phase response at the region of the signal amplitude r(k) near zero.
Note that this relatively poor accuracy of the estimated phase response under
the noisy measurement condition at r(k) near zero does not matter at all.
This is because the estimated Ψ̂(•) is used to design v(k) = Ψ̂−1(x(k)) for the
16-QAM signal x(k), whose amplitude |x(k)| is much larger and is well over
this near zero region.
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Figure 1.8 Comparison of the HPA’s static nonlinearity Ψ(•) and the estimated
static nonlinearity bΨ(•) under IBO= 0 dB and 2σ2

ξ = 0.01: (a) the amplitude response,
and (b) the phase response.
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Figure 1.9 Comparison of the HPA’s static nonlinearity Ψ(•) and the estimated
static nonlinearity bΨ(•) under IBO= 4 dB and 2σ2

ξ = 0.01: (a) the amplitude response,
and (b) the phase response.

Results of digital predistorter solution We employed the estimated CV B-spline
Wiener HPA model obtained under the condition of noise-free measurement
(2σ2

ξ = 0.0) to design the predistorter. Note that we only needed to calculate
the 16 points of v(k) = Ψ̂−1(x(k)) for the 16-QAM constellation using the
Gauss-Newton algorithm based on the De Door inverse, as described in Sub-
section 1.2.4. The length of the predistorter’s inverse filter was set to Lg = 12.
The outputs of the combined predistorter and Wiener HPA are depicted in
Fig. 1.10 for the HPA’s operating conditions of IBO= 4 dB and 0 dB, respec-
tively. Compared with the outputs of the HPA as plotted in Fig. 1.4 (b) and
Fig. 1.5 (b), it can be seen that the designed predistorter successfully removes
the serious distortions caused by the HPA. The achievable performance of the
designed predistorter was further assessed using the MSE metric defined by

MSE = 10 log10

( 1
Ktest

Ktest∑
k=1

|x(k) − y(k)|2
)
, (1.52)
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Figure 1.10 The output of the combined predistorter and HPA y(k), marked by
×, for the 16-QAM input signal x(k), marked by •: (a) the IBO of 4 dB, and (b) the
IBO of 0.0 dB.

and the system’s BER, where Ktest was the number of test data, x(k) was
the 16-QAM input and y(k) was the output of the combined predistorter and
HPA system. The channel signal to noise ratio (SNR) in the simulation was
given by SNR = 10 log10

(
Eb

/
No

)
, where Eb was defined as the energy per bit

and No the power of the channel’s additive white Gaussian noise (AWGN).
With Ktest = 105, 16-QAM data were passed through the combined pre-

distorter and HPA system to compute the MSE (1.52), and the resulting MSE
as the function of IBO is plotted in Fig. 1.11. The output signal after the
HPA was then transmitted over the AWGN channel, and the BER was then
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Figure 1.11 The mean square error versus IBO performance.



CONCLUSIONS 21

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 0  4  8  12  16  20

B
it 

E
rr

or
 R

at
e

Eb/No (dB)

without predistorter (IBO=0dB)
without predistorter (IBO=4dB)

with predistorter (IBO=0dB)
with predistorter (IBO=4dB)

AWGN

Figure 1.12 The bit error rate versus channel SNR performance.

determined at the receiver. The results so obtained are plotted in Fig. 1.12,
in comparison with the benchmark BER curve of the ideal AWGN channel.
It can be seen from Fig. 1.12 that the BER performance of the combined pre-
distorter and HPA system is practically indistinguishable from those of the
ideal AWGN channel even under the operating condition of IBO = 0 dB. The
achievable BER performance of the combined predistorter and HPA system
are further illustrated in Fig. 1.13 for the three values of the channel SNR.

1.4 CONCLUSIONS

Identification and inverse of complex-valued Wiener systems have been pro-
posed based on the complex-valued B-spline neural network approach. Our
contribution is twofold. Firstly, the complex-valued nonlinear static func-
tion in the Wiener system is modelled based on the tensor product from two
univariate B-spline neural networks that are constructed using the real and
imaginary parts of the system input. The Gauss-Newton algorithm, aided by
an least squares parameter initialisation scheme, has been applied to estimate
the model parameters that include the complex-valued linear dynamic model
coefficients and B-spline neural network weights. The identification algorithm
naturally incorporates the efficient De Boor algorithm with both the B-spline
curve and first order derivative recursions. Secondly, an accurate inverse tech-
nique has been developed for the complex-valued Wiener model. In particular,
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Figure 1.13 The bit error rate versus IBO performance of the combined
predistorter and HPA for three values of the channel SNR.

the inverse of the complex-valued nonlinear static function in the Wiener sys-
tem is calculated effectively using the Gaussian-Newton algorithm based on
the estimated B-spline neural network model with the aid of the inverse of De
Boor algorithm that again utilises naturally both the B-spline curve and first
order derivative recursions. An application to digital predistorter design for
high power amplifiers with memory has been used to demonstrate the effec-
tiveness of our approach for modelling and inverse of complex-valued Wiener
systems.
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